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I. Abstract 

Spacecraft entering the atmosphere of Mars encounter a variety of uncertainties on 

their flight from the entry interface until touchdown. This is why a precise landing 

point determination is not possible. Instead, statistical methods are applied to 

narrow the landing area down with a high confidence in an ellipse. Confidence 

ellipses contain all known uncertainties in order to resemble real life as close as 

possible. This work aims to isolate the uncertainty impact of the atmosphere on 

the trajectory and further analyze atmospheric conditions having an influence on 

the landing position. 

Simulating the entry trajectory of the Phoenix spacecraft based on a six-state 

computation, the uncertainties given in two atmospheric models used in this work 

– MarsGRAM and MCD – are identified. The baseline statistical technique is the 

robust Monte Carlo method which biggest disadvantage is the requirement of 

computing power because it simulates N trajectories (here: 1000) and cannot utilize 

efficiency gains. In contrast, linear covariance analysis is challenged to provide 

similar results with considerably less computing power because it uses a single 

trajectory based on a nominal flight path. The results show that linear covariance 

analysis is able to provide satisfactory results all the way until touchdown. In fact, 

until parachute deployment the resemblance can be classified as excellent. 

The influence of the atmosphere and its models on the trajectory is shown in various 

aspects. Seasonal influences are very pronounced in the northern hemisphere, but 

even more in the southern hemisphere because of the planetary properties which 

lead to different length and intensities of the seasons in the northern and southern 

part of the planet. In general, summer leads to higher densities because of 

sublimation of carbon dioxide from the pole while in winter carbon dioxide 

condensates at the pole. A comparison of the model results for the same input 

parameters show that they have considerable differences in their uncertainties as 

the size of the confidence ellipses vary significantly. 

Furthermore, the impact of geometry and mass is shown by modifying the 

spacecraft to the Mars Science Laboratory in a case study. Due to its higher mass, 

it requires a deeper dive into the atmosphere to build up sufficient drag and 

therefore lands further downwind. 
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1 Introduction 

The start of the exploration and investigation of Mars’ atmosphere can be dated 

back to the late eighteenth century, when William Herschel first published his 

observations in ‘Philosophical Transactions of the Royal Society’ [1]. However, it 

was not until the first spacecraft fly-by in 1965, which was part of the Mariner 4 

mission, that the data provided the evidence for the theoretical approach of the 

atmosphere’s constituents and pressure. Since then, the analysis and detailed 

specification of the atmosphere has been an ongoing endeavor. While measurements 

from space provide an approximate analysis of the atmosphere, the degree of detail 

is higher for lander missions which cross through all layers of the atmosphere - 

although, fewer than a dozen landers have successfully touched down on Mars’ 

surface. Consequently, the data density for the atmosphere is still low, especially 

when compared to Earth where continuous weather observations provide detailed 

analyses of its properties. 

Due to uncertainties in the re-entry, the landing point of a mission cannot be 

determined precisely. Instead, a confidence ellipse containing a high percentage of 

all possibilities is created (see figure 1-1). These confidence ellipses contain 

uncertainties of the atmosphere and other factors, for instance, aerodynamic 

properties, the configuration (e.g. angle of attack) or the initial entry conditions. 

 

figure 1-1: Phoenix confidence ellipse with target and actual landing position. [2, p. 3] 
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1.1 Motivation 

Given the few missions providing detailed data of the atmospheric composition, 

computer models are subject to uncertainty. The models MarsGRAM and MCD, 

which are the basis of this work, are described in chapter 2. As the atmospheric 

uncertainties alone are not specified separately in the confidence ellipses, this study 

will analyze the share of the atmosphere in the uncertainties. A first impression 

case study is carried out to investigate the approximate extent of disparities 

between the two models. The case study is performed as a vertical profile of the 

parameters density and wind (eastward, northward and vertical) at the Phoenix 

landing site and approximate entry  time (23:30:00 UTC on 25th of May 2008; 

68.219° N, 234.248° E [2]). 

 

figure 1-2: Vertical profile of MarsGRAM and MCD data at the Phoenix landing site. 

figure 1-2 shows that the output data of the atmospheric models are different. The 

density data are relatively identical in the lower forty kilometers but deviate higher 

up. Because of the logarithmic scale, even small deviations in the graph indicate 

significant differences. The vertical wind data of both models have approximately 

the same mean values, but MCD has a steady altitude profile while MarsGRAM 

has high local variances. Deviations in the horizontal winds indicate significant 

differences in the models – both in magnitude of wind speed and direction. As an 

outcome of this initial case study, it is expected that the simulation results between 

the models will have a high variability as well. 
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1.2 Scope of work 

Uncertainties in the atmospheric models and the differences between them are 

analyzed by simulating an atmospheric re-entry. A simulation is created based on 

the Phoenix lander, which landed on Mars in 2008. It contains all necessary 

mathematical operations to compute the trajectory of the spacecraft from the entry 

point through parachute deployment until touchdown. 

The atmospheric models are attached to the simulation and can be altered 

according to uncertainties in the parameters. In order to investigate the impact, 

Monte Carlo and linear covariance analyses are performed which result in 

parameter deviations and confidence ellipses of the landing points.  

Furthermore, the atmospheric models themselves are investigated by analyzing 

internal modelling changes, like observation years or seasonal impact, given the 

orbit properties of the planet. Additionally, the Phoenix landing is mirrored to the 

southern hemisphere to investigate the respective influence on the landing position. 

In the end, the impact of the geometry and mass is inspected by changing the 

spacecraft to the larger Mars Science Laboratory. 
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2 Mars atmosphere and models 

Spacecraft entering the atmosphere of Mars and Earth both utilize the atmosphere 

as their main decelerator. However, the properties of both planets’ atmosphere vary 

widely, which leads to disparities in the performance of atmospheric entries. To 

address this issue, the following chapter contains a general description of Mars’ 

atmosphere. Since the representation of the atmosphere in a simulation is achieved 

with numerical models, it will be followed by an outline of the respective 

atmospheric models. 

2.1 Atmospheric properties 

While the conditions on Mars vary as they do on Earth (depending on the season, 

time of day, weather etc.), the surface pressure on Mars is on average only about 

0.6 percent (6.1 mbar) of Earth’s standard pressure (1.01325 bar). Consequently, 

the density is also considerably lower than on Earth which leads to major 

differences in the way a re-entry is performed at Mars (see chapter 3). [3] 

The rotation axis of Mars is tilted by about 25.2 degrees, which is similar to Earth, 

leading to high seasonal variations of the atmospheric properties. Due to the lack 

of a standardized calendar, these seasons are tracked with the solar longitude Ls 

which tracks the 360-degree movement around the sun (vernal equinox: Ls = 0°, 

northern summer solstice: Ls = 90°, northern winter solstice: Ls = 270°). 

Additionally, the orbit of Mars has an eccentricity which is about 5.5 times higher 

than the near-circular orbit of Earth. Coincidentally, aphelion and perihelion of 

Mars are close to the summer/winter solstices: Aphelion is at Ls = 70° and 

perihelion is correspondingly at Ls = 250°. This property of Mars’ orbit leads to 

different lengths and intensities of the seasons. Summer in the northern hemisphere 

is fairly long but only warm due to the low velocity around aphelion (long time) 

and the increase in distance from the Sun (less heat) In contrast, summers in the 

southern hemisphere are shorter (higher velocity) but more intense (lower distance) 

while winters are cold and long. The mismatch in temperatures leads to density 

differences which can be seen in figure 2-1 and figure 2-2. [3] [4] 

 



2. Mars atmosphere and models  5 

 

 

 

figure 2-1: Mars Climate Database (MCD) density profile at Phoenix landing 
(Ls = 76.6°), 20 km AMR (above MOLA radius). Temperate summer in the northern 

hemisphere, Ls between aphelion and northern summer solstice. 

 

 

figure 2-2: MCD density profile ½ Mars year after the Phoenix landing (Ls = 258.9°), 
20 km AMR. Hot summer in the southern hemisphere, Ls between perihelion and 

southern summer solstice. 

Due to a higher distance to the Sun and the low-density atmosphere, the surface 

temperatures are lower than on Earth with a mean of about 200 K. Furthermore, 

the absence of surface water and the high orbit eccentricity lead to high 

temperature variations on a daily and seasonal level (150 – 300 K). [3] 

The atmosphere on the surface is primarily composed of carbon dioxide 

(≈ 95.3 percent), nitrogen (≈ 2.7 percent) and Argon (≈ 1.6 percent) followed by 

small amounts of oxygen, carbon monoxide and other trace gases. A small 

greenhouse effect is induced by the atmosphere which increases the temperatures 

slightly by about 5 K. In contrast, the greenhouse effect on Earth accounts for a 
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temperature increase of approximately 33 K. One particular effect observed at Mars 

is an anti-greenhouse effect during dust storms. Usually, dust particles only 

represent a small proportion of the atmosphere, but in the event of a dust storm 

they are picked up from the ground which leads to a significant increase of dust 

particles in the atmosphere. The dust particles absorb the incoming solar radiation 

and decrease the surface temperature by a few degrees Kelvin. [3] 

In the altitudes of interest up to 150 kilometers, the atmosphere of Mars is 

distinguished into different layers due to the temperature profile and composition 

(see figure 2-3). The troposphere with minor weather activities like water-ice clouds 

extends up to 60 kilometers at which point it merges into the mesosphere. Due to 

the lack of ozone, Mars does not have a stratosphere. The temperatures in the 

mesosphere stay relatively constant after the near-steady reduction in the 

troposphere. Above 120 kilometers, the mesosphere changes into the thermosphere 

where the temperatures are rising again due to “absorption of radiation in the far 

and extreme ultra-violet ranges”. [3] 

 

figure 2-3: Vertical temperature profile of the atmosphere from spacecraft measurements, 
adapted from [3, p. 169]. 

Blue: Viking 1. Green: Viking 2. Red: Pathfinder. 

While the atmosphere of Mars only has one percent of Earth’s density, it still 

possesses complex wind systems (see figure 2-4) with substantial wind speeds. These 

systems have to be separated into different categories on where and when they 

form. As the data of these phenomena is very limited and solely based on successful 
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lander missions and measurements from space, these explanations merely describe 

the current state of scientific knowledge. 

 

figure 2-4: General wind circulation on Mars. [3, p. 171] 

High latitudes 

During winter at high latitudes, systems of high and low pressure were measured 

by the two Viking landers which resemble the same system patterns observed on 

Earth. In these areas, the surface wind speeds are averaging about 10-20 m/s with 

a predominant eastward direction (westerlies). In contrast, during summer the 

winds are primarily headed in a westwards direction (easterly). These effects can 

be viewed in figure 2-5 and figure 2-6. Vertical circulation of the air is 

predominantly apparent as a Ferrel circulation cell in high latitudes. Furthermore, 

there is a polar circulation cell at the poles. At very high latitudes, the effect of the 

poles has to be taken into account. Due to the high temperature differences between 

summer and winter, significant amounts of carbon dioxide condense at the poles 

during winter and sublime during summer. Therefore, an additional flow either to 

or away from the poles is present. The condensation and sublimation of carbon 

dioxide at the poles is one of the primary reasons for the considerable density 

differences between summer and winter. [3] [5] 
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Tropics 

In the tropics, easterly winds are dominant during the whole Mars year. 

Additionally, a phenomenon called Hadley circulation takes place in the lower and 

mid latitudes. Convection leads to the rise of air in the summer hemisphere and a 

sinking of air in the winter hemisphere. Consequently, a surface and high-altitude 

wind (in opposite directions) along the meridians is created. Furthermore, during 

the equinoxes, two separate cells to the north and the south are created which have 

a joint convergence zone in the tropics. [3] 

 

figure 2-5: MCD eastward winds at the Phoenix landing (Ls = 76.6°), 20 km AMR. High 
westerlies in the southern hemisphere, low easterlies in the northern hemisphere. 

Easterlies in the tropics. 

 

figure 2-6: MCD eastward winds ½ Mars year after the Phoenix landing (Ls = 258.9°), 
20 km AMR. High westerlies in the northern hemisphere, low easterlies in the southern 

hemisphere. Easterlies in the tropics. 
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Dust storms 

Due to the low density, the winds are powerful enough to raise very fine dust from 

the surface and, given sufficient strength, create a dust storm. Dust storms occur 

on a local scale (dust devils) but can enlarge to a global scale (see figure 2-7). They 

tend to occur at a solar longitude of about 260 degrees which is just after perihelion. 

Measurements from the Viking 1 lander indicate that surface winds exceed 30 m/s 

during a dust storm event. [3] [4] 

 

figure 2-7: Change of Mars’ appearance during a global dust storm. 
Left: Late June 2001 with a local dust storm near the south pole. 

Right: July 2001 global dust storm. [6] 

2.2 Atmospheric models 

Atmospheric modelling of the atmosphere of Mars can be traced back to as early 

as 1969 when Leovy and Mintz converted the state-of-the-art general circulation 

model of Earth to Mars. While it was possible to forecast condensation of CO2 in 

the atmosphere and mid-latitude weather systems on a large scale, it was relatively 

inaccurate when compared to today’s numeric simulations. Over the past decades, 

a lot of effort has been put into improving the models and making them available 

to scientists around the world. Two atmospheric models are investigated in this 

study to analyze the differences proposed by them. Each of the models is 

developed/funded and used by one of the major Western space agencies – NASA 

(National Aeronautics and Space Administration) and ESA (European Space 

Agency). Both models utilize the MOLA (Mars Orbiter Laser Altimeter) areoid as 

their main altitude reference and can therefore be attached to the same simulation. 

[7] 



2. Mars atmosphere and models  10 

 

 

The areoid is the geoid model of Mars and defines the reference zero-altitude around 

the planet for the altitude reference system MOLA. Altitude values are expressed 

in ‘above MOLA radius’ (AMR). As Mars does not have liquid oceans like Earth, 

the reference surface is not at sea level but instead a plane of equal potential. Due 

to this definition, a portion of the topography of Mars has negative MOLA altitudes 

(see figure 2-8). As an example, the Phoenix lander touched down at a MOLA 

altitude of approximately -4100 m [2]. [8] 

 

figure 2-8: Mars MOLA map, adapted from [9]. 
Blue and green indicate negative altitudes. Yellow indicates approximately zero altitude. 

Red, brown and white indicate positive altitudes. 

2.2.1 Mars Global Reference Atmospheric Model 2010 (MarsGRAM) 

MarsGRAM is developed by NASA’s Marshall Space Flight Center (Huntsville, 

Alabama) and is part of a series of models which also include Earth, Venus, 

Neptune and Titan. It is the primary NASA database for the calculation of 

atmospheric re-entry and aerobrake maneuvers. Apart from atmospheric properties 

like density, wind, temperature and their respective perturbations, it is also possible 

to generate topography data which is provided relative to the MOLA areoid. [10] 

For each scenario, a grid of data is created (see figure 2-9). As the values tend to 

change more in the vertical direction than they do in the horizontal direction (e.g. 

density decreases exponentially), it is chosen to increase the data points in the 

altitude spectrum and decrease it in the longitudinal/latitudinal frame (increase 

the spacing). 
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figure 2-9: Example of a data grid. 
Blue points: Data. Red: Longitude. Green: Latitude. Black: Altitude. 

MarsGRAM Phoenix landing example (see figure 2-10): 

Longitude: 190° – 240° with 2° spacing 

Latitude: 65° – 73° with 2° spacing 

Altitude: -5 km to 143 km MOLA with 0.5 km spacing 

 

figure 2-10: Mars MOLA map with data grid space, adapted from [9]. 
Red cross indicates original Phoenix landing location. 
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MarsGRAM provides a comprehensive dataset with many different parameters. A 

guide on how to generate a dataset can be found in annex 12.1.1. The parameters 

required for the simulation are the following: 

 Density and uncertainty thereof 

 Temperature 

 Molar mass 

 Horizontal winds and uncertainty thereof 

 Vertical winds and uncertainty thereof 

 Areoid radius 

 Altitude of local terrain above/below MOLA 

 Local acceleration of gravity 

2.2.2 Mars Climate Database v5.3 (MCD) 

The Mars Climate Database is a European database primarily funded by ESA and 

CNES (Centre National d’Etudes Spatiales) and is developed by the following 

institutions [11]: 

 Laboratoire de Météorologie (Paris, France) 

 Department of Atmospheric, Oceanic and Planetary Physics (Oxford 

University, United Kingdom) 

 Department of Physics and Astronomy (Open University, United Kingdom) 

 Instituto de Astrofísica de Andalucía (Granada, Spain) 

The access to the database is performed through the web interface [12] because a 

direct installation of the database on a Windows environment proved to be rather 

complex. Unfortunately, the web interface does not provide full access to the 

database as it is not capable of outputting the following data points: 

 Vertical wind perturbations 

 Areoid radius 

 Altitude of local terrain above/below MOLA 

 Local acceleration of gravity 

 Molar mass 

To achieve the same grid density as for MarsGRAM, annex 12.1.2 displays how to 

manually gather the data from the web interface of MCD. 
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3 Theory of atmospheric re-entry 

Even though it appears to be a common occurrence nowadays, landing a spacecraft 

on another planet is still a technologically challenging task to achieve and a 

considerable number of missions fail. When approaching a planet with an 

atmosphere, the most critical phase of the flight starts once the upper part of the 

atmosphere is encountered and significant aerodynamic forces begin to act on the 

spacecraft. The mission phase between entry of the atmosphere and touchdown on 

the surface is called EDL – or Entry, Descent and Landing which will be described 

in the sections below and focus on a re-entry performed at Mars. 

In general, the function of the EDL can be described as reducing the velocity of 

the spacecraft from entry velocity to (nearly) zero at the surface while assuring 

that the spacecraft survives the encountered conditions. To model the spacecraft 

movement as close to reality as possible, a six-state simulation is chosen – three 

states for position and three for velocity. This enables three-dimensional movement 

of a point mass within the given environment. In contrast, a three-state model 

solely simulates the movement in a 2D-plane. As the atmospheric influences like 

wind act in a 3D-environment, the three-state simulation is found to not be 

sufficient for this work. 

As the spacecraft moves in relation to a planet, which is almost shaped like a 

sphere, a spherical coordinate system is used to simulate the dynamics of the 

system. In a spherical coordinate system, the six states are radius r, longitude θ, 

latitude φ, velocity v, flight-path angle γ and velocity azimuth angle ψ and are 

further explained in table 3-1. 

All position coordinates are given with respect to the center of the assumed 

spherical planet (planetocentric) as the atmospheric models provide data in this 

way. A graphic explanation of the coordinate system is shown in figure 3-1. 
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table 3-1: Explanation of spacecraft states 

State Explanation 

Radius r Distance from the planet’s center to the point mass 

Longitude θ Angle from the prime meridian to the line ‘point 

mass – center of the planet’ 

Latitude φ Angle from the equator to the line ‘point mass – 

center of the planet’ 

Velocity v Magnitude of the velocity vector 

Flight-path angle γ Angle between the velocity vector and the local 

horizontal, negative towards the ground 

Velocity azimuth angle ψ Angle between the velocity vector and the local 

meridian, rotating eastwards 

 

 

 

figure 3-1: Spherical coordinate system for six-state simulation, adapted from [13, p. 22]. 

  



3. Theory of atmospheric re-entry  15 

 

 

3.1 Re-entry 

During the re-entry phase, the spacecraft loses most of its speed by atmospheric 

drag. The spacecraft enters the atmosphere of Mars with a velocity of multiple 

kilometers per second. Historically, entry velocities ranged from about 4.7 to 

7.3 km/s. These velocities create a substantial amount of drag once the atmosphere 

is sufficiently dense. Due to the significantly lower density in comparison with 

Earth, these conditions are met at lower altitudes. Consequently, to guarantee 

sufficient drag, the spacecraft has to dive deep into the atmosphere by entering it 

with a higher flight-path angle (γ ≈ 11°-17°) than compared to entry-profiles on 

Earth (γ ≈ 5°-7°). If the flight-path angle is too low, the spacecraft will ‘skip’ off 

the atmosphere (see figure 3-2) like a stone on the surface of a lake if thrown with 

the correct speed and flight-path angle. If the angle is too high, the deceleration 

and/or the thermal loads will exceed the spacecraft’s limits and destroy it. [14] 

 

figure 3-2: Computed comparison of different inertial flight-path angles for Mars descent 
of the Phoenix spacecraft. 

If the flight-path angle is too low, the spacecraft ‘skips’ off the atmosphere. 
Blue: γ = -13°. Red: γ = -5°. 

During re-entry, the atmospheric drag leads to substantial heating of the spacecraft 

which, if not protected, would lead to destruction. Therefore, a spacecraft has to 

be equipped with a thermal protection system that discards the thermal energy 

accordingly. The Phoenix spacecraft utilizes a 70-degree sphere-cone aeroshell (see 

figure 3-3) with a 5.5155 mଶ [2] reference area which possesses good drag properties 

in the hypersonic regime and has been used on every Mars lander to date. [14] 
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figure 3-3: Phoenix entry capsule geometry with heat shield, backshell and parachute cone 
plus cover. [15, p. 4] 

The aerodynamic properties of the Phoenix spacecraft have been analyzed 

thoroughly in preparation for launch. The drag and lift coefficients (CD and CL) 

depending on the angle of attack and the Mach number can be seen in figure 3-4.  

 

figure 3-4: Drag and lift coefficient in relation to the Mach number. [16, p. 11] 
Different graphs due to changing angle of attacks. 

The motion of the spacecraft (SC) during re-entry is determined by six ordinary 

differential equations (ODE) according to the six-state simulation. For 

simplification, a stationary planetary atmosphere is assumed. The terms 

highlighted in bold show the appended parts to include wind within the simulation. 

Wind is included in the Up-East-North frame (vw,vert, vw,east and vw,north) and is 

therefore attached to the ODEs of radius, longitude and latitude. [17] 
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ṙ = v̇ ⋅ sin(γ) +  ܜܚ܍ܞ,ܟܞ

θ̇ =
v ⋅ cos(γ) ⋅ sin(ψ) + ܜܛ܉܍,ܟܞ

r ⋅ cos (ϕ)
 

ϕ̇ =
v ⋅ cos(γ) ⋅ sin(ψ) + ܐܜܚܗܖ,ܟܞ

r
 

v̇ = −
ρ ⋅ vଶ ⋅ Cୈ,ୗେ ⋅ Aୗେ

2 ⋅ m
− g ⋅ sin(γ) 

γ̇ =
ρ ⋅ C ⋅ v ⋅ Aୗେ ⋅ cos(σ)

2 ⋅ m
− cos(γ) ⋅ ቀ

g
v
−

v
r
ቁ 

ψ̇ =
ρ ⋅ C ⋅ v ⋅ Aୗେ ⋅ sin(σ)

2 ⋅ m ⋅ cos(γ) −
v ⋅ cos(γ) ⋅ tan(ϕ) ⋅ sin(ψ)

r
 

with: Density ρ, Reference area A, mass m, acceleration due to gravity g and bank 

angle σ. 

In comparison, a three-state solution would be represented by the following 

equations of motion (EoM): 

ṙ = v ⋅ sin (γ) 

v̇ = −
ρ ⋅ vଶ ⋅ Cୈ,ୗେ ⋅ Aୗେ

2 ⋅ m
− g ⋅ sin (γ) 

γ̇ =
ρ ⋅ C ⋅ v ⋅ Aୗେ

2 ⋅ m
− cos(γ) ⋅ ቀ

g
v
−

v
r
ቁ 

3.2 Descent 

As all Mars landers since Viking 1, the Phoenix spacecraft utilizes a disk-gap-band 

(DGB) parachute which is deployed in the supersonic flow regime. DGB parachutes 

were originally envisioned in the 1960s for high-altitude sounding rockets primarily 

used for weather applications. They were then further developed by NASA for what 

would become the Viking lander program. A variety of sizes were designed and 

later successfully tested at sub- and supersonic speeds, for example within wind 

tunnels and small rockets launched from high-altitude balloons. [18] 

The name ‘disk-gap-band’ suggests the basic layout of the parachute. It consists of 

‘a flat circular disk and an orthogonal cylindrical band that are separated by a gap 

between the two’ [18] (see figure 3-5). While the disk is responsible for most of the 

drag creation, the combination of gap and band improve the stability by letting 
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the air exit the disk canopy and creating a fixed separation point of the outside 

flow. The aerodynamic properties of the Phoenix parachute are shown below. [18] 

 

figure 3-5: Disk-gap band parachute basic design layout.  
Left: Gore segments, which are stitched together to form the parachute. 

Bottom: Constructed profile. Top: Inflated profile [18, p. 2]. 

The parachute used on the Phoenix landing system has a diameter of 11.73 m [19] 

resulting in a reference area of 108.065 mଶ. The drag coefficient of this parachute 

depends on the Mach number and is displayed in figure 3-6. 

 

figure 3-6: DGB-parachute drag coefficient in relation to the Mach number, 
adapted from [20]. 
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To implement the additional drag component of the parachute (P), the equations 

of motions have to be changed accordingly. The parachute only creates drag and 

no lift. The appended part is highlighted in bold. 

ṙ = v ⋅ sin(γ) + v୵,୴ୣ୰୲ 

θ̇ =
v ⋅ cos(γ) ⋅ sin(ψ) + v୵,ୣୟୱ୲

r ⋅ cos (ϕ)
 

ϕ̇ =
v ⋅ cos(γ) ⋅ sin(ψ) + v୵,୬୭୰୲୦

r
 

v̇ = −
ρ ⋅ vଶ ⋅ (Cୈ,ୗେ ⋅ Aୗେ + ۾,۱۲ ⋅ (۾ۯ

2 ⋅ m
− g ⋅ sin(γ) 

γ̇ =
ρ ⋅ C ⋅ v ⋅ Aୗେ ⋅ cos(σ)

2 ⋅ m
− cos(γ) ⋅ ቀ

g
v
−

v
r
ቁ 

ψ̇ =
ρ ⋅ C ⋅ v ⋅ Aୗେ ⋅ sin(σ)

2 ⋅ m ⋅ cos(γ) −
v ⋅ cos(γ) ⋅ tan(ϕ) ⋅ sin(ψ)

r
 

During the parachute phase, the spacecraft will release the heatshield and thereby 

expose the lander to the surrounding environment. The on-board radar will boot 

up and start to measure the distance to the ground. Once the measured distance 

to the planet crosses a predefined value of 940 m above ground level, the lander is 

released from the backshell and the landing sequence is initiated. 
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3.3 Landing 

In the final seconds of the flight phase, the spacecraft has to reduce its speed from 

50-60 m/s to an acceptable landing speed of about 1-3 m/s. Therefore, the Phoenix 

spacecraft contains a lander module with 293 N monopropellant hydrazine 

thrusters to decelerate and stabilize the spacecraft. Twelve of these thrusters are 

pulse-fired to land the spacecraft in a controlled manner. The on-board computer 

first aims to achieve a constant velocity of about 8 m/s at an altitude of 

50 meters [2]. Afterwards, the velocity is reduced to tolerable landing speeds. [21] 

Equations of motion solely for the landing: 

ṙ = v ⋅ sin(γ) + v୵,୴ୣ୰୲ 

θ̇ =
v ⋅ cos(γ) ⋅ sin(ψ) + v୵,ୣୟୱ୲

r ⋅ cos (ϕ)
 

ϕ̇ =
v ⋅ cos(γ) ⋅ sin(ψ) + v୵,୬୭୰୲୦

r
 

v̇ = −
ρ ⋅ vଶ ⋅ Cୈ,ୗେ ⋅ Aୗେ

2 ⋅ m
− g ⋅ sin(γ) −

܂ ⋅ ()ܛܗ܋
ܕ

 

γ̇ =
ρ ⋅ C ⋅ v ⋅ Aୗେ ⋅ cos(σ)

2 ⋅ m
− cos(γ) ⋅ ቀ

g
v
−

v
r
ቁ+

܂ ⋅ ()ܖܑܛ
ܕ ⋅ ܞ

 

ψ̇ =
ρ ⋅ C ⋅ v ⋅ Aୗେ ⋅ sin(σ)

2 ⋅ m ⋅ cos(γ) −
v ⋅ cos(γ) ⋅ tan(ϕ) ⋅ sin(ψ)

r
 

with: Thrust T and thrust angle β 

During the landing phase, the thruster firing leads to a continuous reduction in 

mass which has to be taken into account when calculating the EoMs: 

ṁ = −
T

Iୗ ⋅ g
 

with: 

ISP = 230 s   Thruster specific impulse [22] 

g0 = 9.80665 m/sଶ  Standard acceleration due to gravity (Earth) [23] 
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4 Simulink model 

The principal simulation of the motion is performed within MATLAB/Simulink. 

In the sections below, the influential parameters are described with the key 

functionality shown in figure 4-1. In general, the motion of the spacecraft is based 

on a six-state calculation (three for position, three for velocity) which makes it 

possible to calculate the motion of a point mass in a 3D-environment. ODEs are 

used to calculate the six states at each time step (red). The ODEs require inputs 

based on interpolation, constants and controls (black, grey and brown). These are 

partly based on feedback calculations (green) and event triggers (light blue and 

purple). Finally, certain visualizations (dark blue) are created within the 

simulation. The simulation will be stopped as soon as the stop condition (orange) 

is reached. Each part of the simulation will be explained in the sections below. 

 

figure 4-1: Block diagram of the simulation with different subsystems.  
Grey: (Static) input parameters. Black: Interpolation parameters. Brown: Thrust 

controller. Red: Equations of motion and integration. Green: Feedback calculations. Light 
blue and purple: Event triggers. Blue: Visualizations. Orange: Stop condition. 
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4.1 Equations of motion and integration 

The equations of motion, which were introduced in the previous chapter, have to 

be embedded into the simulation. These ODEs are implemented in this subsystem 

and are integrated with respect to the current time step. The model is built in a 

way that the same equations of motion are used for the whole simulation. 

Parameters which are not used at certain points in time are built as a step function: 

They are held at zero for the times in which they are not used. This applies to 

parachute area and engine thrust. The basic equations of motion are shown below: 

ṙ = v ⋅ sin(γ) + v୵,୴ୣ୰୲ 

θ̇ =
v ⋅ cos(γ) ⋅ sin(ψ) + v୵,ୣୟୱ୲

r ⋅ cos (ϕ)
 

ϕ̇ =
v ⋅ cos(γ) ⋅ sin(ψ) + v୵,୬୭୰୲୦

r
 

v̇ = −
ρ ⋅ vଶ ⋅ (Cୈ,ୗେ ⋅ Aୗେ + Cୈ, ⋅ A)

2 ⋅ m
− g ⋅ sin(γ) −

T ⋅ cos(β)
m

 

γ̇ =
ρ ⋅ C ⋅ v ⋅ Aୗେ ⋅ cos(σ)

2 ⋅ m
− cos(γ) ⋅ ቀ

g
v
−

v
r
ቁ +

T ⋅ sin(β)
m ⋅ v

 

ψ̇ =
ρ ⋅ C ⋅ v ⋅ Aୗେ ⋅ sin(σ)

2 ⋅ m ⋅ cos(γ) −
v ⋅ cos(γ) ⋅ tan(ϕ) ⋅ sin(ψ)

r
 

ṁ = −
T

Iୗ ⋅ g
 

Apart from the integrated values of the equations of motions, further calculations 

require the spacecraft acceleration a = v̇ which is taken out of the EoMs. 
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4.2 Feedback calculations 

These calculations are based on the integrated state parameters from the main 

equations of motion and are input parameters for multiple calculations downstream 

which is why they are placed before the parameter computations. 

Altitude over MOLA areoid 

Both MarsGRAM and MCD tabular data are based on the MOLA areoid reference 

altitudes. The areoid radius data of Mars is gathered from MarsGRAM and 

compared to the current radius. It is not possible to acquire the same data within 

the web application of MCD which is why MarsGRAM is used for both simulation 

frames. 

hୟ୰ୣ୭୧ୢ = r − rୟ୰ୣ୭୧ୢ 

Altitude over terrain 

The altitude over the surface is calculated to determine the initiation of the 

terminal descent and the final guidance. Once again, the radius of the terrain data 

is always taken from the MarsGRAM simulation as the MCD web interface does 

not provide detailed terrain data. 

In this aspect, a major difference between the databases comes up. While 

MarsGRAM calculates properties (e.g. density) with no consideration of the actual 

terrain and therefore also computes values ‘below the surface’, MCD outputs ‘Not 

a Number’ (NaN) if the location point is considered to be below the actual terrain 

leading to a simulation cut-off/failure as soon as NaN-values are detected. During 

the simulations, an altitude resolution of 500 meters is used and therefore the 

terrain representation within MCD is limited to 500-meter steps. As the landing 

position dispersion is greatly reduced in the final seconds of landing, a higher 

simulation cut-off at 600 meters above ground level (AGL) is accepted to be within 

reasonable bounds for the MCD database. 

h୲ୣ୰୰ୟ୧୬ = r − r୲ୣ୰୰ୟ୧୬ 
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Mach number 

The Mach number is vital for the calculation of airflow characteristics. The 

properties and behavior of objects change with the Mach number. For this 

simulation, the aerodynamic coefficients described in chapter 3 are linked to the 

Mach number. The Mach number itself links the object speed v to the speed of 

sound c. 

Ma =
v
c

 [dimensionless] 

The speed of sound is calculated based on the temperature and chemical 

composition of the surrounding atmosphere: 

c = ඨκ ⋅ R ⋅
T
M

 ቂ
m
s
ቃ 

with: 

κ = cp/cv = 1.33   Ratio of specific heats  on Mars [24]   

R0 = 8.314452618 [J/(mole*K)] Universal gas constant [25] 

T [K]     Temperature – based on MarsGRAM/MCD 

M [kg/mole]    Molar mass – based on MarsGRAM 

4.3 Parachute trigger 

Triggering the parachute was done based on two parameters in the Phoenix 

mission: acceleration or velocity. While the acceleration is measured by the on-

board accelerometer, the velocity is propagated by the on-board computer based 

on the entry state which results in a considerable level of uncertainty due to the 

integration. This uncertainty problem was reconstructed in the Mars 2001 lander 

mission failure, which only used a velocity trigger. The acceleration trigger was 

implemented to reduce the dynamic pressure uncertainty at deployment. 

Furthermore, the trigger is set up in a way that release due to acceleration is very 

likely. Because of the trigger setting being beneficial for the acceleration threshold 

and because of the circumstance that no source for the specific velocity value could 

be found, the trigger will solely be based on acceleration. [19] 

Parachute trigger event: Acceleration < 7.42 m/sଶ  [2] 
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4.4 Lander separation and trigger 

The altitude detection is performed with an onboard radar which is turned on after 

heatshield separation. As the simulation is not capable of simulating a radar 

measurement, the trigger is simply based on crossing a calculated altitude over 

terrain value of 940 m. [2] 

Lander separation trigger event: hterrain < 940 m AGL [2] 

4.5 Interpolation parameters 

Based on the data gathered from the atmospheric models MarsGRAM and MCD 

as well as other diagrams, numerous parameters have to be interpolated. They are 

described in the following. For all parameters, linear interpolation is used. 

4.5.1 Vehicle data 

One of the primary goals during the hypersonic phase is to create sufficient drag 

to decelerate the vehicle to a safe parachute deployment velocity. Therefore, it is 

necessary to describe these aerodynamic properties with coefficients. Additionally, 

the parachute itself is creating drag to further decelerate the spacecraft. For this 

simulation, these parameters include the drag coefficients for the spacecraft and 

the parachute and the lift coefficient for the spacecraft. 

Spacecraft drag coefficient 

The values displayed in figure 3-4 are imported into MATLAB and interpolated 

on a 3D-grid. As an example, the drag coefficient values are displayed in figure 3-6. 

The x- and y-axis represent uniform grid values and not the direct Mach number 

and angle of attack directly. 
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figure 4-2: Processed drag coefficient data. 
The Mach and AoA axis display the data on a uniform grid with 100 data points each. 

Parachute drag coefficient 

The parachute drag coefficient data displayed in figure 3-6 is only dependent on 

the Mach number and can thus be used by implementing a 2D-lookup table with 

linear interpolation. The Mach number is the input and the drag coefficient is the 

output. 

4.5.2 Atmospheric and planet data 

Data derived from the atmospheric models has to be interpolated based on the 

created 3D-grid of the atmospheric models. Within the simulation, the following 

parameters are interpolated in this way: 

 Density 

 Density perturbations 

 Wind (vertical, eastward and northward) 

 Wind perturbations (vertical, eastward and northward) 

 Temperature 

 Molar mass 

 Acceleration due to gravity 

Density and wind (and their perturbations) are used within the equations of 

motion. Hence, they are key parameters. The temperature and molar mass are used 

for the calculation of the Mach number in the feedback loop. 

Acceleration due to gravity is a parameter which is dependent on the distance from 

the planet but also the planet itself. While a simple calculation based on the 
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standard gravitational parameter GM and radius r would be possible, MarsGRAM 

can output g based on the shape of the areoid resulting in a better depiction of 

reality. 

The output of the data by MarsGRAM and MCD is in tabulated format. These 

tables are imported into MATLAB as a 3D-array. It is necessary to interpolate the 

data to achieve the desired data accuracy. Due to the three-dimensional grid data, 

the interpolation has to be performed within a box of 8 surrounding values (see 

figure 4-3) which will be explained below (tri-linear interpolation). In this example, 

the density is used as the parameter which is interpolated. 

 

figure 4-3: Data grid box. 
Blue: Data point. Red: Longitude. Green: Latitude. Black: Altitude. 

Each corner point of the box contains a density value from the database. Firstly, 

the densities in the lower longitude lines are interpolated to the detailed longitude 

values (ρI and ρII). Secondly, they are further interpolated to the specific latitude 

value (ρIII). Thirdly, this calculation is repeated for the upper plane (resulting in 

ρVI). Finally, ρIII and ρVI are interpolated to the final value ρVII. The exact method 

is described below (see figure 4-4 as reference). Additionally, a detailed description 

with an example containing real model data can be found in annex 12.2. 
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1. Interpolate a and b to ρI 

2. Interpolate e and f to ρII 

3. Interpolate ρI and ρII to ρIII 

4. Interpolate c and d to ρIV 

5. Interpolate g and h to ρV 

6. Interpolate ρIV and ρV to ρVI 

7. Interpolate ρIII and ρVI to ρVII 

 

figure 4-4: Tri-linear interpolation procedure of a data grid box from left to right. 
Blue: Data point. Red: Longitude. Green: Latitude. Black: Altitude. 

Purple: Interpolation lines. 

4.6 (Static) input parameters 

The input parameter values include the mass, the reference area of the parachute 

and the spacecraft, the bank angle and the specific impulse of the landing thrusters. 

While most of them are constant, the mass and the parachute area change over 

time. 

Mass 

Parts of the spacecraft are shed or jettisoned during the entry, descent and landing 

procedure and the thrusters require propellant. Consequently, it is necessary to 

define the mass value accordingly as it is impacting the motion of the spacecraft 

directly. 

Initially, the Phoenix spacecraft has a mass of 582 kg at atmospheric entry (after 

cruise stage separation). Due to lack of data, the reduction of heatshield mass 

because of ablation during re-entry is not taken into account. 15 seconds after 

parachute deployment, the heatshield is discarded which reduces the mass by 62 kg. 

Initializing the terminal descent phase, the lander separates from the backshell 
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(110 kg, including the parachute) and the thrusters are fired up less than one 

second later. During terminal descent, the thrusters are continuously turned on 

and throttled to the required values (see section 4.7 for thrust regulation) in the 

simulation. In contrast, the real Phoenix lander used pulsed thrusters instead of 

throttled thrusters. However, this change is made to simplify the simulation. A 

typical timeline of the mass can be seen in figure 4-5. [21] 

 

figure 4-5: Mass-time relation.  
First event: Heatshield separation. Second event: Backshell separation. 

Last section: Thruster operation. 

Other 

More variables are set as follows: 

ASC = 5.5155 mଶ  Spacecraft reference area, see section 3.1 

AP = 108.065 mଶ  Parachute reference area, see section 3.2 

σ = 180° = 3.14159 rad Bank angle [2] 

α = 0° = 0 rad  Angle of attack 

ISP = 230 s   Specific impulse, see section 3.3 

g0 = 9.80665 m/sଶ  Standard acceleration due to gravity, see section 3.3 
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4.7 Thrust controller 

The terminal descent phase is challenging as the propulsion system has to ensure 

to decelerate the spacecraft to a vertical velocity of 1 – 3.4 m/s at touchdown. 

Therefore, the terminal descent is separated into two phases by one distinct event: 

Achieving a constant velocity of 8 m/s at an altitude of about 50 m above the 

surface. Upon reaching constant velocity, the spacecraft determines the thrust 

profile required until touchdown. 

The thrust controller subsystem is activated when the lander separation altitude 

of 940 m AGL is crossed. The thrust control within the simulation is achieved with 

a PI-controller with a target velocity of 8 m/s. However, a new target of the landing 

velocity of 1-3.4 m/s is not placed. Tests show that variations in the atmospheric 

data can lead to an off-nominal controller reaction which results in vertical 

velocities in upwards directions. Therefore, a final velocity of 8 m/s is found to be 

sufficient for the level of detail given in the simulation. Furthermore, the flight-

path angle during terminal descent is close to 90 degrees, so the main investigation 

point of landing site dispersion is hardly impacted by this. Additionally, the 

controller output has a saturation limit of the maximum thrust of the twelve 

thrusters (12 x 293 N = 3516 N). A thrust profile can be seen in figure 4-6. 

The controller parameters are found through a trial-and-error method for the 

nominal trajectory which achieve a flight profile that reaches a constant velocity 

between 50 and 100 meters: Proportional (P) 70 and Integral (I) 3.2. 

 

figure 4-6: Thrust-time relation during the landing phase of the spacecraft. 
The thrust decreases with the real velocity. 
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4.8 Stop condition 

To avoid continuing the simulation until the maximum runtime is achieved, a stop-

condition is placed based on the altitude above the terrain. The threshold value is 

zero meters for MarsGRAM and, as mentioned in section 4.2, 600 meters for MCD. 

4.9  Validation 

In order to validate the simulation, the results have to be compared to real data of 

the Phoenix lander. Phoenix entered the atmosphere of Mars on 25th of May 2008 

at 23:30:57 Earth UTC time and touched down on the surface seven minutes and 

22 seconds later. Within this timeframe, the spacecraft withstood high decelerations 

and high temperatures, successfully released and inflated its parachute, and finally 

separated from the backshell and landed on the surface with the aid of hydrazine 

thrusters. The section below shows a comparison between the real data and the 

created simulation. As the simulation is based on a point mass and does not 

consider uncertainties, a fair level of dispersion is found to be accepted. table 4-1 

shows the entry conditions of the spacecraft. [26] 

table 4-1: Initial conditions at entry. [26] 

Parameter Symbol Unit Value 

Radius r m 3.522297379878062e+6 

Longitude θ deg 197.6893345424510 

Latitude φ deg 69.363798394042846 

Velocity (inertial) vi m/s 5600.273271498325 

Flight-path angle 

(inertial) 

γi deg -13.014149720113631 

Azimuth (inertial) ψi deg 77.701926824525046 
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Due to its landing position in the high latitude regime, the entry position is equally 

situated in the near vicinity. Entering the atmosphere at the pre-defined interface 

of a 3522.2 km radius and a position of 69.4° N 197.7° E, it follows the path 

displayed in figure 4-7 (blue). For comparison, the simulation results for 

MarsGRAM (red) and MCD (green) are shown as well. Because of the fact that 

the simulation is based on a point-mass and does not consider uncertainties on the 

entire spacecraft (e.g. aerodynamics), the results are considered to be reasonably 

accurate and therefore validated. 

 

figure 4-7: Longitude-latitude comparison of Phoenix data with MarsGRAM and MCD. 
Blue: Phoenix data [26]. Red: MarsGRAM. Green: MCD. 

In figure 4-8, the velocity is displayed in relation to the altitude above ground. For 

both the real data and the simulations, the deceleration phase begins at 

approximately 60-70 kilometers. In the MarsGRAM simulation, the velocity is 

reduced first, followed by MCD and finally the real data. The simulations 

overestimate the density at these altitudes in comparison to the environment 

encountered on the landing day. However, the results of the simulation do not vary 

significantly. 

Below a velocity of 2000 m/s, the discrepancies decrease, and the three trajectories 

are close together. While both simulations deploy the parachute at approximately 

the same time, the Phoenix data diverts considerably. In figure 4-9, the course of 

the real Phoenix graph shows the velocity deviation from the simulations after 

about 150 seconds and also a 10 second delay for the parachute deployment. 
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This can be traced back to two factors. First of all, the simulations do not account 

for a non-zero angle of attack (AoA). As this work analysis the differences in the 

atmospheric models, it is of no consequence whether the spacecraft is flown with 

an angle of attack or not. The prediction for the real flight was that the AoA would 

remain below 0.5 degrees during the high deceleration phase except for short stages 

of static instability. Trajectory reconstruction and the landing point at the edge of 

the predicted landing ellipse reveal that the Phoenix spacecraft entered with an 

average AoA of approximately three degrees. Consequently, it flew on a lifted 

trajectory which resulted in a drawn-out altitude reduction. [2] 

Due to the lifted trajectory, the decrease in deceleration after the peak is also slower 

(see figure 4-10). Consequently, the acceleration threshold for the parachute release 

is triggered later than expected (6.4 seconds during the real flight [2]). Apart from 

the release delay, the diagram curves for the acceleration coincide well. The peak 

deceleration of the Phoenix lander is halfway between the simulated predictions of 

MarsGRAM and MCD. The constant deviation in the last 170 seconds can be 

traced back to the acceleration due to gravity which is detected by the real sensor. 

 

figure 4-8: Velocity-altitude comparison of Phoenix data with MarsGRAM and MCD. 
Blue: Phoenix data [20]. Red: MarsGRAM. Green: MCD. 
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figure 4-9: Time-velocity comparison of Phoenix data with MarsGRAM and MCD. 
Blue: Phoenix data [26]. Red: MarsGRAM. Green: MCD. 

 

figure 4-10: Time-acceleration comparison of Phoenix data with MarsGRAM and MCD. 
Blue: Phoenix data [26]. Red: MarsGRAM. Green: MCD. 

The atmospheric density in relation to the altitude is shown in figure 4-11 in a 

semi-logarithmic diagram. While the simulation densities are directly gathered from 

the atmospheric models, the real data is based on a trajectory reconstruction using 

the accelerometer data. Because of the resolution of the sensor, the data is only 

useable below 80 kilometers at which point the atmosphere is sufficiently dense. 

Above 50 kilometers, the Phoenix data correlate well with the MCD database. Due 

to the logarithmic scale, the MarsGRAM data diverts considerably and is the 

reason for the deceleration in the higher altitudes analyzed in figure 4-8. 
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Nevertheless, below 50 kilometers, the correlation between the three graphs 

improves significantly until they can be considered equal at approximately 

35 kilometers above the ground. In conclusion, the established simulation has a 

good correlation with real-life data from the entry interface until touchdown. 

 

figure 4-11: Density-altitude comparison of Phoenix data with MarsGRAM and MCD. 
Blue: Phoenix data [26]. Red: MarsGRAM. Green: MCD. 
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5 Stochastic methods 

Analyzing the performance of re-entry trajectory based on stochastic methods is an 

important part of the pre-flight analysis. It can determine expected and/or 

unexpected deviations from the nominal trajectory and therefore increase the 

likelihood of a safe and successful mission. The sections below introduce the 

required stochastic terms and the principal methods used – Monte Carlo and linear 

covariance analysis. 

5.1 Introduction to stochastics 

Before a statistical analysis is performed, a few terms and the corresponding 

nomenclature has to be introduced. In general, stochastics is the superordinate term 

for two mathematical fields: Probability theory and statistics. Both fields are part 

of this work which is why the necessary terms will be described below. Because of 

the utilization of the atmospheric databases as the uncertainty terms, the term 

‘luck’ is not an explicit part of this analysis. Instead, the models output 

distributions of the data and the impact on the final result has to be analyzed. The 

explanations are based on ‘Elementare Stochastik’ by Ehrhard Behrends [27]. 

Random variable: Within a given probability space Ω, a random variable X 

defines the outcome of a mapping by a function. A specific probability applies to 

each outcome. 

Probability: The likelihood P(x) that a specific outcome occurs. 

Expected value: The expected value E(X) is the average value a discrete random 

variable X is expected to obtain. 

E(X) =  x୧ ⋅ P(x୧)
୧∈ஐ

 

Variance: As the outcome will only be an average of the expected value, the 

dispersion from the expected value – the variance V(X) – has to be defined. 

V(X) = E ቀ൫X − E(X)൯ଶቁ 

Standard deviation: The square root of the variance is the standard deviation σ. 

σ(X) = ඥV(X) 
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Normal distribution: If a probability space can be defined by density functions, 

the normal distribution is a symmetrical distribution around the expected value. 

The standard deviation can be used to define the probability that an outcome 

occurs in a certain range around the expected value: 

±1 σ  68.27 percent of all values 

±2 σ  95.45 percent of all values 

±3 σ  99.73 percent of all values 

In engineering, the three-sigma value is a commonly used threshold in terms of 

accepted technical boundaries. As an example, the landing ellipse of a re-entry 

vehicle is defined as 3-sigma landing ellipse leading to a 99.73 percent probability 

that the lander will touchdown within the given range. 

 

figure 5-1: Standard normal distribution. 
E(X) = 0, σ(X) = 1 

Covariance: If there are two random variables X and Y, the covariance describes 

the change of the variable Y depending on the variable X (co-vary). For example, 

if X rises, the covariance can describe whether Y also rises, whether it does not 

change at all or whether it declines. 

Cov(X, Y) = E ቀ൫X − E(X)൯ ⋅ ൫Y − E(Y)൯ቁ 
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Covariance matrix: If there are multiple random variables, the covariance matrix 

describes the covariances between each random variable. 

C(X) = ൮

Cov(Xଵ , Xଵ) Cov(Xଵ , Xଶ) … Cov(Xଵ, X୬)
Cov(Xଶ , Xଵ) Cov(Xଶ , Xଶ) … Cov(Xଶ , X୬)

⋮ ⋮ ⋱ ⋮
Cov(X୬, Xଵ) Cov(X୬, Xଶ) … Cov(X୬ , X୬)

൲ 

As the Covariance of a variable Xn with itself is the variance, the diagonal of the 

covariance matrix shows all the variances and therefore squares of the standard 

deviation. Additionally, the covariance is symmetrical along the main diagonal as 

Cov(X1,X2) = Cov(X2,X1). 

Confidence ellipse: The Monte Carlo simulation can be plotted into a 

distribution of landing points around the nominal trajectory. In order to assess the 

distribution, confidence ellipses are created based on the 1, 2 and 3-sigma values 

(e.g. 2-sigma ellipse contains 95.45 percent of all landing points). These are 

important as comparative data for other simulation runs. The confidence ellipses 

are based on an iso-contour of the Gaussian distribution and explained in the 

following based on a nominal example of a MarsGRAM simulation. At first, the 

2x2 covariance matrix of the dataset is created: [28] 

C = ቀ 0.0241 −0.0028
−0.0028 0.0007 ቁ 

Then, the eigenvectors and eigenvalues of the covariance matrix are found (see 

figure 5-2). The eigenvalues define the spread in the direction of the eigenvectors. 

Due to the elliptical shape, the rotation angle of the ellipse is defined as the angle 

between the x-axis and the largest eigenvector. 

If a two-dimensional Gaussian distribution is assumed, a Chi-Square distribution 

with two degrees of freedom can be fitted to the sum of the squared data points. 

With the square root of the Chi-Square probability ߯ calculated from the given 

confidence value (e.g. ߯ = 2.4860 for 95.45 percent or 2-sigma), the confidence and 

consequently the size of the ellipse can be calculated. The semi-major and semi-

minor axis are calculated as follows. 

a = χ ∗ ඥmax(Eigenval) 

b = χ ∗ ඥmin(Eigenval) 
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figure 5-2: 1, 2 and 3-sigma confidence ellipses (black) and their eigenvectors. 
Red: Landing data of nominal Phoenix landing with MarsGRAM. 

Blue: Largest eigenvector. Green: Smallest eigenvector. 

5.2 Monte Carlo method 

In general, the Monte Carlo method is used when a calculation (for instance a re-

entry problem) is subject to uncertainties. Thus, a precise mathematical outcome 

(like 1 + 1 = 2) cannot be given. These uncertainties are based on the limit of 

humanity’s ability to understand and measure physical quantities. Due to the 

atmospheric analysis in this work, the elements of uncertainty are density as well 

as horizontal and vertical wind velocities. However, uncertainty parameters are not 

limited to these and could include, but are not limited to, aerodynamics, sensor 

data and actuator plus control performance. 

As mentioned in section 2.2.2, the web version of the MCD database is not able to 

output vertical wind perturbations. Consequently, a fair comparison between 

MarsGRAM and MCD shall not include this parameter. Going forward, the vertical 

wind perturbations are only included within an internal comparison of the 

MarsGRAM database to quantify the difference of the vertical wind perturbations. 

Models and equations are subscripted by (10x10) to indicate the presence of vertical 

wind perturbations and (9x9) to indicate the absence of said parameter. 

Because of the vast number of influential factors, the accurate prediction of the 

atmospheric condition is complex and not possible with today’s technology as it 

would be necessary to measure the state of every cubic meter of air in the 
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atmosphere. Due to a high number of weather stations and satellites and 

additionally personnel effort, it is possible to predict high- to low-level weather 

phenomena on Earth with a moderate to high accuracy. However, the weather 

information available for Mars is solely based on successful missions in which the 

landers flew through the atmosphere and were able to provide data through 

reconstruction and measurements from space. Therefore, the available data for 

Mars is subject to a high level of uncertainty. 

The setup of a Monte Carlo simulation is straight forward in its approach. At first, 

a nominal trajectory is computed with average parameter values. Afterwards, the 

simulation is repeated N times (here: 1000) with randomized uncertainty 

parameters and the dispersions from the nominal trajectory can be analyzed. For 

the randomized parameters, a random number generator function based on a 

normal distribution (expected value: 0, standard deviation: 1) is used as this is the 

expected distribution of the provided data. 

5.3 Linear Covariance Analysis 

Utilizing Monte Carlo analysis for trajectory prediction and uncertainty dispersions 

is a solid method that will, given the correct inputs, lead to satisfying results. 

However, a major disadvantage of Monte Carlo is the required computing effort. 

Therefore, alternative computations are desired which lead to equally fitting results 

at a greatly reduced runtime. One such alternative is Linear Covariance Analysis 

(LCA) in its form detailed by David Geller. In the following, a description of the 

tool is given based on the paper ‘Development and Validation of Linear Covariance 

Analysis Tool for Atmospheric Entry’ by David Geller et al. [17]. 

In general, LCA uses a linearization of the modelling equations along a previously 

determined nominal trajectory to identify the dispersions. While the dispersions 

are small, this is a valid approach as the linearized equations are still valid. Within 

the linear model, the primary function is a covariance propagation equation in 

which the model deviations and the truth equations (equations of motions) are 

handled. A detailed description will be discussed in the sections below. 

The described LCA tool is based on a guided entry trajectory. The change of 

aerodynamic lift by commanding the bank angle and the angle of attack is used to 

control the trajectory based on a given nominal path. The nominal path would be 
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computed with an optimal control problem. In contrast, the entry of the Phoenix 

spacecraft is not controlled. Therefore, the tool has to be adapted from a closed-

loop (guided) to an open-loop (unguided) system. This leads to an order of 

magnitude in complexity reduction. The following description of the method 

displays the complete method including the guided system and explains where 

simplifications can be made. 

5.3.1 Covariance methods 

Nonlinear modelling 

Before linearization, the nonlinear model has to be built up in its most general 

form. In a first instance, x represents the states of the spacecraft  x =

[r, θ,ϕ, v, γ,ψ]. The full truth model is depicted in section 5.3.2. 

True state vector: 

ẋ = f(x, û, t) + ℬ ⋅ ω 
with command vector û (the hat operator indicates command), vector of zero-mean 

white-noise process ω and scale factor ℬ. 

Because there is no command in a non-guided system and additionally this re-entry 

simulation for Mars will solely investigate atmospheric uncertainties, which are 

simulated parametrically, random noise processes will also be neglected. 

ẋ = f(x, t) 

Linear modelling 

The following equations are a linearization of the nonlinear model along the 

previously determined nominal trajectory, which is described in xത(t). 

Time evolution of the true state dispersions: 

δx(t) = x(t)− xത(t) 

State propagation equations: 

δẋ = F୶ ⋅ δx + Fû ⋅ G୶ො ⋅ xො + ℬ ⋅ ω 

With: partial derivate matrices Fx and Fû (see below), commanding algorithms G 

It is reduced to: 

δẋ = F୶ ⋅ δx 
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Fx (and Fû) are partial derivative matrix of the state vector along the nominal 

trajectory. As an example, the derivates of a three-state system x = [r, v, γ] are 

shown (3x3). Because of the truth models depicted in section 5.3.2, Fx is more 

complex (10x10 or 9x9) and therefore added to the annex (see annex 12.3) 

F୶ =
∂f
∂x

 |୶ത =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
∂ṙ
∂r

∂ṙ
∂v

 
∂ṙ
∂γ

∂v̇
∂r

∂v̇
∂v

∂v̇
∂γ

∂γ̇
∂r

∂γ̇
∂v

∂γ̇
∂γ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 |୶ത 

=

⎣
⎢
⎢
⎢
⎡ 0 sin(γ) v ⋅ cos (γ)

0 −
Aୗେ ⋅ Cୈ,ୗେ ⋅ ρ ⋅ v

m
−g ⋅ cos (γ)

−
v ⋅ cos(γ)

rଶ
cos(γ) ⋅ ൬

g
vଶ

+
1
r
൰ +

Aୗେ ⋅ C ⋅ ρ
2 ⋅ m

sin(γ) ⋅ ቀ
g
v
−

v
r
ቁ⎦
⎥
⎥
⎥
⎤

 |୶ത 

Augmented linear system 

The linearized equations are augmented to be able to compute the true state 

dispersions. 

Augmented state vector: 

X = ቂδx
δxොቃ 

Because there is no guided system, it is reduced to: 

X = [δx] 

Augmented state propagation equations: 

Ẋ = ℱ ⋅ X + ࣡ ⋅ η +ࣱ ⋅ ω 

with: 

ℱ = ቆ
F୶ F୳ෝG୶ො

F୷C୶ F୶ො + F୷C୳ෝG୶ො
ቇ 

࣡ = ቆ
0୬×ଵ

F୷
ቇ 

ࣱ = ൬
ℬ

0୬ෝ×୬ಡ
൰ 

0 indicates a matrix of zeros, y continuous inertial measurements and CX the 

covariance of the augmented state vector. 
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This is reduced to: 

Ẋ = ℱ ⋅ X 

with: 

ℱ = (F୶) 

Due to the following connections in the expected values, 

E[x(t)] = E[xത(t)] 

E[δx(t)] = E[x − xത] = 0 

the expected value or mean of the augmented state vector is: 

E[X] = 0 

This leads to the conclusion that the true dispersions computed by the LCA are 

symmetric. The following propagation equations (1st) are valid for the covariance 

of the augmented system (2nd): 

Ċଡ଼ = ℱ ⋅ Cଡ଼ + Cଡ଼ ⋅ ℱ + ࣡ ⋅ ࣭ ⋅ ࣡ + ࣱ ⋅ ࣭ன ⋅ ࣱ 

Cଡ଼ = E[X(t)X(t)] 

with variance of the inertial instrument measurement noise ࣭ఎ and variance of the 

unmodeled accelerations ࣭ఠ. 

Because of the simplifications, this is reduced to: 

Ċଡ଼ = ℱ ⋅ Cଡ଼ + Cଡ଼ ⋅ ℱ 

The propagation equation is solved numerically either with a fixed-step fourth order 

Runge-Kutta or a variable step solver (e.g. ODE45, ODE23 or ODE15). ODE45 is 

the standard solver within the MATLAB/Simulink suite, is based on an algorithm 

by Dormand and Prince and is delivering good results for most problems. However, 

ODE23 and ODE15 will also be analyzed in order to quantify the differences 

between them. They choose the step size based on the functions at hand. In 

contrast, the step size needs to be chosen beforehand for Runge-Kutta 4 (RK4). 

RK4 is based on the following functions [29]: 

y୬ାଵ = y୬ +
1
6

h ⋅ (kଵ + 2 ⋅ kଶ + 2 ⋅ kଷ + kସ) 
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with: 

kଵ = f(t୬, y୬) 

kଶ = f ൬t୬ +
1
2

h, y୬ +
1
2

h ⋅ kଵ൰ 

kଷ = f ൬t୬ +
1
2

h, y୬ +
1
2

h ⋅ kଶ൰ 

kସ = f(t୬ + h, y୬ + h ⋅ kଷ) 

Performance evaluation 

Without a closed-loop system, only the true state dispersions are of interest. These 

are calculated by analyzing the variances which are in the diagonal of the 

covariance matrix. In the guided system, they are calculated as follows: 

D୲୰୳ୣ = E[δx(t)δx(t)] = (I୬×୬0୬×୬ෝ)Cଡ଼(I୬×୬0୬×୬ෝ) 

This is reduced to: 

D୲୰୳ୣ = E[δx(t)δx(t)] = (I୬×୬)Cଡ଼ 

In order to identify the true dispersions, the standard deviation must be derived 

from the variance by extracting the square root. The three-sigma values are 

attained by multiplying the single sigma values by three. 

D୲୰୳ୣ, = ൮

σ୰ 0 ⋯ 0
0 σ ⋯ 0
⋮ ⋮ ⋱ 0
0 0 0 σந

൲ 

5.3.2 Truth models 

Within the LCA, the influential parameters are the true states based on the 

equations of motion xEoM and the uncertainty values p. These have to be defined in 

the true state vector: 

x = (x୭, p) 

Based on the given re-entry problem, the states for the vehicle are shown below. 

The equations of motions, which are used to calculate these values, are displayed 

in chapter 3. 

x = (r, θ,ϕ, v, γ,ψ) 

In general, the uncertainty parameters can be varied widely and are only limited 

to the ability to model them mathematically. For a re-entry vehicle, exemplary 
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parameters are atmospheric (e.g. wind and density), aerodynamic coefficients (lift 

and drag), sensor data and more. However, as this work analyzes the influence of 

the atmospheric uncertainties, it will solely focus on density and wind. According 

to the used spherical coordinate system (see chapter 3), the wind data is separated 

into eastward, northward and vertical direction (10x10 represents the parameters 

including vertical wind perturbations, 9x9 without  based on the size of Fx): 

p = ൫p, p୵,ୣୟୱ୲, p୵,୬୭୰୲୦, p୵,୴ୣ୰୲൯(ଵ୶ଵ)
  

= ൫p, p୵,ୣୟୱ୲ , p୵,୬୭୰୲୦൯(ଽ୶ଽ)
  

These parameters are all assumed to not be time-dependent, leading to a derivative 

of zero. Consequently, the assumed density and wind speeds are either globally 

overestimated or underestimated in a simulation. While this might not reflect 

reality perfectly because the parameters are not necessarily over-/underestimated 

in the whole data grid, it is chosen for a consistent test area within the simulation. 

Because of the symmetry of the LCA, it is not necessary to calculate the results of 

both an over-estimated and under-estimated world. 

p = ρ + ρୗୈ 

p୵,ୣୟୱ୲ = v୵,ୣୟୱ୲, + v୵,ୣୟୱ୲,ୗୈ 

p୵,୬୭୰୲୦ = v୵,୬୭୰୲୦, + v୵,୬୭୰୲୦,ୗୈ 

p୵,୴ୣ୰୲ = v୵,୴ୣ୰୲, + v୵,୴ୣ୰୲,ୗୈ 

Due to the introduction of uncertainty parameters, the equations of motion change 

as follows (10x10): 

ṙ = v ⋅ sin(γ) + ൫v୵,୴ୣ୰୲, + v୵,୴ୣ୰୲,ୗୈ൯ 

θ̇ =
v ⋅ cos(γ) ⋅ sin(ψ) + ൫v୵,ୣୟୱ୲, + v୵,ୣୟୱ୲,ୗୈ൯

r ⋅ cos (ϕ)
 

ϕ̇ =
v ⋅ cos(γ) ⋅ sin(ψ) + ൫v୵,୬୭୰୲୦, + v୵,୬୭୰୲୦,ୗୈ൯

r
 

v̇ = −
(ρ + ρୗୈ) ⋅ vଶ ⋅ (Cୈ,ୗେ ⋅ Aୗେ + Cୈ, ⋅ A)

2 ⋅ m
− g ⋅ sin(γ) −

T ⋅ cos(β)
m

 

γ̇ =
(ρ + ρୗୈ) ⋅ C ⋅ v ⋅ Aୗେ ⋅ cos(σ)

2 ⋅ m
− cos(γ) ⋅ ቀ

g
v
−

v
r
ቁ+

T ⋅ sin(β)
m ⋅ v

 

ψ̇ =
(ρ + ρୗୈ) ⋅ C ⋅ v ⋅ Aୗେ ⋅ sin(σ)

2 ⋅ m ⋅ cos(γ) −
v ⋅ cos(γ) ⋅ tan(ϕ) ⋅ sin(ψ)

r
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5.3.3 Initial conditions 

The analysis tool has to be fed with an initial condition of the uncertainties. At 

the initial state, the uncertainties are implemented into the covariance matrix PX,0. 

Cଡ଼(t) = ቈ
Eൣδxδx൧ 0୬×୬ෝ

0୬ෝ୶୬ E[δxොδxො]
 

Which is reduced to: 

Cଡ଼(t) = ቂEൣδxδx൧ቃ = ൣPଡ଼,൧ 

Assuming no correlation between the initial uncertainties, the covariance matrix 

PX,0 is only filled with values in the main diagonal and therefore with variances of 

the uncertainties. Because of the uncertainties only being placed upon the 

atmospheric parameters, the six state parameters have a variance value of zero. In 

contrast, the variances of the atmospheric parameters are equal to the squared 

standard deviations. These deviations are imported from the nominal trajectory 

and updated through each time step of the LCA. 

Pଡ଼,(diag) =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

0
0
0
0
0
0
σଶ

σ୵,ୣୟୱ୲
ଶ

σ୵,୬୭୰୲୦
ଶ

σ୵,୴ୣ୰୲
ଶ ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

(ଵ୶ଵ)

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

0
0
0
0
0
0
σଶ
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ଶ ⎠
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⎟
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(ଽ୶ଽ)
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6 Monte Carlo analysis 

The results of the Monte Carlo analysis of the Phoenix using the MarsGRAM and 

MCD databases are detailed below. It begins with a general description of the 

different cases depicted and is followed by a comparison of them. 

6.1 MarsGRAM 

The MarsGRAM section is separated into ‘with’ and ‘without’ vertical 

perturbations to quantify and qualify the effect of this parameter being present or 

absent. 

Without vertical perturbations 

In figure 6-1, the results of the Monte Carlo analysis for the nominal Phoenix 

landing case using the MarsGRAM database are shown. The diagrams display the 

dispersions of the six spacecraft states from the nominal trajectory – radius r, 

longitude θ, latitude φ, velocity v, flight-path angle γ (FPA) and velocity azimuth 

angle ψ (VAA). In this case, the nominal trajectory is represented by the zero line 

and has a flight length of about 440 seconds. While some of the other Monte Carlo 

flight runs exceed this flight time, the diagrams are cut off at the nominal trajectory 

flight time to evaluate the outcomes up to this point. One distinct milestone in the 

flight is the parachute deployment at about 215 seconds into the flight. 

The dispersion of the radius and velocity coincides with the increase in density and 

therefore also with aerodynamic drag over the course of the flight. In the first 80 

seconds of the flight, the density and the uncertainty thereof is low. Between this 

point in time and the parachute deployment, the variances in aerodynamic drag 

lead to increasing dispersions up to about ± 750 meters at about 150 seconds before 

a slight reduction until parachute deployment. This concurs with the velocity 

dispersion which has its peak at about 110 seconds. A reduction in velocity leads 

to a steeper flight-path angle and consequently a higher decrease in altitude 

sometime after the velocity reduction. The flight-path angle increases on a curve 

until about 150 seconds which is when the majority of velocity dispersion is 

vanished, and all MC runs are at similar velocities again. Consequently, the flight-

path angle dispersions increase almost linearly after this point. 
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The parachute deployment is a determining point in the flight path. Due to the 

release trigger being sensitive to a certain deceleration limit, the Monte Carlo runs 

do not deploy the parachute simultaneously. This can be seen in the diagrams for 

radius, velocity and flight-path angle. At 215 seconds, there is a sudden leap in the 

radius and velocity dispersions. The abrupt decrease in velocity because of the 

parachute leads to a reduction in vertical velocity. Consequently, MC runs, which 

have not had a parachute deployment, lose more altitude because of the higher 

velocity magnitude (or vice versa) – although the flight-path angle is shallower. 

If the parachute is already released, the flight-path angle will increase. This is why 

the peak flight-path angle dispersions happen about 20 seconds after the 

deployment on the nominal trajectory. While some runs are still in the aerodynamic 

entry phase, the nominal trajectory has already had parachute deployment and 

consequently a rise in the flight-path angle (or vice versa). 

The radius dispersions are roughly constant during the parachute phase at up to 

± 900 meters and decrease only after backshell release and thruster initiation at 

about 388 seconds. This outcome is expected as all MC runs follow a similar flight 

pattern in this phase. 

In contrast, the longitude, latitude and velocity azimuth angle dispersions can 

mainly be traced back to the influence of wind. In the beginning of the flight, both 

longitude and latitude are subject to small dispersions due to wind. These small 

dispersions are also evident in the VAA and result in a different path for the rest 

of the flight. The primary increase in these states result from the velocity dispersion 

as the velocity is the main coefficient in all their equations of motions. The 

inflection point of all the curves overlaps with the peak in velocity dispersion. After 

this point, the rise in deviations decreases until they stay constant after parachute 

deployment. At this point in the flight, the velocity is so low that no major course 

correction can be expected as long as high wind velocities do not move the 

spacecraft into a certain direction 

 



6. Monte Carlo analysis  49 

 

 

 

figure 6-1: Monte Carlo analysis MarsGRAM without vertical perturbations. 
Dispersion of spacecraft states from nominal trajectory. 

With vertical perturbations 

In order to identify the differences evolving from evicting the vertical perturbations, 

a Monte Carlo run with activated vertical wind perturbations is shown in figure 

6-2. In general, the results are quite similar with a few distinct differences. 

First of all, the highest positive and negative dispersions are about ten to twenty 

percent higher in comparison with the MC run without vertical perturbations 

except for the flight-path angle. The flight-path angle dispersion peaks at about 

±0.06 rad in comparison to +0.03 and -0.04 rad. 

Another key difference is the radius dispersion in the first 100 seconds. Because of 

vertical perturbations, the dispersion does not stay close to zero in the beginning 

but increases immediately after flight initiation. 
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figure 6-2: Monte Carlo analysis MarsGRAM with vertical perturbations. 
Dispersion of spacecraft states from nominal trajectory. 

Landing point evaluation 

While a thorough evaluation of the landing points including three sigma landing 

ellipses will be part of chapter 8, the difference between a Phoenix landing including 

vertical perturbations and not including them using the MarsGRAM database will 

be shown in this section. This is done in order to assess the differences going 

forward. 

In figure 6-3, the landing points of a Monte Carlo run using the MarsGRAM 

database with and without vertical perturbations are shown. Additionally, the 

confidence ellipses with 1, 2 and 3-sigma values are plotted in the respective colors 

of the data points. The perturbations of the vertical wind solely influence the 

landing ellipse in the direction of the semi-major axis. This result is in line with 

the expectations as a vertical wind does not have an impact on the lateral 

trajectory. 
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While the vertical perturbations do have an impact on the outcome of the Monte 

Carlo analysis, the results can be applied to simulations without vertical 

perturbations by increasing the size of the semi-major axis of the confidence ellipses. 

 

figure 6-3: Landing points of 1000 Monte Carlo runs of the Phoenix spacecraft using 
MarsGRAM with (blue) and without (red) vertical perturbations.  

1, 2 and 3-sigma confidence ellipses for both datasets. 

6.2 MCD 

In general, the Monte Carlo results of the MCD database look similar to the results 

of MarsGRAM (see figure 6-4). However, the data does possess distinct differences 

which will be described below. As the web version of MCD is not capable of 

exporting vertical wind perturbations, this section solely focuses on the simulation 

without vertical wind perturbations. 

The radius and velocity dispersions are about half of MarsGRAM’s which can be 

attributed to lower standard deviations of the density as the primary factor for 

these states. Due to the cut-off altitude of 600 meters for the MCD database, the 

flight time is lower at only 398 seconds and the radius dispersion does not decrease 

as much in the last part of the flight as it was the case for MarsGRAM. 

The deviations of flight-path and velocity azimuth angle are similar in shape. The 

magnitudes of the values for the VAA are about half of MarsGRAM’s. Because of 

the lower velocity dispersions, the VAA dispersions are also lower. 
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From the beginning of the flight until parachute deployment, the course of the 

latitude and longitude dispersions are similar to MarsGRAM at a magnitude of 

about 50 percent. However, after parachute deployment, the latitude and longitude 

dispersions increase considerably. The wind in the lower altitude regime has to be 

significantly higher in the MCD simulation than in the MarsGRAM simulation. 

 

figure 6-4: Monte Carlo analysis MCD without vertical perturbations. 
Dispersion of spacecraft states from nominal trajectory. 

 



  53 

 

 

7 Comparison of LCA and MC 

Ultimately, the Linear Covariance Analysis shall be used to replace or at least 

complement the computation intensive Monte Carlo analysis. Therefore, the results 

have to be verified in order to be used independently from the MC analysis. The 

verification is performed by comparing the three-sigma LCA results to the Monte 

Carlo analysis. A succesful outcome would indicate that the LCA is able to depict 

the three sigma boundaries of the Monte Carlo analysis approximately. 

The following sections assess the results of the LCA from various perspectives. At 

first, the outcomes of the nominal Phoenix Landing for both MarsGRAM and MCD 

will be studied. Afterwards, the LCA and Monte Carlo analyses are broken down 

into the separate uncertainty parameters to identify the impact of each one. 

Finally, the choice of the solver for the differential equations within the LCA is 

studied. Due to continuity, the nominal Phoenix landing is used for the verification 

of the linear covariance analysis results. 

7.1 MarsGRAM without vertical perturbations 

In order to apply the same methodology, the results for MarsGRAM are analyzed 

both for ‘with’ and ‘without’ vertical wind perturbations, commencing with the 

former. In figure 7-1, the results of the linear covariance analysis are displayed and 

overlaid with the Monte Carlo simulation runs. While the results will be analyzed 

in detail below, the general outcome is satisfactory. There are no major 

discrepancies between both analyses. 

The radius dispersion match between LCA and MC is good for the majority of the 

simulation. Between 100 and 150 seconds, the LCA increase is not as fast as in the 

outer parts of the MC analysis. Additionally, the LCA is not able to show the 

decrease in radius dispersion after 380 seconds during the terminal landing sequence 

when all simulation runs end up at a similar MOLA altitude due to the flat terrain. 

While the conformity of the longitude dispersion is satisfactory over the entire 

simulation, the latitude dispersion of the LCA diverges from the Monte Carlo 

results in the second half of the simulation. It obtains a maximum diversion of 

about 0.5e-3 rad (equal to approximately 0.02865°) in the end. 
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The matches for velocity, flight-path angle and velocity azimuth angle are in good 

agreement. The parachute deployment results in a few minor mismatches like the 

peak in velocity deviation. The LCA solely considers the path of the nominal 

trajectory and therefore only has knowledge of parachute deployment for a single 

time step. As analyzed in section 6.1, the simulation deploys the parachute based 

on an acceleration threshold and can therefore vary. Consequently, the LCA is not 

capable of displaying the spike in velocity dispersion in the ten seconds after 

parachute deployment. 

Additionally, while the LCA is able to consider the majority of the flight-path angle 

changes after parachute deployment, it diverges for boundary cases of early 

parachute deployment. 

 

figure 7-1: MarsGRAM without vertical perturbations LCA results superimposed with 
Monte Carlo runs. 

Red: LCA. Blue: MC runs. 
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An important factor of the analysis is the display of the landing points and the 

confidence ellipses for one, two and three-sigma. While the initial results of the 

LCA data shows a noteworthy dispersion of the latitude value, it does not indicate 

the shape of the confidence ellipse. Therefore, an assessment not only of the 

variances or standard deviations is required but also of the covariances to identify 

how they change collectively. 

The covariance matrix of the longitude and latitude for this case is as follows: 

 ቈ
σ
ଶ Cov൫σσம൯

Cov൫σσம൯ σமଶ
 = 1.037317 ∗ 10ିହ radଶ −5.3834 ∗ 10ି radଶ

−5.3834 ∗ 10ି radଶ 4.7922 ∗ 10ି radଶ
൨ 

These values are converted to degrees and can be plotted into one, two and three-

sigma confidence ellipses (see figure 7-2). 

ቈ
σ
ଶ Cov(σσம) 

Cov൫σσம൯ σமଶ
 = ቈ 0.03405 degଶ −1.76736 ∗ 10ିଷ degଶ

−1.76735 ∗ 10ିଷ degଶ 1.573186 ∗ 10ିଷ degଶ
 

The shapes of the confidence ellipses are in line with the expectations. The 

orientation of the semi-major axis is approximately equal to the Monte Carlo 

confidence ellipses. Due to the results analyzed beforehand, the differences in the 

semi-minor axis correspond to the analyzed divergence in the latitudinal direction. 

The maximum difference between the three-sigma ellipses is approximately 

0.03 degrees in the latitude direction and therefore matching the gap in figure 7-1. 

Because of the unequally scaled axes, the difference is more pronounced in the 

diagram than the 0.03 degrees value would indicate. 

All in all, the results of the linear covariance analysis for the MarsGRAM Phoenix 

landing without vertical perturbations are suitable at an acceptable level. 
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figure 7-2: Surface landing points of LCA and MC. 
Black: Monte Carlo data points. Red: 1, 2 and 3-sigma Monte Carlo confidence ellipses. 

Blue: 1, 2 and 3-sigma LCA confidence ellipses. 

As indicated in figure 7-1, the differences between the dispersions for longitude and 

latitude increase towards the end of the simulation. Therefore, an examination of 

the two key time steps parachute deployment (215 seconds) and lander separation 

(388 seconds) will be performed. 

The situation at parachute deployment is shown in figure 7-3 and at lander 

separation in figure 7-4. The change of the covariance ellipses clearly demonstrates 

the decrease in inaccuracy for the LCA. After the re-entry phase, the match 

between LCA and MC is excellent – especially for the 3-sigma ellipses. However, 

the match accuracy (mainly perpendicular to the semi-major axis) decreases during 

the parachute descent and during the terminal descent phase. 
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figure 7-3: Points on the trajectory of LCA and MC at parachute deployment 
(215 seconds). 

Black: Monte Carlo data points. Red: 1, 2 and 3-sigma Monte Carlo confidence ellipses. 
Blue: 1, 2 and 3-sigma LCA confidence ellipses. 

 

figure 7-4: Points on the trajectory of LCA and MC at lander separation (388 seconds). 
Black: Monte Carlo data points. Red: 1, 2 and 3-sigma Monte Carlo confidence ellipses. 

Blue: 1, 2 and 3-sigma LCA confidence ellipses. 
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7.2 MarsGRAM with vertical perturbations 

Section 6.1 characterizes the influences on the Monte Carlo simulation depending 

on the vertical wind perturbations. The MC results with vertical perturbations are 

overlaid with the respective LCA (see figure 7-5) and analyzed in detail. 

In general, the results of this simulation are satisfactory as well, except for a few 

parts. One decisive difference is the inaccuracy of the radius dispersion which 

spreads to more than double of the maximum MC runs. In contrast, the LCA is 

more accurate for the latitude and longitude dispersions in the latter part of the 

simulation. However, while for example the latitude dispersions stay relatively 

constant after parachute deployment, the LCA dispersions also go up in this 

simulation – delivering the same results as in the simulation without vertical wind 

perturbations. The remaining three spacecraft state dispersions deliver good results 

given the already discussed circumstances (e.g. parachute opening delay). 

 

figure 7-5: MarsGRAM with vertical perturbations LCA results superimposed with Monte 
Carlo runs. 

Red: LCA. Blue: MC runs. 
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In figure 7-6, the covariance confidence ellipses are shown in comparison with the 

Monte Carlo confidence ellipses. While the maximum and minimum latitude data 

points are indeed close the respective points in the three-sigma covariance ellipse, 

the shape is similar to the ellipses without vertical wind perturbations. 

Consequently, the dispersions are overestimated in the direction of the semi-minor 

axis. 

The data in figure 7-7 shows, that the results of the LCA confidence ellipse are – 

similar to the simulation without vertical wind perturbations - a much better fit at 

the end of the re-entry phase. For this reason, the LCA results for the MarsGRAM 

database are found to be satisfactory for the complete simulation and excellent for 

the re-entry phase. 

 

figure 7-6: Surface landing points of MarsGRAM LCA and MC with vertical 
perturbations. 

Black: Monte Carlo data points. Red: 1, 2 and 3-sigma Monte Carlo confidence ellipses. 
Blue: 1, 2 and 3-sigma LCA confidence ellipses. 
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figure 7-7: Points on the trajectory of MarsGRAM LCA and MC with vertical 
perturbations at 215 seconds. 

Black: Monte Carlo data points. Red: 1, 2 and 3-sigma Monte Carlo confidence ellipses. 
Blue: 1, 2 and 3-sigma LCA confidence ellipses. 

7.3 MCD 

As per the analysis in chapter 6, the state dispersions for MCD are unlike 

MarsGRAM’s, mainly in size but also in shape. The LCA results for the MCD 

database therefore have to be analyzed separately. As mentioned before, the MCD 

does merely work without the vertical wind perturbations due to the limitations of 

the web-based client. 

First of all, the radius dispersions fit well with the majority of the simulation. 

Because of the higher cut-off altitude, the decline in deviations at the end is not as 

clearly visible but can only be suspected from the negative part of the graph. 

However, the LCA for MCD is likewise not capable of following that path. 

While the longitude fit is nearly perfect over the whole course of the simulation, 

the match for the latitude dispersion is opposite to MarsGRAM. In this case, the 

LCA does not divert from the Monte Carlo runs but instead underestimates the 

discrepancies. 

The remaining three parameters – velocity, flight-path angle and velocity azimuth 

angle – are all a good match considering the previously analyzed effects (e.g. 

parachute deployment time). 
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figure 7-8: MCD without vertical perturbations LCA results superimposed with Monte 
Carlo runs. 

Red: LCA. Blue: MC runs. 

The display of the confidence ellipses in figure 7-9 show the effects analyzed above. 

The LCA ellipses are smaller in the direction of the semi-minor axis, whereas the 

longitudinal fit is nearly perfect. 
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figure 7-9: Surface landing points of MCD LCA and MC without vertical perturbations. 
Black: Monte Carlo data points. Red: 1, 2 and 3-sigma Monte Carlo confidence ellipses. 

Blue: 1, 2 and 3-sigma LCA confidence ellipses. 

7.4 Components of the LCA 

Linear covariance analysis is not only capable of computing the expected dispersion 

from the nominal trajectory, but it is also capable of identifying the influence of 

the respective parameters. For this reason, the LCA is performed separately with 

a single uncertainty parameter at a time. Due to the given constraints, the 

MarsGRAM results will be analyzed both for ‘with’ and ‘without’ vertical wind 

perturbations and MCD only for ‘without’. 

MarsGRAM with vertical wind perturbations 

figure 7-10 shows the LCA components for MarsGRAM with vertical wind 

perturbations. The causes for the state parameters vary widely and are analyzed 

in detail. 

The radius dispersion is predominantly influenced by the vertical wind 

perturbations with the second major influence being density. The horizontal winds 

do not have any influence. While the vertical winds affect the trajectory during the 

entire simulation, the density dispersion effect is only apparent between 100 and 

200 seconds during the high deceleration phase. However, as analyzed in section 

7.2, the radius LCA is not a good fit for this simulation because of a big diversion. 

This can be attributed to the vertical wind perturbations because of this analysis. 



7. Comparison of LCA and MC  63 

 

 

The influence on the longitude and latitude is equally shared by density and 

horizontal wind. As before, the main impact of the density is during the 

deceleration phase between 100 and 200 seconds. The uncertainty of the velocity, 

the flight-path and velocity azimuth angle can predominantly be attributed to the 

density. Only the VAA is slightly impacted by the horizontal wind perturbations. 

 

figure 7-10: LCA components MarsGRAM with vertical wind perturbations. 
Red: Nominal LCA. Blue: Density LCA. Green: Horizontal wind LCA. 

Black: Vertical wind LCA. 
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MarsGRAM without vertical wind perturbations 

The results for these components are similar (see figure 7-11). The biggest difference 

can be seen in the radius dispersions. As the vertical wind perturbations are 

disabled, the only influencing factor is the density uncertainty. This also leads to 

a significantly better fit to the Monte Carlo simulation (see figure 7-1). The 

remaining state parameters are similarly influenced by the respective uncertainties. 

 

figure 7-11: LCA components MarsGRAM without vertical wind perturbations. 
Red: Nominal LCA. Blue: Density LCA. Green: Horizontal wind LCA. 
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MCD without vertical wind perturbations 

For MCD, the results resemble MarsGRAM’s without vertical wind perturbations 

(see figure 7-12). While the radius, velocity, FPA and VAA are predominantly 

influenced by the density, the longitude and latitude are impacted both by density 

and horizontal winds. 

 

figure 7-12: LCA components MCD without vertical wind perturbations. 
Red: Nominal LCA. Blue: Density LCA. Green: Horizontal wind LCA. 
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7.5 Choice of integration method 

The computation of the linear covariance analysis is based on a differential equation 

propagation along the nominal trajectory. The matrices in the propagation 

equations contain many differential equations which have to be solved accordingly. 

Within the Matlab Simulink environment, it is possible to adjust the differential 

equation solver. Thus, the impact of changing the solver is investigated below. 

A fixed-step or a variable-step solver can be chosen. For the fixed-step solvers, the 

Runge-Kutta 4 is the standard solver. However, for most problems the accuracy is 

higher with a variable-step solver. Applicable in this case are ODE45, ODE23 and 

ODE15. In general, the standard solver is ODE45 which is expected to be the most 

accurate. In contrast, figure 7-13 and figure 7-14 show that both for MarsGRAM 

and MCD the highest accuracy is achieved with ODE23 and ODE15, with ODE15 

having a slight edge in the latitude dispersion for MarsGRAM. Due to these 

findings, ODE15 will be the standard solver for all analyses going forward. 

Although no certain reason can be given, it is presumed that the problem at hand 

is stiff as ODE15 is generally used for stiff problems. 
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figure 7-13: Comparison of ODE solvers for MarsGRAM Phoenix landing without vertical 
perturbations. 

Grey: Monte Carlo runs. Black: RK4 (1 s). Red: ODE45. Blue: ODE23. Green: ODE15. 
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figure 7-14: Comparison of ODE solvers for MCD Phoenix landing without vertical 
perturbations. 

Grey: Monte Carlo runs. Black: RK4 (1 s). Red: ODE45. Blue: ODE23. Green: ODE15. 
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8 Analysis of atmospheric models 

After two methodologies for the analysis of trajectory deviations have been 

established, this chapter studies the impact of the atmosphere itself on the 

trajectory and their dispersions. Therefore, only the landing points and the three-

sigma ellipses of the Monte Carlo method are part of this chapter and vertical wind 

perturbations are switched off. The analysis includes the modelling year, the 

seasonal influences and a direct database comparison between MarsGRAM and 

MCD. Additionally, the impact of mirroring the entry point to the southern 

hemisphere is inspected. Finally, the spacecraft is changed to the larger Mars 

Science Laboratory to evaluate the impact of the mass and geometry in identical 

atmospheric conditions. 

8.1 Modelling year 

Within the databases, it is possible to choose between various modelling years and 

to customize the model specifically to e.g. increase the dust storm activity. For this 

study, it is of interest whether the modelling years substantially change the 

expected landing corridor and the respective landing points. 

8.1.1 MarsGRAM 

Three MarsGRAM modelling years are analyzed within this study. Firstly, the 

nominal data are based on a customizable model with average wind, density and 

dust storm activity. Secondly, the Year-1 model is influenced by and validated 

against measurements taken between April 1999 and January 2001. Thirdly, the 

measurements from the Year-2 models are from the February 2001 to December 

2002 timeframe. These measurements were conducted with a thermal emission 

spectrometer by the Mars Global Surveyor (MGS) spacecraft. Density data 

generated during the aerobrake maneuver of the MGS spacecraft enhance the 

veracity of the data in the higher atmosphere above 90 kilometers. [10] 

The data in figure 8-1 show the landing points of the three modelling years and 

their associated three-sigma landing ellipses. There are no major differences 

between the landing ellipses and the overlap between them is significant. However, 

there is a greater match for Year-1 and Year-2 than there is for the customized 

average atmosphere. The ellipses for Year-1 and 2 have a longer semi-minor axis. 
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The most probable explanation for the discrepancies is a stronger horizontal wind 

(including higher uncertainties) from the west with a slight northern component 

which pushes the spacecraft landing point further east. Furthermore, a growth in 

uncertainty leads to a broader spread of the landing points. 

 

figure 8-1: Surface landing points and 3-sigma landing ellipses of different MarsGRAM 
modelling years. 

Red: MarsGRAM nominal. Blue: MarsGRAM Year-1. Green: MarsGRAM Year-2. 

8.1.2 MCD 

The MCD database includes several modelling scenarios. To begin with, an average, 

minimum and maximum year regarding climatology and dust storm activity can 

be chosen. Afterwards, a best fit scenario for the real Mars years 24 to 32 is 

available. In accordance with the MarsGRAM comparison, three modelling 

scenarios are chosen. The nominal scenario is the average climatology and solar 

activity model. As the Phoenix lander touched down during Mars year 29, it is 

chosen as the second option. Finally, Mars year 31 is picked for crosschecking. 

In comparison with the results for MarsGRAM, the data in figure 8-2 shows better 

conformity. The ellipse shape for the nominal case and Mars year 31 are basically 

equal. In contrast, the ellipse for Mars year 29 has the same orientation but is 

smaller. Consequently, the standard-deviation of the data is smaller. 
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figure 8-2: Surface landing points and 3-sigma landing ellipses of different MCD modelling 
years. 

Red: MCD nominal/average solar. Blue: MCD Mars Year 29. Green: MCD Mars Year 31. 

8.2 Seasonal influence 

The analysis of the atmosphere in section 2.1 shows a high variation in the 

properties of the atmosphere depending on the time of year. As a consequence, the 

atmospheric study shall examine the impact on the landing points of the spacecraft. 

The atmospheric conditions in this section are based on the average atmosphere 

settings. 

8.2.1 MarsGRAM 

The landing data shown in figure 8-3 display significant differences in the position 

of the landing points and the shape of the three-sigma ellipses. 

A distinct yearly pattern for the landing points is identified which can be attributed 

to density variations. The nominal Phoenix entry date coincides with late spring. 

Thus, the high density during the summer months leads to an entry profile with a 

higher deceleration curve. A quarter of a year later in late summer, the major 

effects of the long summer in the northern hemisphere have already subsided and 

the landing ellipse is positioned further to the south-east. The low density during 

autumn and winter are exposed by the ellipses of one-half and three-quarters of the 

year which are located the outermost to the south-east. As a countercheck, the 1-

year data shows approximate repetition of the pattern. 
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The second effect identified in the data is the impact of the horizontal wind. The 

westerly winds as predominant winds in the in-flight direction are higher in autumn 

and winter, enlarging the effect of the landing point push to the south-east. During 

summer, easterly winds are prevailing.  

In contrast, the crosswind varies without an apparent pattern. As an example, 

while the cross wind is high for the half-year mark resulting in a broad ellipse, it is 

not for the three-quarter-year point which has a shallow ellipse. Additionally, the 

control comparison of the Phoenix landing one Mars year later shows that the 

crosswinds cannot be determined for a specific solar longitude. 

 

figure 8-3: Surface landing points and 3-sigma ellipses of different dates for a year on 
Mars with MarsGRAM. 

Red: nominal date (Ls = 76.6°). Blue: +¼ year (Ls = 157.2°). Green: +½ year 
(Ls = 258.9°). Black: +¾ year (Ls = 358.1°). Cyan: +1 year. 

8.2.2 MCD 

Applying the same method to MCD, the results can be found in figure 8-4. In 

general, the seasonal pattern identified for MarsGRAM is similar for MCD with a 

few key distinctions. The quarter-year ellipse is closer to the results of the half- and 

three-quarter-year ellipses. Furthermore, they extend further to the south and the 

east. The extension to the east is predominantly caused by the increased spread for 

the landing ellipses which will be further discussed in section 8.2.3. 
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figure 8-4: Surface landing points and 3-sigma ellipses of different dates for a year on 
Mars with MCD. 

Red: nominal date (Ls = 76.6°). Blue: +¼ year (Ls = 157.2°). Green: +½ year 
(Ls = 258.9°). Black: +¾ year (Ls = 358.1°). Cyan: +1 year. 

8.2.3 Database comparison 

figure 8-5 through figure 8-9 display the direct comparisons between the 

MarsGRAM and MCD databases for each point in time in the seasonal analysis. 

Generally, the results vary significantly and there is no recognizable pattern. As an 

example, the ellipses for the nominal landing (see figure 8-5) overlap partly and 

have approximately the same magnitude in covered area while a quarter of a year 

later (see figure 8-6) the ellipses are completely separated from each other. 

Furthermore, the MarsGRAM ellipse from half a year later (see figure 8-7) is 

enclosed in the one created with MCD and only covers an area of about 15-20 

percent of MCD’s. This finding is even more pronounced in the three-quarter year 

comparison (see figure 8-8) where the MarsGRAM ellipse only partly overlaps with 

MCD and covers approximately less than five percent of the other ellipse due to 

its shallow shape, possibly originating from sparsely experienced cross winds. 

These outcomes show that there are significant differences in the magnitudes of the 

atmospheric parameters (density and wind) modelled in the databases. Also, the 

uncertainties are of dissimilar sizes resulting in significantly diverse landing position 

deviations for the two simulation frames. 
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figure 8-5: Comparison of surface landing points and ellipses for nominal Phoenix landing 
using the MarsGRAM and MCD databases. 

Red: MarsGRAM. Blue: MCD. 

 

figure 8-6: Comparison of surface landing points and ellipses for the Phoenix landing 
+ ¼ year using the MarsGRAM and MCD databases. 

Red: MarsGRAM. Blue: MCD. 
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figure 8-7: Comparison of surface landing points and ellipses for the Phoenix landing 
+ ½ year using the MarsGRAM and MCD databases. 

Red: MarsGRAM. Blue: MCD. 

 

figure 8-8: Comparison of surface landing points and ellipses for the Phoenix landing 
+ ¾ year using the MarsGRAM and MCD databases. 

Red: MarsGRAM. Blue: MCD. 
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figure 8-9: Comparison of surface landing points and ellipses for the Phoenix landing 
+ 1 year using the MarsGRAM and MCD databases. 

Red: MarsGRAM. Blue: MCD. 

8.3 Landing on the southern hemisphere 

The orbit-planet synergy formulated in section 2.1 leads to different climates in the 

northern and southern hemisphere. Additionally, the surface altitude relative to 

the MOLA geoid is significantly higher on the southern half of the planet. In order 

to analyze the effects of these differences, an entry analysis of the Phoenix landing 

with the latitude and VAA mirrored along the equator is performed. Because of 

the expectable similarity of the result, this analysis is performed with the 

MarsGRAM database. The altered initial conditions are (see table 4-1 for the rest): 

ϕ = −69.363798394042846° 

ψ = 90° + (90° − 77.701926824525046°) 

= 102.2980731754750° 

At first, the difference in surface altitude can be seen in figure 8-10. While the 

spacecraft on the northern hemisphere has a comfortable altitude of 12-

13 kilometers at parachute deployment, this value decreases to approximately four 

kilometers for the southern hemisphere. After parachute deployment, the spacecraft 

still needs to decelerate substantially, release the backshell, turn on the thrusters 

and land on the surface. If the parachute is opened this close to the surface, the 

schedule for these actions is tight and the probability of a mishap, which could lead 

to a mission failure, increases considerably. This is the reason why the majority of 



8. Analysis of atmospheric models  77 

 

 

Mars missions are planned for lower elevations. The highest successful landing to 

date is the Opportunity rover at a MOLA altitude of -1.44 kilometers [30]. 

 

figure 8-10: Velocity-altitude comparison of nominal Phoenix landing and mirrored on the 
southern hemisphere. 

Red: Phoenix landing nominal. Blue: Phoenix landing southern hemisphere. 

Apart from the trajectory change in relation to the surface, the impact of the 

atmosphere is also of interest. The data in figure 8-11 shows the results of a 

quarterly Monte Carlo analysis. There is a clear seasonal pattern which is reversed 

in comparison with the northern hemisphere (see figure 8-3). In this case, the 

‘nominal’-timeslot is in winter which results in a landing site further to the north-

east due to lower density values and the present westerly winds. Half a year later, 

it is summer on the southern hemisphere which is why its landing ellipse is further 

west. 

Because of the elliptic orbit of Mars, winter in the southern hemisphere is longer 

than in the North. Consequently, the center of the landing ellipse a quarter of a 

year later is not much different than in the nominal case. The position of the 

landing ellipse does not change until the beginning of a short, but intensive, summer 

half a year later. After three-quarters of the year, the landing ellipse is already 

close to the winter position. 

The high seasonal differences in the south lead to higher spatial distances between 

winter and summer.  The landing ellipse centers have a maximum longitudinal 

difference of about 3.75 degrees, while it is 2.75 degrees in the northern hemisphere. 
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Furthermore, the latitudinal difference is approximately 0.5 degrees in comparison 

to 0.2 degrees. 

 

figure 8-11: Surface landing points and 3-sigma ellipses of different dates for a year on 
Mars with MarsGRAM on the southern hemisphere. 

Red: nominal date (Ls = 76.6°). Blue: +¼ year (Ls = 157.2°). Green: +½ year 
(Ls = 258.9°). Black: +¾ year (Ls = 358.1°). Cyan: +1 year. 

8.4 Case study: Mars Science Laboratory 

After analyzing the trajectories of the Phoenix spacecraft encountering various 

atmospheric conditions, a final case study will be performed. The question arises 

how much the mass and geometry of the spacecraft impacts the entry trajectory. 

Therefore, the simulation is adapted to the Mars Science Laboratory (MSL). It is 

the spacecraft which delivered the Curiosity rover to the surface of Mars. 

The MSL spacecraft’s properties are shown in table 8-1 in which they are compared 

to the values of the Phoenix lander. In general, the spacecraft’s geometry is similar 

with a 70-degrees sphere-cone aeroshell. However, MSL possesses six balance 

masses which are discarded shortly before parachute deployment. These are used 

to trim the spacecraft to a high angle of attack during entry which is changed to 

neutral for the descent phase. However, the control of the AoA will not be modelled 

to be able to achieve comparability with the Phoenix system. If the AoA was 

modelled, the results would not necessarily show the atmospheric impact by 

changing the mass and geometry but instead the influence of the lifted trajectory. 

[31] 
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Furthermore, the landing phase is performed differently. While the propulsion 

system of the Phoenix lander is integrated into the system, MSL utilizes the so-

called sky crane. The sky crane performs all maneuvers regarding propulsion and 

attitude control. Once the system is close to the ground, the Curiosity rover is 

rappelled 7.5 meters below the sky crane and gently placed on the surface. Once 

the rover is stable, the cords are cut and the sky crane uses its remaining fuel to 

fly away to avoid crashing into the rover. This system requires a significantly higher 

mass which is why the entry mass is also higher. [31] 

table 8-1: Adjusted MSL properties in comparison to Phoenix 

Property MSL Phoenix 

Entry mass 3300 kg [31] 582 kg 

Heat shield mass 382 kg [32] 62 kg 

Backshell mass 349 kg [32] 110 kg 

Balance masses 6 x 25 kg [31] N/A 

Parachute diameter 15.545 m [31] 11.73 m 

Spacecraft reference area 15.90 mଶ [31] 5.5155 mଶ 

Aerodynamic coefficients 70° sphere-cone shell - similar 

Parachute drag coefficient Disk-gap-band parachute - similar 

Backshell separation altitude 1600 m [31] 940 m 

Thruster specific impulse 222 s [33] 230 s 

Thruster force 8 x 3300 N [31]  12 x 293 N 

Thruster PI-controls P: 420  

I: 3.2 

P: 70 

I: 3.2 

 

The results of a Monte Carlo simulation with the MSL spacecraft in comparison to 

the nominal Phoenix landing is displayed in figure 8-12. Due to the flight path 

towards the south-east in the latter part of the trajectory, the MSL is found to 

land further downwind. The high mass results in a delayed deceleration curve as it 

requires a higher density to achieve notable acceleration values. Subsequently, the 
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spacecraft remains at higher velocities for a longer time while it dives into the lower 

parts of the atmosphere. This is supported by the diagrams shown in figure 8-13. 

 

figure 8-12: Comparison of Monte Carlo surface landing points and ellipses for the 
Phoenix and the MSL landing. 

Red: Phoenix landing. Blue: MSL landing. 

 

figure 8-13: Various diagrams comparing Phoenix landing to MSL landing. 
Red: Phoenix landing. Blue: MSL landing. 
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9 Evaluation 

The statistical analysis of the atmospheric models of Mars is the prime objective of 

this work. In order to pursue this objective, Monte Carlo and linear covariance 

analysis techniques are performed on a re-entry simulation frame. This chapter 

evaluates the results originating from these analyses. 

The foundation of the overall analysis is the simulation program computing the re-

entry trajectory from the initial conditions until touchdown on the surface. During 

the flight, major milestones like parachute deployment and lander separation are 

performed. Comparing the data with the Phoenix flight indicates good agreement 

between real-world data and the simulation. Subsequently, the simulation is 

validated and able to execute further statistical analyses. 

Monte Carlo analysis is used as the basic starting point for the statistical analysis. 

Its simple implementation and robust results provide the required foundation for 

the more complex linear covariance analysis. Monte Carlo identifies the deviations 

from the nominal trajectory imposed by the uncertainties. When comparing the 

two atmospheric models, it becomes clear that they show discrepancies. Generally, 

the MCD dispersions for radius, longitude, velocity, flight-path angle and velocity 

azimuth angle are about half of MarsGRAM’s, while the latitudinal deviations are 

roughly equal. 

Because Monte Carlo analysis is very computing resources intensive, linear 

covariance analysis is brought up as an alternative approach as it merely requires 

a fraction of the resources. The comparison with Monte Carlo shows that LCA is 

indeed able to approximate the MC results to a useful degree. While certain aspects 

like the exact path following of the radius dispersions are difficult, the overall 

results and especially the landing point accordance are good. In fact, the landing 

point results are excellent until parachute deployment. From then on, the LCA 

overestimates the wind deviations. 

Analyzing influences on the LCA results, it is found that the choice of integration 

method does matter. The ODE15 solver provides the best match with the Monte 

Carlo results. Furthermore, the single aspects of the LCA results are studied. If 

vertical wind perturbations are switched off, the density is the primary influence 
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for radius, velocity, flight-path angle and velocity azimuth angle deviations. 

Including vertical wind perturbations, they have an impact on the radius deviation 

results. In contrast, latitude and longitude deviations are influenced both by 

density and wind. While the wind is a continuous influence throughout the 

trajectory, the impact of the density is only noticeable in the high deceleration 

phase. 

The study of the atmospheric models delivered interesting results as well. While 

the internal modelling frameworks provide similar results, the seasonal influence on 

the trajectories is more pronounced. Both MarsGRAM and MCD clearly follow a 

seasonal pattern based on summer and winter times but also the eccentric orbit of 

Mars. Because of the higher density and predominant easterly winds in summer, 

the three-sigma landing ellipse if placed further north-west. In contrast, it is placed 

further south-east in winter. Comparing the two databases, the size of the landing 

ellipses is a primary difference. While it is approximately equal in size for some 

dates, the difference in area can amount to a factor of more than 20. 

If the entry point of the trajectory is mirrored to the southern hemisphere, the 

results are reversed as the seasons. Furthermore, the spatial differences are greater 

due to the more intense winter and summer seasons in the southern hemisphere. 

Because of the higher surface elevation in the southern hemisphere, the surface 

clearance at parachute deployment and during descent is significantly lower. This 

is the reason why with current technology landing mission are rarely planned for 

the southern hemisphere. 

The last examination is performed by changing the spacecraft from Phoenix to 

Mars Science Laboratory which is accompanied by a change in geometry and mass. 

MSL is significantly bigger in size and mass. Due to its mass and inertia, MSL is 

found to fly further along the trajectory and consequently land downwind. It 

requires a deeper dive into the atmosphere to build up considerable drag to 

decelerate the spacecraft. Subsequently, the parachute is also deployed at a lower 

altitude when compared to Phoenix. 
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10  Conclusion 

Because of the low level of knowledge on Mars’ atmosphere, re-entry trajectories 

are subject to uncertainties which are solely based on the atmospheric composition. 

This work investigated the magnitude of the uncertainties with Monte Carlo and 

linear covariance analyzed and additionally analyzes the atmosphere and the 

respective models themselves. 

In the beginning, the properties of the atmosphere were outlined, and the two 

models used within this thesis – MarsGRAM and MCD – were described. A low 

surface pressure of approximately 0.6 mbar and the atmosphere’s primary 

constituent, carbon dioxide, distinguish Mars’ atmosphere from Earth’s. 

Additionally, due to the orbit properties of the planet, seasonal variations are more 

pronounced. Mars has complex wind systems at all latitudes which can lead to dust 

storms on a global scale under specific circumstances. 

To investigate the atmospheric re-entry, a simulation program was created. It 

initializes the flight of the Phoenix spacecraft at a pre-defined entry point. The 

spacecraft dives into the atmosphere and decelerates significantly by creating drag. 

While still flying supersonic, the parachute is deployed based on an accelerometer 

measurement. It decelerates the spacecraft even further. At about one kilometer 

above ground, the program simulates backshell separation and guides the lander to 

a gentle touchdown with the use of hydrazine thrusters. In order to guarantee its 

function for later analyses, a thorough validation was performed. 

The statistical analysis was based on stochastic fundamentals. Therefore, an 

introduction to the relevant terms was given. Furthermore, the primary frameworks 

for Monte Carlo and linear covariance analysis were described. Monte Carlo 

performed the simulation 1000 times with randomly assigned uncertainty 

parameters. This process was very resource intensive in terms of computing. In 

contrast, linear covariance analysis merely required a single simulation and was 

challenged to approximate the results of Monte Carlo. 

Comparing both methods, it became clear that LCA was able to approximate the 

Monte Carlo results to a satisfactory degree. In fact, the results were excellent until 
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parachute deployment, after which they deviated. Thus, it was found that LCA 

can best be used for first assessments where a quick output is required. 

The comparison of the atmospheric models on the landing points resulted in various 

promising outcomes. While there were only small differences in the internal 

framework of the models themselves, there were distinct differences between them. 

Given the same input for date and time, the landing points and therefore the 

confidence ellipses differed to varying degrees – from small location differences to 

substantial differences in the ellipse size of factor 20 and above. It was found that 

the differences between the models make a confident re-entry prediction much more 

difficult as it is not possible to know which one is more accurate. 

Furthermore, seasonal influences on the landing location were analyzed. Because of 

the orbit parameters, the summer months lead to a shorter re-entry trajectory and 

vice versa. The results were observed to be mirrored on the southern hemisphere 

because of opposite seasons. In addition, the differences between the landing 

locations are greater on the southern hemisphere. This can be traced back to the 

more intense seasons based on the eccentric orbit. 

The change from Phoenix to Mars Science Laboratory showed how more mass leads 

to a further downwind landing. Its inertia lets the spacecraft dive deeper into the 

atmosphere until sufficient drag is built up to decelerate the spacecraft 

substantially. Consequently, parachute deployment is performed at lower altitudes 

as well. 

Looking for possible applications in the future, this work could be continued in 

multiple directions. At first, the Phoenix entry is performed ballistically, meaning 

without any guidance systems. As the LCA groundwork by Geller is laid out with 

guidance in mind, a guided entry could be analyzed with a realistic simulation of 

the Mars Science Laboratory spacecraft. Another direction in which this thesis 

could be continued, is to adapt it to another extraterrestrial body – for example 

Venus or Saturn’s moon Titan. 

All in all, this work shows that uncertainties in atmospheric models are a major 

influence on the size and position of the landing ellipse. Because of differences 

between the model results, precise predictions for real-world re-entries are found to 

be difficult. Additionally, linear covariance analysis is seen as a good alternative to 

Monte Carlo methods if time constraints prohibit the use of the latter.
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12  Appendices 

12.1  Generation of atmospheric model point/grid data 

To ease the future use of the atmospheric models, the following sections contain 

step-by-step tutorials on how to use the databases for the utilization within an 

atmospheric re-entry. 

12.1.1 MarsGRAM 

The creation of MarsGRAM point and grid data is relatively straight forward and 

will be explained below. In general, the program is based on executables and text 

input-files. The main execution file is called ‘marsgram_M10.exe’. The input is 

defined in a text file which is formatted as described in the user manual. Pre-

formatted examples like ‘inputstd0.txt’ can be found in the ‘IOfiles’-folder. 

Within the text file, the user can choose a variety of parameters which are explained 

in the user manual and at the bottom of the example files. The primary parameter 

handles when making no major changes to the standard atmosphere composition 

are displayed in table 12-1 (if multiple handles are in one table cell, each handle 

has to be changed separately). The explanations are partly adopted from the user 

manual [10]. Additionally, the respective data directory has to be determined with 

the following handles – which only work as an example: 

DATADIR = 'D:\Mars\Mars2010\Release1.0_Nov10\binFiles\' 

GCMDIR   = 'D:\Mars\Mars2010\Release1.0_Nov10\binFiles\' 
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table 12-1: MarsGRAM parameter handles 

Parameter handle Example value Explanation 

TRAJFL ‘null’ 

‘TRAJDATA.txt’ 

Optional trajectory input 

file name for grid creation 

‘null’ if not used 

IERT = 1 Earth-Receive time 

= 0 Mars-event time 

Time input definition 

IUTC = 1 UTC time 

= 0 Terrestrial time 

Time input definition 

MONTH, MDAY, 

MYEAR, IHR, 

IMIN, SEC 

Integer values, except 

seconds 

05, 28, 2008, 23, 38, 

23.0 

Month, Day, Year, Hour of 

Day, Minute, Second for 

initial position 

NPOS = 135 

= 0 if read from 

trajectory file 

Number of positions 

evaluated. 

Not applicable if trajectory 

grid is input (TRAJFL) 

LonEW = 0 West longitudes 

positive 

= 1 East longitudes 

positive 

Define which longitude 

values are seen as positive 

(input and output) 

NVARX, NVARY = 1 Planetocentric 

height above local 

MOLA areoid (km) 

Possibility to plot one (2D) 

or two (3D) additional 

parameters. For full list, see 

user manual page 34 

FLAT, FLON, 

FHGT 

25, 0, -5 Initial latitude, longitude 

and MOLA height. 

Not applicable if trajectory 

grid is input (TRAJFL) 
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DELHGT, 

DELLAT, 

DELLON, 

DELTIME 

1, 0, 0, 0 Increment between steps: 

Height (km), latitude & 

longitude (deg), time (sec) 

 

When the program is executed, the name of the input file has to be inserted (e.g.: 

inputstd0.txt). After successful completion of the program, the following text files 

will be created: 

DayData.txt  Daily averages for heights below 1.26 mbar level 

Density.txt  Density average and perturbations  

LIST.txt  Non-tabular total data 

MarsRad.txt  Radiation parameters 

OUTPUT.txt  Most important data 

Perturb.txt  Perturbations 

ThrmData.txt  Thermospheric parameters for heights above 80 km 

TPresHgt.txt  Temperature, pressure and heights 

Winds.txt  Winds average and perturbations 

The desired data of these tabulated text files is imported into MATLAB and 

processed within the simulation. 

Point data 

For a point data evaluation, no trajectory grid is fed to the simulation and thus all 

parameters have to be defined in the input file. Below a small example for a vertical 

profile of the Phoenix landing site (234.248°E, 68.219°N, 28th May 2008 23:38:23 

MET UTC, altitude -5 to +5 km with 1 km spacing) 

TRAJFL  = ‘null’   No trajectory input 

IERT  = 1    Mars Event Time 

IUTC  = 1    UTC time 

MONTH = 5    Month 

MDAY  = 25    Day 

MYEAR = 2008    Year 

IHR  = 23    Hour 

IMIN  = 28    Minute 



12. Appendices  92 

 

 

SEC  = 23.0    Second 

NPOS  = 11    11 evaluated positions 

LonEW = 1    East longitudes positive 

NVARX = 1    Additional parameter: MOLA height 

NVARY  = 0    Only 2D 

FLAT  = 68.219   Initial latitude 68.219° N 

FLONG = 234.248   Initial longitude 234.248° E 

FHGT  = -5    Initial altitude -5 km MOLA 

DELHGT = 1    Altitude increment 1 km 

DELLAT = 0    Latitude increment 0 degrees 

DELLON = 0    Longitude increment 0 degrees 

DELTIME = 0    Time increment 0 seconds 

Grid data 

For a comprehensive study of the EDL trajectory, it is necessary to create a 3D-

grid of the encountered area to be able to provide the simulation with the exact 

atmospheric conditions. MarsGRAM allows to build such a grid with the program 

‘bldtraj.exe’ and the required inputs work as follows: 

Enter trajectory file name   Phoenix_landing.txt 

Enter z1,z2,dz (Real km)   -5, 143, 0.5 

Enter lat1,lat2,dlat (Real deg.)  63, 77, 2 

Enter lon1,lon2,dlon (Real deg.)  200, 240, 2 

Enter time increment (Real sec.)  0 

The exemplary data on the right side will create a grid from -5 km to 143 km 

MOLA altitude with 0.5 km spacing, for latitudes 63° to 77° N with 2° spacing 

and for longitudes 200° to 240° E with 2° spacing. The time is hold constant at a 

zero second time increment. Going through all the possible variations, the 

resulting text file will have 49,896 lines (297x8x21). 

12.1.2 MCD 

As the MCD database could not be successfully installed on a Windows 

environment, the web interface is used instead. Unfortunately, it does not offer 

access to all data which are available in the original database. 
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The web interface outputs the data in a 35x64 matrix with one parameter being 

hold constant ( a plane of values). The following shows a Phoenix landing site 

example: 

Latitude ‘63’ degree North 

Longitude ‘200 240’ degree East 

Altitude ‘-5000 12000’ m below/above MOLA 

These inputs will result in a matrix of 35 altitude steps and 64 longitude steps. The 

finer longitude mesh for MCD is accepted here. The altitude increment of 

17,000 meter is chosen to define the delta-altitude between each step to 500 meters. 

Consequently, to gather the data for e.g. the Phoenix landing site, the following 

steps have to be followed: 

1. First input: ‘63’, ‘200 240’, ‘-5000 12000’ 

2. Repeat step 1 with latitudes increments: ‘65’, ‘67’, ‘69’, ‘71’, ‘73’, ‘75’ and 

‘77’ 

3. Repeat steps 1 and 2 with the altitude increments: ‘12500 29500’, ‘30000 

47000’, ‘47500 64500’, ‘65000 82000’, ‘82500 99500’, ‘100000 117000’, 

‘117500 134500’ and ‘135000 152000’ 

In the end, 72 files should have been created. Once submitting the coordinates, a 

new tab is opened and a text file of the data can be downloaded with the ‘Click 

here to download an ASCII file containing data’-button. 

With the web version of MCD, four variables can be displayed at once. For the 

simulation, the following parameters were chosen: 

Download 1: Density, Density day to day variability, Temperature, Vertical wind 

Download 2: W-E wind component, S-N wind component, zonal wind day to day 

variability, meridional wind day to day variability 

In the end, this example results in a total of 144 downloaded files. To simplify the 

import process to MATLAB, it is recommended to name the text files in a way 

that MATLAB can recognize and loop through all files automatically. For the 

example at hand, the following naming convention is chosen: 

Download 1:  ‘D_Dv_T_vw_63_-5.0to12.0.txt’ 

‘D_Dv_T_vw_65_-5.0to12.0.txt’ 
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. . . 

‘D_Dv_T_vw_63_12.5to29.5.txt’ 

. . . 

‘D_Dv_T_vw_77_135.0to152.0.txt’ 

Download 2:  ‘WE_SN_Zov_Mev_63_-5.0to12.0.txt’ 

   ‘WE_SN_Zov_Mev_65_-5.0to12.0.txt’ 

   . . . 

   ‘WE_SN_Zov_Mev_63_12.5to29.5.txt’ 

   . . . 

   ‘WE_SN_Zov_Mev_77_135.0to152.0.txt’ 

12.2  Detailed interpolation calculation 

As the interpolation calculation is an integral part of the whole simulation, it is 

described in the following with an example (right side) from the MarsGRAM 

temperature parameters. In the example, the grid has a density of 2° x 2° x 250m, 

the latitude values range from 63° N to 77° N (8 values), the longitude values range 

from 200° E to 240° E (21 values) and the altitude values range from -5 km to 

143 km MOLA (593 values): 

The input is separated into simulation and MATLAB: 

Simulation input 

Longitude θ (deg)    237.05° 

Latitude φ (deg)    67.29° 

MOLA altitude h (km)   -3.358 km 

MATLAB input 

grid = [θxφxh] double   [21x8x593] double 

grid_size = [θ,φ,h]    [21,8,593] 

alt_input = [hstart, hend, hgap-loop]  [-5,143,148] 

with hgap-loop = hend – hstart   143 – (-5) = 148 

lon_input = [lonstart, lonend, longap-loop]  [200,240,40] 

with longap-loop = lonend – lonstart  240 – 200 = 40 

lat_input = [latstart, latend, latgap-loop]  [63,77,14] 
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with latgap-loop = latend – latstart   77 – 63 = 14 

 

Altitude grid calculation 

grid୦,୦୧୦ = h୦୧୦ = ceilቆ
h − hୱ୲ୟ୰୲
ℎୟ୮ି୪୭୭୮

⋅ (gridୱ୧ୣ(h) − 1) + 1ቇ 

grid,୦୧୦ = ceilቆ
−3.358 km − (−5) ݇݉

148 km
⋅ (593 − 1) + 1ቇ = ceil(7.568) = 8 

grid୦,୪୭୵ = h୪୭୵ = floor ቆ
h− hୱ୲ୟ୰୲
hୟ୮ି୪୭୭୮

⋅ (gridୱ୧ୣ(h) − 1) + 1ቇ = floor(7.568) = 7 

hୣ୶ୟୡ୲ =
h− hୱ୲ୟ୰୲
hୟ୮ି୪୭୭୮

⋅ (gridୱ୧ୣ(h) − 1) + 1 = 7.568 

Comparison: altitude grid point 7 is -3.5 km and grid point 8 is -3.25 km. 

Longitude grid calculation 

grid,୦୧୦ = θ୦୧୦ = ceilቆ
θ − lonୱ୲ୟ୰୲
lonୟ୮ି୪୭୭୮

⋅ (gridୱ୧ୣ(θ) − 1) + 1ቇ 

grid,୦୧୦ = θ୦୧୦ = ceil ൬
237.05° − 200°

40°
⋅ (21 − 1) + 1൰ = ceil(19.525) = 20 

grid,୪୭୵ = θ୪୭୵ = floor ቆ
θ − lonୱ୲ୟ୰୲
lonୟ୮ି୪୭୭୮

⋅ (gridୱ୧ୣ(θ) − 1) + 1ቇ = floor(19.525) = 19 

θୣ୶ୟୡ୲ =
θ − lonୱ୲ୟ୰୲
lonୟ୮ି୪୭୭୮

⋅ (gridୱ୧ୣ(θ) − 1) + 1 = 19.525 

Comparison: longitude grid point 19 is 236° and grid point 20 is 238°. 

Latitude grid calculation 

gridம,୦୧୦ = ϕ୦୧୦  = ceilቆ
ϕ− latୱ୲ୟ୰୲
latୟ୮ି୪୭୭୮

⋅ (gridୱ୧ୣ(ϕ)− 1) + 1ቇ 

gridம,୦୧୦ = ceil ൬
67.29° − 63°

14°
⋅ (8 − 1) + 1൰ = ceil(3.145) = 4 

gridம,୪୭୵ = ϕ୪୭୵ = floor ቆ
ϕ − latୱ୲ୟ୰୲
latୟ୮ି୪୭୭୮

⋅ (gridୱ୧ୣ(ϕ)− 1) + 1ቇ = floor(3.145) = 3 

ϕୣ୶ୟୡ୲ =
θ − lonୱ୲ୟ୰୲
lonୟ୮ି୪୭୭୮

⋅ (gridୱ୧ୣ(θ) − 1) + 1 = 3.145 

Comparison: latitude grid point 3 is 67° and grid point 4 is 69°. 



12. Appendices  96 

 

 

As the grid points are known, the interpolation box can be filled and interpolated 

(see figure 12-1 & figure 12-2). The interpolation is a standard linear 

interpolation based on these equations (x known, y unknown): 

y − yଵ
x − xଵ

=
yଶ − yଵ
xଶ − xଵ

 

y = yଵ +
yଶ − yଵ
xଶ − xଵ

⋅ (x − xଵ) 

Temperature grid points 

a = grid(θ୪୭୵,ϕ୪୭୵, h୪୭୵) = 230.5 K 

b = grid൫θ୦୧୦,ϕ୪୭୵, h୪୭୵൯ = 230.6 K 

c = grid൫θ୪୭୵,ϕ୪୭୵, h୦୧୦൯ = 229.8 K 

d = grid൫θ୦୧୦,ϕ୪୭୵, h୦୧୦൯ = 230.0K 

e = grid൫θ୪୭୵,ϕ୦୧୦, h୪୭୵൯ = 223.9 K 

f = grid൫θ୦୧୦,ϕ୦୧୦, h୪୭୵൯ = 224.1 K 

g = grid൫θ୪୭୵,ϕ୦୧୦, h୦୧୦൯ = 223.7 K 

h = grid൫θ୦୧୦,ϕ୦୧୦, h୦୧୦൯ = 223.8 K 

First interpolation direction – lower altitude 

ρ୍ = a +
b − a

θ୦୧୦ − θ୪୭୵
⋅ (θୣ୶ୟୡ୲ − θ୪୭୵) 

ρ୍ = 230.5 K +
230.6 K − 230.5 K

20 − 19
⋅ (19.525 − 19) = 230.553 K 

ρ୍୍ = e +
f − e

θ୦୧୦ − θ୪୭୵
⋅ (θୣ୶ୟୡ୲ − θ୪୭୵) 

ρ୍୍ = 223.9 K +
224.1 K − 223.9 K

20 − 19
⋅ (19.525 − 19) = 224.005 K 

First interpolation direction – higher altitude 

ρ୍ = c +
d − c

θ୦୧୦ − θ୪୭୵
⋅ (θୣ୶ୟୡ୲ − θ୪୭୵) 

ρ୍ = 229.8 K +
230.0 K − 229.8 K

20 − 19
⋅ (19.525 − 19) = 229.905 K 

ρ = g +
h − g

θ୦୧୦ − θ୪୭୵
⋅ (θୣ୶ୟୡ୲ − θ୪୭୵) 
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ρ = 223.7 K + ଶଶଷ.଼ ିଶଶଷ. 
ଶିଵଽ

⋅ (19.525 − 19) = 223.753 K  

Second interpolation direction 

ρ୍୍୍ = ρ୍ +
ρ୍୍ − ρ୍

ϕ୦୧୦ −ϕ୪୭୵
⋅ (ϕୣ୶ୟୡ୲ −ϕ୪୭୵) 

ρ୍୍୍ = 230.553 K +
224.005 K − 230.553 K

4− 3
⋅ (3.145 − 3) = 229.604 K 

ρ୍ = ρ୍ +
ρ − ρ୍

ϕ୦୧୦ −ϕ୪୭୵
⋅ (ϕୣ୶ୟୡ୲ −ϕ୪୭୵) 

ρ୍ = 229.905 K +
223.753 K − 229.905 K

4 − 3
⋅ (3.145 − 3) = 229.013 K 

Third interpolation direction 

ρ୍୍ = ρ୍୍୍ +
ρ୍ − ρ୍୍୍

h୦୧୦ − h୪୭୵
⋅ (hୣ୶ୟୡ୲ − h୪୭୵) 

ρ୍୍ = 229.604 K +
229.013 K − 229.604 K

8 − 7
⋅ (7.569 − 7) = 229.268 K 

 

figure 12-1: Interpolation box example 1. 

 

figure 12-2: Interpolation box example 2. 
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12.3  LCA Partial derivative matrix Fx 

The following describes the full partial derivative matrix including vertical wind 

perturbations. The last four rows are all zeros because the derivatives of the static 

coefficients are zero. 

If the vertical wind perturbations are not included, the last column and last row 

must be deleted. 

F୶ =
δf
δx

 |୶ത

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

∂ṙ
∂r

∂ṙ
∂θ

∂ṙ
∂ϕ

∂ṙ
∂v

∂ṙ
∂γ

∂ṙ
∂ψ

∂ṙ
∂ρୗୈ

∂ṙ
∂v୵,ୣୟୱ୲,ୗୈ

∂ṙ
∂v୵,୬୭୰୲୦,ୗୈ

∂ṙ
∂v୵,୴ୣ୰୲,ୗୈ

∂θ̇
∂r

∂θ̇
∂θ

∂θ̇
∂ϕ

∂θ̇
∂v

∂θ̇
∂γ

∂θ̇
∂ψ

∂θ̇
∂ρୗୈ

∂θ̇
∂v୵,ୣୟୱ୲,ୗୈ

∂θ̇
∂v୵,୬୭୰୲୦,ୗୈ

∂θ̇
∂v୵,୴ୣ୰୲,ୗୈ

∂ϕ̇
∂r

∂ϕ̇
∂θ

∂ϕ̇
∂ϕ

∂ϕ̇
∂v

∂ϕ̇
∂γ

∂ϕ̇
∂ψ

∂ϕ̇
∂ρୗୈ

∂ϕ̇
∂v୵,ୣୟୱ୲,ୗୈ

∂ϕ̇
∂v୵,୬୭୰୲୦,ୗୈ

∂ϕ̇
∂v୵,୴ୣ୰୲,ୗୈ

∂v̇
∂r

∂v̇
∂θ

∂v̇
∂ϕ

∂v̇
∂v

∂v̇
∂γ

∂v̇
∂ψ

∂v̇
∂ρୗୈ

∂v̇
∂v୵,ୣୟୱ୲,ୗୈ

∂v̇
∂v୵,୬୭୰୲୦,ୗୈ

∂v̇
∂v୵,୴ୣ୰୲,ୗୈ

∂γ̇
∂r

∂γ̇
∂θ

∂γ̇
∂ϕ

∂γ̇
∂v

∂γ̇
∂γ

∂γ̇
∂ψ

∂γ̇
∂ρୗୈ

∂γ̇
∂v୵,ୣୟୱ୲,ୗୈ

∂γ̇
∂v୵,୬୭୰୲୦,ୗୈ

∂γ̇
∂v୵,୴ୣ୰୲,ୗୈ

∂ψ̇
∂r

∂ψ̇
∂θ

∂ψ̇
∂ϕ

∂ψ̇
∂v

∂ψ̇
∂γ

∂ψ̇
∂ψ

∂ψ̇
∂ρୗୈ

∂ψ̇
∂v୵,ୣୟୱ୲,ୗୈ

∂ψ̇
∂v୵,୬୭୰୲୦,ୗୈ

∂ψ̇
∂v୵,୴ୣ୰୲,ୗୈ

∂Ċ
∂r

= 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

With: 

∂ṙ
∂r

=
∂ṙ
∂θ

=
∂ṙ
∂ϕ

=
∂ṙ
∂ψ

=
∂ṙ
∂ρୗୈ

=
∂ṙ

∂v୵,ୣୟୱ୲,ୗୈ
=

∂ṙ
∂v୵,୬୭୰୲୦,ୗୈ

= 0 

∂ṙ
∂v

= sin(γ) 

∂ṙ
∂γ

= v ⋅ cos (γ) 

∂ṙ
∂v୵,୴ୣ୰୲,ୗୈ

= 1 

∂θ̇
∂r

= −
v୵,ୣୟୱ୲, + v୵,ୣୟୱ୲,ୗୈ +  v ∗ cos(γ) ∗ sin(ψ)

rଶ ∗ cos(ϕ)  

∂θ̇
∂θ

=
∂θ̇
∂ρୗୈ

=
∂θ̇

∂v୵,୬୭୰୲୦,ୗୈ
=

∂θ̇
∂v୵,୴ୣ୰୲,ୗୈ

= 0 
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∂θ̇
∂ϕ

=
sin( ϕ) ∗ ቀv୵,ୣୟୱ୲, + v୵,ୣୟୱ୲,ୗୈ +  v ∗ cos(γ) ∗ sin(ψ)ቁ

r ∗ cos(ϕ)ଶ  

∂θ̇
∂v

=
cos(γ) ∗ sin(ψ)

r ∗ cos(ϕ)  

∂θ̇
∂γ

= −
v ∗ sin(γ) ∗ sin(ψ)

r ∗ cos(ϕ)  

∂θ̇
∂ψ

=
v ∗ cos(γ) ∗ cos(ψ)

r ∗ cos(ϕ)  

∂θ̇
∂v୵,ୣୟୱ୲,ୗୈ

=
1

r ∗ cos(ϕ) 

∂ϕ̇
∂r

= −
v୵౨౪ొ

+  v୵౨౪ీ
+  v ∗ cos( γ) ∗ cos(ψ)

rଶ
 

∂ϕ̇
∂θ

=
∂ϕ̇
∂ϕ

=
∂ϕ̇
∂ρୗୈ

=
∂ϕ̇

∂v୵,ୣୟୱ୲,ୗୈ
=

∂ϕ̇
∂v୵,୴ୣ୰୲,ୗୈ

= 0 

∂ϕ̇
∂v

=
cos(γ) ∗ cos(ψ)

r
 

∂ϕ̇
∂γ

= −
v ∗ cos(ψ) ∗ sin(γ)

r
 

∂ϕ̇
∂ψ

= −
v ∗ cos(γ) ∗ sin(ψ)

r
 

∂ϕ̇
∂v୵,୬୭୰୲୦,ୗୈ

=
1
r
 

∂v̇
∂r

=
∂v̇
∂θ

=
∂v̇
∂ϕ

=
∂v̇
∂ψ

=
∂v̇

∂v୵,ୣୟୱ୲,ୗୈ
=

∂v̇
∂v୵,୬୭୰୲୦,ୗୈ

=
∂v̇

∂v୵,୴ୣ୰୲,ୗୈ
= 0 

∂v̇
∂v

= −
v ∗ ൫A ∗ Cୈౌ +  Aୗେ ∗ Cୈి൯ ∗ (rho +  rhoୗୈ)

m
 

∂v̇
∂γ

= −g ∗ cos(γ) 

∂v̇
∂ρୗୈ

= −
vଶ ∗ ൫A ∗ Cୈౌ +  Aୗେ ∗ Cୈి൯

2 ∗ m
 

∂γ̇
∂r

= −
v ∗ cos(γ)

rଶ
 

∂γ̇
∂θ

=
∂γ̇
∂ϕ

=
∂γ̇
∂ψ

=
∂γ̇

∂v୵,ୣୟୱ୲,ୗୈ
=

∂γ̇
∂v୵,୬୭୰୲୦,ୗୈ

=
∂γ̇

∂v୵,୴ୣ୰୲,ୗୈ
= 0 
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∂γ̇
∂v

= cos(γ) ∗ ൬
g

vଶ
+

1
r
൰ −

T ∗ sin(β)
m ∗ vଶ

+
Aୗେ ∗ C ∗ cos(σ) ∗ (rho +  rhoୗୈ)

2 ∗ m
 

∂γ̇
∂γ

= sin(γ) ∗ ቀ
g
v
−

v
r
ቁ 

∂γ̇
∂ρୗୈ

=
Aୗେ ∗ C ∗ v ∗ cos(σ)

2 ∗ m
 

∂ψ̇
∂r

= −
v ∗ cos(γ) ∗ sin(ψ) ∗ tan(ϕ)

rଶ
 

∂ψ̇
∂θ

=
∂ψ̇

∂v୵,ୣୟୱ୲,ୗୈ
=

∂ψ̇
∂v୵,୬୭୰୲୦,ୗୈ

=
∂ψ̇

∂v୵,୴ୣ୰୲,ୗୈ
= 0 

∂ψ̇
∂ϕ

=
v ∗ cos(γ) ∗ sin(ψ) ∗ (tan(ϕ)ଶ +  1)

r
 

∂ψ̇
∂v

=
cos(γ) ∗ sin(ψ) ∗ tan(ϕ)

r
+

Aୗେ ∗ C ∗ sin(σ) ∗ (rho +  rhoୗୈ)
2 ∗ m ∗ cos(γ)  

∂ψ̇
∂γ

=
Aୗେ ∗ C ∗ v ∗ sin(γ) ∗ sin(σ) ∗ (rho +  rhoୗୈ)

2 ∗ m ∗ cos(γ)ଶ −
v ∗ sin(γ) ∗ sin(ψ) ∗ tan(ϕ)

r
 

∂ψ̇
∂ψ

=
v ∗ cos(γ) ∗ cos(ψ) ∗ tan(ϕ)

r
 

∂ψ̇
∂ρୗୈ

=
Aୗେ ∗ C ∗ v ∗ sin(σ)

2 ∗ m ∗ cos(γ)  
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