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Abstract

In this paper, we present the total column water vapour (TCWV) retrieval for the TROPOspheric Monitoring

Instrument (TROPOMI) observations in the visible blue spectral band. The TROPOMI TCWV algorithm is

being optimized and validated in the framework of the Sentinel 5 Precursor Product Algorithm Laboratory (S5P-

PAL) project from the European Space Agency (ESA). The retrieval was first developed to retrieve TCWV

from the Global Ozone Monitoring Experiment 2 (GOME-2). We have optimized the settings of the retrieval to

adapt it for TROPOMI observations. The TROPOMI TCWV algorithm follows the typical two step approach,

using spectral fit retrieval of slant columns, and conversion of the slant columns to vertical columns using air

mass factors (AMFs). An iterative optimization algorithm is developed to dynamically find the optimal a priori

water vapour profile for the AMF calculation. Further optimizations on the spectral retrieval, air mass factor

calculations as well as a new surface albedo retrieval approach are implemented.

The TCWV retrieval algorithm is applied to TROPOMI observations from May 2018 to May 2021. The

results are validated by comparing them to ERA5 reanalysis data, GOME-2, MODerate resolution Imaging

Spectroradiometer (MODIS) and Special Sensor Microwave Imager Sounder (SSMIS) satellite observations.

TCWV derived from TROPOMI observations agree well with the other data sets with Pearson correlation

coefficient (R) ranging from 0.96 to 0.99. The mean bias between TROPOMI and ERA5 data is -1.24 kg m−2 for

measurements over land and 0.73 kg m−2 for measurements over water. The comparison to MODIS observations

show similar results with small dry bias of 1.51,kg m−2 for measurements over land and a small wet bias of

1.25 kg m−2 for measurements over water. Slightly larger dry bias of 1.98 kg m−2 for measurements over land

and 1.74 kg m−2 for measurements over water are found when compared to GOME-2 obserations. Compared

to SSMIS data over water, TROPOMI observations are bias low by 3.25 kg m−2. The small discrepancies

found between TROPOMI and reference data sets are related to the differences in measurement technique,

measurement time, surface albedo issue, as well as cloud and aerosol contamination. This study demonstrates

that the algorithm can provide stable and consistent results on a global scale and can be applied to generate

operational TCWV products from TROPOMI and the forthcoming Copernicus missions Sentinel-4 and Sentinel-

5. We have also demonstrated the capability of retrieving fine scale water vapour structures in a case study over

the Amazon. This indicates that the TROPOMI data set is also useful for local and regional climate studies.
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1. introduction1

Water vapour is one of the major components in the atmosphere with strong impacts on the earth’s climate2

and weather. Water vapour absorbs radiation in the infrared spectral range and its abundance in the atmosphere,3

making it the most important natural greenhouse gas (Clough and Iacono, 1995; Kiehl and Trenberth, 1997).4

Notwithstanding this importance, the role of water vapour in climate and its reactions to climate change are5

still difficult to assess. On the one hand, the atmospheric water vapour content of the atmosphere is expected to6

rise with increasing atmospheric temperature (Trenberth and Stepaniak, 2003; Hodnebrog et al., 2019), which7

further amplifies the warming effect (Colman, 2003; Soden et al., 2005; Soden and Held, 2006; Evan et al.,8

2015). On the other hand, higher water vapour content in the atmosphere could also enhance cloud formation,9

where clouds are known to have cooling effect to the Earth’s surface (Bellomo et al., 2014; Brown et al., 2016).10

Therefore, the warming or cooling effect of increasing water vapour amounts in the atmosphere is still not well11

understood (Boucher et al., 2013). The warming of atmosphere would also intensify the horizontal transport of12

atmospheric water vapour as well as its spatio-temporal patterns (Schneider et al., 2010; Lavers et al., 2015).13

In addition, the lifetime of atmopsheric water vapour is rather short compared to other greenhouse gases, hence14

it has a very strong spatio-temporal variability making the assessment more difficult. Accurate measurements15

of water vapour on a global scale are therefore necessary for the investigation and evaluation of its interactions16

with the earth’s climate (Hartmann et al., 2013).17

Satellite remote sensing is an essential tool for the monitoring of atmospheric water vapour on global scale.18

Satellite observations of water vapour can be conducted in various electromagnetic spectral bands, i.e, mi-19

crowave, infrared and visible bands (Kaufman and Gao, 1992; Bauer and Schlüssel, 1993; Noël et al., 1999,20

2004; Li et al., 2006; Wagner et al., 2006; Pougatchev et al., 2009; Wang et al., 2014; Grossi et al., 2015).21

Although water vapour absorption in the visible wavelength band is a few orders of magnitude lower than at22

longer wavelengths, satellite observations of water vapour in the visible band have certain advantages compared23

to measurements at longer wavelengths. Surface albedo in the visible blue band over ocean is higher than that24

in the infrared, and yields better sensitivity to the lower troposphere where most of the water vapour resides.25

In addition, a non-linearity absorption correction is not required for measurements in the visible blue band, as26

the absorption at this wavelength band is rather low.27

Spectroscopic observations of earthshine radiance in the ultraviolet (UV), visible (VIS) and near infrared28

(NIR) bands have long been conducted since the Global Ozone Monitoring Experiment (GOME) satellite mis-29

sion was launched in 1995 (Burrows et al., 1999). Together with follow up missions such as the SCanning30

Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) (Bovensmann et al., 1999),31

Global Ozone Monitoring Experiment 2 (GOME-2) (Callies et al., 2000), and Ozone Monitoring Instrument32

(OMI) (Levelt et al., 2006) these observations provide a global record of earthshine radiance in the UV, VIS33

and NIR (UVN) spectral range for more than 25 years. The recent TROPOspheric Monitoring Instrument34
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(TROPOMI) satellite borne spectrometer (Veefkind et al., 2012) on board the European Space Agency (ESA)35

Sentinel 5 Precursor (S5P) satellite provides daily global observations of earthshine radiance in the UVN range36

with much finer spatial resolution (3.5× 7.0 km2 and 3.5× 5.5 km2 after August 2019) compared to its prede-37

cessors. TROPOMI and the upcoming Sentinel 5 (S5) missions will provide indispensable global observations38

of earthshine radiance in the UVN range in the next decade. However, water vapour is still not yet one of39

the official TROPOMI operational products. In order to fully exploit the potential of TROPOMI observations,40

we have developed the total column water vapour (TCWV) retrieval algorithm for TROPOMI within the Eu-41

ropean Space Agency’s (ESA’s) Sentinel 5 Precursor Product Algorithm Laboratory (S5P-PAL) framework.42

The TROPOMI water vapour algorithm is based on the GOME-2 total column water vapour retrieval with43

optimizations on spectral analysis, air mass factor calculations and new surface albedo retrieval approach.44

The objective of this paper is to present the TROPOMI TCWV retrieval algorithm which is based on the45

experience from GOME-2 and to produce a consistent TCWV data set. This paper presents the details of the46

TROPOMI TCWV retrieval algorithm and validation against external data sets. The manuscript is organized47

as follows. The description of the TROPOMI instrument and other data sets used for validation are presented48

in Section 2. Section 3 describes the TROPOMI TCWV retrieval algorithm. The results of validation against49

external data sets results are shown in Section 4. Section 5 presents an example of using the high spatial50

resolution TROPOMI TCWV data to observe fine scale features of water vapour. Section 6 summarizes the51

study.52

2. Instruments and data sets53

In this section, the TROPOMI instrument and its corresponding products used in the retrieval are described.54

In addition, TCWV validation data sets measured by other satellite instruments and the ERA5 reanalysis data55

are presented.56

2.1. TROPOMI measurements57

TROPOspheric Monitoring Instrument (TROPOMI) is a passive nadir viewing satellite borne push-broom58

grating imaging spectrometer on board the Copernicus Sentinel 5 Precursor (S5P) satellite. The satellite59

was launched on 13th October 2017 and orbits on sun-synchronous orbit at an altitude of ∼824 km with local60

equator overpass time of 13:30 LT (local time) on ascending node. The instrument has 8 spectral bands covering61

ultraviolet (UV), visible (Vis), near infrared (NIR) and short-wavelength infrared (SWIR). The instrument takes62

measurements at 450 positions across the orbital track which cover a swath width of approximately 2600 km,63

providing daily global coverage observations. The spatial resolution of the instrument was 3.5 km (across-track)64

× 7.0 km (alongtrack) for measurements taken before 6th August 2019 and 3.5 km (across-track) × 5.5 km65

(alongtrack) after 6th August 2019. The TCWV retrieval utilizes spectral observations in band 4 (400 - 495 nm)66

with typical spectral resolution of 0.54 nm. The description of the spectral calibration of the TROPOMI67

instruments can be found in Kleipool et al. (2018); Ludewig et al. (2020). A more detailed description of the68

TROPOMI instrument can be found in Veefkind et al. (2012).69
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The first step of TROPOMI data processing is the conversion of the detector signal (level 0 data) to ge-70

olocated and radiometric calibrated radiance and irradiance data (level 1B data). The operational TROPOMI71

level 1B processor has been developed by the Royal Netherlands Meteorological Institute (Koninklijk Nederlands72

Meteorologisch Instituut, KNMI). It uses instrument calibration key data to convert level 0 to level 1B data.73

The calibration key data includes information such as detector dark current, offset, non-linearity, instrument74

slit response function (ISRF), etc, which are acquired from the pre-flight on-ground calibration. More details75

of the instrument calibration can be found in Kleipool et al. (2018). The calibrated level 1B data is then used76

for the retrieval of cloud information and TCWV.77

2.2. ERA5 reanalysis data78

ERA5 (ECMWF Reanalysis version 5) is a global atmosphere, land surface and ocean waves reanalysis data79

set produced by the European Center for Medium-Range Weather Forecasts (ECMWF) as part of Copernicus80

Climate Change Services (C3S). The ERA5 reanalysis data covers a long time period since 1979, providing81

consistent data on a global scale for the analysis of long term variation of water vapour in the atmosphere. The82

reanalysis data is produced with a data assimilation scheme which combined various measurements, including83

radiosonde, satellite and ground based remote sensing observations, as prior information from model forecasts84

(Hersbach et al., 2020). The original TCWV reanalysis data is in a spatial resolution of ∼31 km and temporal85

resolution of 1 hour. The data is then transformed to the latitude longitude (LL) coordinate system with86

a horizontal resolution of 0.25◦ × 0.25◦ through the Copernicus Climate Change Service. A more detailed87

description of ERA5 reanalysis data can be found in Hersbach et al. (2020). The ERA5 TCWV data is88

spatio-temporally interpolated to the measurement time and location of each individual TROPOMI pixel for89

comparison and subsequent processing. The ERA5 reanalysis data is publicly available through the Copernicus90

Climate Change Services (https://cds.climate.copernicus.eu/).91

2.3. GOME-2 TCWV product92

The GOME-2 water vapour product (Grossi et al., 2015) is used as reference to validate the TROPOMI93

TCWV data set. Data from both GOME-2 instruments on board the MetOp-A and MetOp-B satellites are94

used. The MetOp satellites orbit at an altitude of ∼820 km on sun-synchronous orbits with a repeat cycle of95

29 days (412 orbits) and a local equator overpass time of 09:30 LT (local time) on the descending node. The96

spatial resolution of the GOME-2 instrument on board the MetOp-A satellite (GOME-2A) is 40 km (across-97

track) × 40 km (alongtrack) while the spatial resolution the GOME-2 instrument on board the MetOp-B satellite98

(GOME-2B) is 80 km (across-track) × 40 km (alongtrack). A more detailed introduction to the MetOp series of99

satellites as well as the GOME-2 instrument on board can be found in Callies et al. (2000); Klaes et al. (2007);100

Munro et al. (2016).101

The GOME-2 water vapour product is processed with GOME Data Processor (GDP) version 4.8 at the102

German Aerospace Center (DLR) within the framework of EUMETSAT’s Satellite Application Facility on103

Atmospheric Composition Monitoring (AC-SAF). Slant columns water vapour are retrieved in the visible red104
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wavelength range of 614 - 683 nm. The water vapour slant columns are then converted to vertical columns105

using air mass factors derived from the oxygen slant columns measured in the same wavelength band. The106

GOME-2 water vapour product has been validated intensively by radiosonde and Global Positioning System107

(GPS) measurements (Antón et al., 2015; Román et al., 2015; Kalakoski et al., 2016; Vaquero-Mart́ınez et al.,108

2018). Detailed global comparison study shows that the GOME-2 TCWV has a dry bias of 3 % comparied to109

radiosonde data, while a wet bias of 3 - 5 % is observed compared to GPS observations (Kalakoski et al., 2016).110

Compared to ERA-Iterim reanalysis data, the GOME-2 water vapour product has been reported to significantly111

underestimate TCWV over central Africa by ∼10 kg m−2 and India by 15 - 21 kg m−2 (Grossi et al., 2015). A112

small wet bias of 4 - 8 kg m−2 is found over oceans in the tropics during summer of the northern hemisphere113

(Grossi et al., 2015). Compared to radiosonde measurements in the middle to high latitudes in the Northern114

Hemisphere, the GOME-2 product has in general a dry bias of 9 - 11 % (Antón et al., 2015). While a wet bias115

of 10 - 16 % is reported over Spain compared to GPS observations (Román et al., 2015; Vaquero-Mart́ınez et al.,116

2018). The GOME-2 level 2 TCWV data is available on the AC-SAF webpage (https://acsaf.org/).117

2.4. MODIS TCWV product118

The MODerate resolution Imaging Spectroradiometer (MODIS) instruments are passive nadir viewing imag-119

ing sensors (Salomonson et al., 1989; King et al., 1992) on board the Earth Observing System’s (EOS) Terra120

and Aqua satellites. The Terra satellite orbits on a sun-synchronous orbit with a local equator overpass time of121

13:30 LT (local time) on descending node, while the local equator overpass time for the Aqua satellite is 10:30122

LT on ascending node. MODIS measures earthshine radiance at 36 discrete wavelength bands from 0.4µm123

up to 14.4µm with various spatial resolutions, providing global observation every 1 - 2 days. Columnar water124

vapour content is derived from MODIS observations in the near infrared (NIR) from 865 - 1240 nm. The in-125

version of water vapour columns is based on the attenuation of radiation through the atmosphere. A more126

detailed description of the MODIS water vapour retrieval algorithm can be found in Kaufman and Gao (1992);127

Gao and Kaufman (2003). Due to the similar overpass time, water vapour product derived from the MODIS128

instruments on board the Terra satellite is used to validate the TROPOMI TCWV data set. Compared to129

GPS observations, the MODIS water vapour product in general shows a dry bias of 3 - 13 kg m−2 (Liu et al.,130

2006; Prasad and Singh, 2009). The NASA MOD05 monthly level 3 data product with a spatial resolution of131

0.25◦ × 0.25◦ is used in this study. The data is available to public at the NASA Earth Observations (NEO)132

webpage (https://neo.gsfc.nasa.gov/).133

2.5. SSMIS TCWV product134

Another data set used to validate the new TROPOMI water vapour retrieval is the atmospheric water vapour135

product derived from the Special Sensor Microwave Imager Sounder (SSMIS) on board the United States Air136

Force Defense Meteorological Satellite Program (DMSP) F16 polar orbiting satellite. The F16 satellite orbits137

at an altitude of ∼848 km on a sun-synchronous orbit with local equator crossing time of ∼16:00 LT on the138

ascending and ∼04:00 LT on the descending node. The SSMIS instrument on board the F16 satellite has been139
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in operation since 2005, providing long term climate records of wind speed, cloud liquid water, atmospheric140

water vapour and rainfall rate during both day and night time (Wentz, 2015). SSMIS water vapour data are141

processed by Remote Sensing Systems with funding from the NASA MEaSUREs Program and the NASA Earth142

Science Physical Oceanography Program. The retrieval of water vapour columns is based on the radiative143

transfer calculation of brightness temperature over oceans. This type of satellite borne microwave observations144

of TCWV has been reported to show a wet bias of 2 - 3 kg m−2 over ocean (Stephens et al., 1994). Although145

SSMIS shows smaller bias than GOME-2 and MODIS observations, it only provide measurements over ocean.146

More detailed introduction of the SSMIS TCWV retrieval algorithm can be found in Wentz (1997). In this147

study, the NASA SSMIS monthly level 3 product version 7 with spatial resolution of 0.25◦ × 0.25◦ is used to148

validate the TROPOMI observations of TCWV. The data is available at the NASA Global Hydrometeorology149

Resource Center (GHRC) (https://ghrc.nsstc.nasa.gov/).150

3. TROPOMI TCWV retrieval151

The TROPOMI TCWV algorithm is developed based on the TCWV retrieval developed for GOME-2 at the152

blue spectral band (Chan et al., 2020) with improvements of spectral retrieval, air mass factor calculations, and153

a new algorithm to retrieve surface properties from TROPOMI observations. The retrieval follows the typical154

two steps retrieval approach for weak absorbers. The first step is the spectral analysis to retrieve water vapour155

slant columns from TROPOMI measurement spectra. The second step is the slant columns to vertical columns156

conversion using air mass factors. The following describes the water vapour column retrieval focusing on the157

differences to the GOME-2 TCWV algorithm.158

3.1. Spectral retrieval of water vapour slant column159

Slant column densities (SCDs) of water vapour are determined by applying the differential optical absorption160

(DOAS) technique (Platt and Stutz, 2008) to TROPOMI radiance spectra in the wavelength range of 435 -161

455 nm with a daily measured solar irradiance spectrum as reference. Absorption cross sections of several162

species are used in the DOAS analysis for the retrieval of water vapour slant columns. These are water vapour163

at 296 K from the HITRAN database (Rothman et al., 2009), NO2 at 220 K (Vandaele et al., 2002), O3 at164

228 K (Brion et al., 1998), O4 at 293 K (Thalman and Volkamer, 2013) and liquid water at 297 K (Pope and165

Fry, 1997). A Ring spectrum is also included in the DOAS fit as pseudo cross section, to compensate for166

the Raman scattering effect. These cross sections are pre-convoluted to the TROPOMI spectral resolution167

for each detector row using the TROPOMI instrument spectral response functions (version 3.0.0) (Kleipool168

et al., 2018). Wavelength calibrations are performed by mapping the TROPOMI solar irradiance spectrum with169

a high resolution solar reference spectrum (Chance and Kurucz, 2010). The broad band spectral structures170

caused by broad band absorption of trace gases, instrumental effects, Rayleigh and Mie scattering are removed171

by including a 4th order polynomial in the spectral fitting. Shift and stretch parameters of radiance spectra172

are also fitted during the spectral fitting process, to compensate for spectral instability due to small thermal173

variations within the spectrograph.174
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Table 1: Summary of the water vapour slant column retrieval results with different spectral fitting window for TROPOMI mea-
surements taken on 1st July 2018 (orbit 3698 - 3711) over the tropics (30◦S - 30◦N).

Fitting Length of Median SCD Median Root Mean
Reference

Window Fitting Window (kg m−2) Square of Fit
430.0 - 450.0 nm 20.0 nm 40.01 6.94×10−4 Wagner et al. (2013); Borger et al. (2020)
430.0 - 480.0 nm 50.0 nm 35.70 7.19×10−4 Wang et al. (2014)
427.7 - 465.0 nm 37.3 nm 38.21 6.97×10−4 Wang et al. (2016)
432.0 - 466.5 nm 34.5 nm 38.01 6.67×10−4 Wang et al. (2019)
427.7 - 455.0 nm 27.3 nm 40.45 7.05×10−4 Chan et al. (2020)
435.0 - 455.0 nm 20.0 nm 39.96 6.41×10−4 This work

The spectral fitting window for the retrieval of water vapour slant columns is selected based on a sensitivity175

study with different spectral fitting windows. The DOAS fitting range used by several authors, and our water176

vapour slant column retrieval results are shown in Table 1. We vary the spectral fitting window with other177

retrieval settings unchanged. These spectral fitting windows for water vapour retrieval cover the featuring water178

vapour absorption structure at 441 - 448 nm. The median water vapour slant columns and the median root mean179

squares of spectral fit for measurements taken on 1st July 2018 (orbit 3698 - 3711) over the tropics (30◦S - 30◦N)180

are shown in Table 1. The spectral fitting range at 435 - 455 nm leads to the lowest root mean square and the181

median SCD is also close to the median value amount all settings. Therefore, the fit window of 435 - 455 nm is182

chosen as the standard setting in this study.183

Figure 1: The top panels show water vapour slant columns retrieved from TROPOMI observations. The corresponding water
vapour slant column uncertainties and the root mean square of the spectral fit residual are shown in the middle and bottom panels,
respectively. TROPOMI data taken on 1st January (the left column) and 1st July 2019 (the right column) are shown.
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Figure 1a & b show water vapour slant columns retrieved from TROPOMI observations on 1st January184

and 1st July 2019. The corresponding slant column uncertainties and the root mean square of the spectral fit185

residual are also shown. Higher water vapour slant columns can be observed over tropical regions, while upper186

latitudes in general show lower values. The measurement uncertainties and the root mean square of spectral fit187

residual are higher at both edges of the swath. This is related to the pixel binning scheme of the detector row of188

TROPOMI (Kleipool et al., 2018) which results in lower signal to noise levels at the edges. Higher uncertainties189

and root mean square are also found at both ends of the measurement orbit, where observations are taken with190

high solar zenith angles (thus, lower radiance intensity and signal to noise ratio).191

3.2. Air mass factor192

The retrieved water vapour SCDs are then converted to vertical column densities (VCDs or total columns)193

using air mass factors (AMFs) (Solomon et al., 1987; Palmer et al., 2001). As the DOAS retrieval of water194

vapour SCDs is applied to a relatively narrow spectral window of 20 nm, the wavelength dependency of optical195

path within this narrow spectral interval is negligible. The AMF can therefore be calculated at a representative196

wavelength. A prominent absorption line feature of water vapour is located at 442 nm. Therefore, the AMF is197

computed at this wavelength.198

Assuming the atmosphere is optically thin, the height dependent measurement sensitivity can be decouple199

from the vertical distribution of optically thin absorbers (Palmer et al., 2001). The AMF can then be calculated200

using the box air mass factor (∆AMF) at each height level following Equation 1.201

AMF =
SCD

V CD
=

l=TOA∑
l=surface

∆AMFl × ∆zl × cl

l=TOA∑
l=surface

∆zl × cl

(1)

where ∆zl is the thickness of layer l and cl is the number density of the absorber. Information of cl is typically202

taken from the a priori profile.203

3.2.1. Box air mass factor look-up table204

Due to the complexity of the optical path in the atmosphere, the calculations of the height-dependent mea-205

surement sensitivity (or ∆AMF) typically rely on comprehensive radiative transfer calculations. The ∆AMFs206

are independent of the vertical distribution of the absorber, but strongly dependent on surface reflectivity,207

surface height, solar and viewing geometries. In this study, ∆AMFs are calculated using the radiative transfer208

model VLIDORT version 2.7 (Spurr, 2008) at 442 nm with an aerosol free US standard atmosphere (Anderson209

et al., 1986). The ∆AMFs are pre-calculated with a number of representative viewing zenith angle (α), solar210

zenith angle (θ), relative azimuth angle (φ), surface albedo (As) and surface pressure (Ps) and stored in a211

look-up table in order to reduce the processing time. The ∆AMFs for each TROPOMI observation are derived212

by interpolation within the look-up table. The parameterizations of the ∆AMF look-up table are similar to the213

one used in GOME-2 TCWV retrieval (Chan et al., 2020).214
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3.2.2. Water vapour vertical profile215

The calculation of AMF is also dependent on the vertical distribution profile of water vapour (see Equation 1).216

A dynamic search approach is used to find the optimal a priori water vapour profile for AMF calculation. This217

approach has been implemented and validated for the retrieval of TCWV from GOME-2 observations in the218

blue band (Chan et al., 2020). The dynamic search approach is based on the fact that the vertical distribution219

of water vapour is strongly dependent on its total column. A water vapour vertical profile look-up table is220

created based on statistical analysis of historical water vapour profiles. The look-up table contains geolocation221

dependent water vapour vertical profiles and their variation ranges for each month of the year. This look-up222

table is then used as auxiliary input for the optimization of the water vapour profile.223

An iterative approach is employed to optimize the a priori water vapour used in the retrieval. The iteration224

begins with the mean profile of the satellite measurement location of the corresponding month. This mean225

profile is then used together with the corresponding ∆AMFs to calculate an initial AMF following Equation 1.226

The retrieved water vapour SCD is divided by this initial AMF to retrieve the initial VCD. The water vapour227

profile look-up table is then linearly interpolated to the resulting initial column to retrieve the corresponding228

water vapour profile. The new profile is again used to retrieve the second VCD. This process repeats until the229

difference between the input and output VCD is less than 1 % or the number of iteration reaches the limit. The230

maximum number of iteration allowed in the current version of retrieval is set to 5. This limit is considered231

realistic as the retrieval of more than 99 % of TROPOMI measurements stopped within 3 iterations.232

Figure 2: Comparison of TCWV retrieved with (a) climatology and (b) dynamic a priori water vapour profile. The differences
between (a) and (b) are indicated in (c). ERA5 reanalysis data interpolated to TROPOMI overpass time is also shown in (d) for
reference. TROPOMI data measured on 15th January 2019 (orbit 6513) over Africa and Europe is shown. No cloud filtering is
applied to the data shown in the figure.

A comparison of TCWV retrieved with climatology (a) and with a dynamic a priori water vapour profile (b)233

is shown in Figure 2, for the 15th of January 2019 over Africa and Europe. No cloud filtering is applied to the234

data shown in Figure 2. The differences between the two retrievals is shown in Figure 2c. For reference, ERA5235

reanalysis data interpolated to TROPOMI overpass time is shown in Figure 2d. Compared to the climatology a236

priori approach, the dynamic a priori approach reduces the retrieved TCWV over areas with high TCWV. This237

is mainly due to the fact that water vapour is concentrated in the lower troposphere when TCWV is relatively238
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small (i.e., <30 kg m−2), while higher TCWV usually is associated with enhanced water vapour concentration239

in the upper altitudes (Chan et al., 2020). Therefore, the change in vertical profile shape would result in larger240

AMFs when TCWV is high and yield lower TCWV.241

3.2.3. Surface albedo242

Surface albedo is an important parameter for the calculation of the air mass factor. The sensitivity of satellite243

observations, especially to the lower troposphere where most water vapour resides, is strongly related to surface244

albedo. The surface albedo used in this study is retrieved from TROPOMI observations using the full-physics245

inverse learning machine (FP ILM) algorithm (Loyola et al., 2020). The FP-ILM algorithm is a machine learning246

based approach that aims to derive the relationship (inverse function) between the parameter of interest (surface247

albedo in this case) and measured radiance spectrum (with other atmospheric parameters). This algorithm has248

been applied to O3 profile shape and SO2 plume height retrievals (Efremenko et al., 2017; Xu et al., 2017; Hedelt249

et al., 2019). Training of the FP ILM algorithm is driven by a set of synthetic data generated with a radiative250

transfer model. Synthetic TROPOMI radiance spectra at 435 - 455 nm are simulated using the radiative transfer251

model VLIDORT version 2.7 (Spurr, 2008) together with the smart sampling technique (Loyola et al., 2016). For252

the training, the inputs are DOAS fitted parameters, as well as the solar/satellite viewing geometry and surface253

pressure. The inversion result is the Geometry-dependent effective Lambertian equivalent reflectivity (GE LER)254

and it is retrieved for clear sky observations (cloud fraction <0.05). Compared to the Lambertian equivalent255

reflectivity (LER) climatology derived from Ozone Monitoring Instrument (OMI) observations (Kleipool et al.,256

2008), which is being used in most of the operational TROPOMI products. As the OMI albedo product is257

derived from observations in 2004 - 2007, TROPOMI albedo derived in 2018 - 2021 is expected to better capture258

the actual surface conditions, especially with regard to temporal variability.259

Surface GE LER derived from TROPOMI observations in the spectral band of 435 - 455 nm is compared260

to the OMI monthly minimum LER climatology derived at 442 nm (Kleipool et al., 2008). Figure 3 shows261

the TROPOMI GE LER and OMI monthly minimum climatology for January and July. Differences between262

the two data sets are also shown. Surface GE LER derived from TROPOMI is on average ∼0.04 lower than263

OMI climatology. Our result is consistent with a previous study, that found slightly lower GE LER retrieved264

from TROPOMI with the FP ILM algorithm compared to the OMI climatology in a similar wavelength band265

(Liu et al., 2021). The TROPOMI GE LER in general shows ∼0.05 lower albedo over sub-tropics compared to266

OMI climatology. Relatively larger discrepancies (>0.2) can be observed over areas covered with snow or ice.267

Previous study reported that OMI typically overestimated albedo in high latitudes and the Arctic by 0 – 11 %268

compared to ground based measurements (Bernhard et al., 2015). In addition, the OMI climatology is derived269

from measurements taken in 2004 - 2007, the TROPOMI GE LER derived in the same measurement period of270

2018 - 2021 is expected to better capture the actual conditions. Higher albedo is observed over desert, e.g., the271

Sahara, Arabian and Gobi desert. This is likely related to aerosol effects, as aerosol is not modelled explicitly272

in the generation of synthetic spectra used for the training of the inverse model. Other effects, like difference273

in wavelength and measurement period, might also contribute to the difference in albedo. Further investigation274
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Figure 3: Surface GE LER derived from TROPOMI observations (top panels) and OMI monthly minimum LER (middle panels)
for January (left column) and July (right column). The bottom panels show the differences between the two dataset. TROPOMI
LER data is derived in the spectral band of 435 - 455 nm, while OMI LER data is retrieved at 442 nm.

is needed in order to quantify the impacts of aerosol on surface albedo retieval. We are planning to improve275

the surface albedo retrieval in the future by including aerosol filtering, using aerosol index data derived from276

TROPOMI.277

Figure 4: Differences of TROPOMI monthly averaged TCWV retrieved with TROPOMI GE LER and OMI climatology in (a)
January and (b) July 2019. Measurements with cloud radiance fraction below 0.5 are used for the calculation of monthly average.

As the OMI albedo climatology is being used in various operational TROPOMI products, e.g., Theys et al.278

(2017); De Smedt et al. (2018), we use this albedo product as reference for the investigation of the influence of279

albedo on TCWV retrieval. Compared to MODIS observations, the OMI climatology is on average 0.02 higher280

(Kleipool et al., 2008). Larger overestimation up to 0.06 is observed in the tropics over the Amazon, central281

Africa, India and Indonesia (Kleipool et al., 2008). Ground based observation comparison study shows that OMI282
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albedo overestimated by 0 – 11 % over high latitudes and the Arctic. Figure 4 shows the differences of monthly283

averaged TROPOMI TCWV retrieved with TROPOMI GE LER and OMI climatology for January and July284

2019. Higher TCWV can be observed over ocean in the sub-tropics, which agrees with the differences between285

the two albedo data sets (see Figure 3e & f). Reduced albedo decreases the measurement sensitivity in the lower286

troposphere, and results in lower AMFs. This leads to increased TCWV. Larger discrepancies are also found287

over tropic and subtropic areas, e.g., the Amazon, central Africa, India and Indonesia. These discrepancies288

are mainly related to the bidirectional reflectance distribution function (BRDF) effect over vegetation and289

aerosol/cloud contamination. The TROPOMI GE LER albedo data significantly improved the overestimation290

of albedo (and underestimation of TCWV) over these regions.291

Figure 5: The top panels show the differences of monthly averaged TCWV retrieved with TROPOMI GE LER and ERA5 reanalysis
data, while the differences of monthly averaged TCWV retrieved with OMI LER and ERA5 reanalysis data are shown in the bottom
panels. Data of January (the left column) and July 2019 (the right column) are shown. Measurements with cloud radiance fraction
below 0.5 are used for the calculation of monthly average.

Table 2: Summary of the improvement related to the use of TROPOMI GE LER over various areas.

Region
OMI LER GE LER

Absolute Bias (kg m−2) Relative Bias (%) Absolute Bias (kg m−2) Relative Bias (%)
Amazon -7.6 to -8.0 -16.2 to -17.7 -4.5 to -5.3 -9.7 to -11.8

Central Africa -2.7 to -9.4 -6.5 to -24.7 -2.7 to -7.5 -6.5 to -20.0
India -0.2 to -8.0 -1.7 to -15.3 -0.2 to -3.4 -1.8 to -6.4

Figure 5a & b show the comparisons of monthly averaged TCWV retrieved with TROPOMI GE LER to292

ERA5 reanalysis data, while the comparisons of TCWV retrieved with OMI albedo to ERA5 reanalysis are293

shown in Figure 5c & d. Data from January and July 2019 are shown. Compared to ERA5, TCWV retrieved294

with OMI albedo shows larger underestimation over tropic and subtropic areas, e.g., the Amazon, central Africa,295

India and Indonesia. Higher OMI albedo over these areas enhanced the sensitivity in the lower troposphere296

which leads to larger AMFs and hence lower total columns. Although the retrieval with TROPOMI GE LER297

has also lower TCWV over these regions, this underestimation is significantly improved. Table 2 summarized298

the improvement related to the use of TROPOMI GE LER over various areas. Larger TCWV overestimation299
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can be observed along the equator over ocean with retrievals using the OMI albedo. Compared to ERA5 data,300

the mean absolute bias of TROPOMI TCWV using OMI LER albedo in retrieval is 1.5 - 2.1 kg m−2, while using301

TROPOMI GE LER reduces the absolute mean bias to 1.3 - 2.1 kg m−2.302

3.2.4. Cloudy and partially cloudy measurements303

Clouds are treated as opaque Lambertian surfaces in the TCWV retrieval. The treatment of partially cloudy304

pixels is based on the independent pixel approximation (Martin et al., 2002; Boersma et al., 2004) where the305

pixel is separated into two independent parts: one fully covered by clouds and the other completely cloud free.306

Air mass factors are calculated independently for both clear sky and cloudy parts. Cloud information, including307

cloud fraction (CF ), cloud albedo (Ac) and cloud top pressure (Pc) are taken from the TROPOMI operational308

cloud product (Loyola et al., 2018).309

The AMF for the cloudy part is calculated from the ∆AMF look-up table by setting the surface pressure (Ps)310

to cloud top pressure (Pc) and replacing the surface albedo (As) with the cloud albedo (Ac). The calculation of311

the slant column for the cloudy scene is insensitive to water vapour below the cloud, hence ∆AMFs below cloud312

are 0. On the other hand, the vertical column is calculated by integrating the water vapour profile from the313

surface to the top of atmosphere which includes the part below cloud (see Equation 1). The ‘invisible’ column314

below the cloud (also known as the ‘ghost column’) is taken from the a priori profile.315

The AMF of a partially cloudy pixel is the intensity-weighted average of the cloudy AMF (AMFcld) and316

clear sky AMF (AMFclr). This weighting is commonly know as effective cloud fraction (CFeff , or radiance317

cloud fraction) which is defined by Equation 2.318

CFeff =
CF × Icld

CF × Icld + (1 − CF ) × Iclr
(2)

where Icld and Iclr represent the radiance intensity for cloudy and clear sky scenes, respectively. The radiance319

intensities are pre-calculated using the radiative transfer model VLIDORT at 442 nm for a number of represen-320

tative observation and solar geometries, surface (cloud) albedo and surface (cloud-top) pressure and stored in321

a look-up table. The settings of the intensity look-up table are the same as the ∆AMF look-up table without322

the pressure level dimension. The AMF can then be calculated following Equation 3.323

AMF = AMFcld × CFeff + AMFclr × (1 − CFeff ) (3)

The resulting AMFs are used to divide the retrieved water vapour slant columns to convert to vertical324

columns.325

3.3. Error estimation326

The estimation of the uncertainty on retrieved TCWV from TROPOMI follows the one used for GOME-2327

(Chan et al., 2020). It is separated into two major parts, slant column and air mass factor uncertainties. The328

uncertainty of TCWV can be expressed as Equation 4:329
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σ2
vcd = V CD2 ×

(( σscd
SCD

)2
+
( σamf

AMF

)2)
(4)

where σvcd, σscd and σamf are the uncertainty of TCWV, the uncertainty of water vapour slant column and air330

mass factor uncertainty, respectively. Details of the estimation of the water vapour slant column uncertainty331

and air mass factor error are as follows.332

The uncertainties of water vapour slant column can be separated into two parts, random and systematic333

errors. Random error contributions are mainly from instrument noise, instrument characteristics and the un-334

certainties related to the DOAS retrieval of slant columns. Systematic errors are related to uncertainties on the335

instrument slit function, incomplete removal of stray light, wavelength calibration uncertainties, and uncertain-336

ties on absorption cross sections. The random part can be quantified by analyzing the spectral fit residual (Stutz337

and Platt, 1996). The systematic part is estimated through sensitivity tests using absorption cross sections at338

different effective temperatures, and using sightly different slit functions. We estimate that the systematic part339

is about 3 % (Chan et al., 2020). The uncertainty of the slant column may be calculated following Equation 5:340

σ2
scd = σ2

scdr
+ (0.03 × SCD)2 (5)

where σscdr
is the random error estimated by analyzing the DOAS fit residual.341

The uncertainty on AMF is mainly attributed to the uncertainty of the input parameters used in the AMF342

calculation. The AMF uncertainty related to each input parameter can be derived from the box air mass factor343

look-up table using the the finite difference method.344

The uncertainty of surface albedo is assumed to relate to the albedo wavelength dependency. The albedo345

used in TROPOMI TCWV retrieval is derived at the spectral band of 435 - 455 nm, without spectral dependency.346

We took the OMI albedo product (Kleipool et al., 2008) as reference, and assume the albedo uncertainty equal347

to the difference between albedo derived at 425 nm and 452 nm. Uncertainties on water vapour profiles are348

estimated through the analysis of historical profiles, and their standard deviation of the variation are stored349

in a look-up table. The corresponding impact on the AMF calculation is estimated by adding 1σ standard350

deviation to the water vapour profile for the AMF calculation. The difference between this AMF and the351

original AMF is then used as uncertainty. Surface pressure (or surface height) is taken from a digital elevation352

model (DEM) and the accuracy of DEM is usually in the range of 10 - 15 m (Mukherjee et al., 2013). Therefore,353

a relatively small uncertainty of 10 hPa is assumed. The uncertainty on the AMF for a clear sky scene can then354

be calculated following Equation 6:355

σ2
amf =

(
∂AMF

∂As
σAs

)2

+

(
∂AMF

∂Ps
σPs

)2

+

(
∂AMF

∂cl
σcl

)2

(6)

where σamf , σAs
, σPs

and σcl are the AMF uncertainty, surface albedo, surface pressure and water vapour356

profile, respectively.357

For (partially) cloudy measurements, the uncertainty of cloud albedo is assumed to be 0.02 (Loyola et al.,358
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2018), while uncertainty of cloud pressure is estimated to be 50 hPa (Theys et al., 2017; De Smedt et al., 2018).359

The uncertainty on the cloudy AMF can then be calculated as in Equation 6 by replacing surface albedo/pressure360

parameters by the corresponding cloud parameters.361

The uncertainty of cloud fraction is ranging from 0.007 to 0.032 (Loyola et al., 2018). Therefore, we assume362

an effective cloud fraction uncertainty of 0.02 in the calculation of AMF uncertanity. The combined AMF363

uncertainty may then be expressed as Equation 7:364

σ2
amf = (AMFcld × CFeff )

2 ×

((
σamfcld

AMFcld

)2

+

(
σcfeff

CFeff

)2
)

(7)

+ (AMFclr × (1 − CFeff ))
2 ×

((
σamfclr

AMFclr

)2

+

(
σcfeff

1 − CFeff

)2
)

where σcfeff
is the uncertainty of effective cloud fraction, σamfclr represents the clear sky AMF uncertainty,365

and σamfcld denotes the cloudy AMF uncertainty. The final uncertainty on TCWV is then calculated following366

Equation 4.367

Table 3: Summary of median estimated measurement error at different latitudes and sky conditions.

Latitude
Estimated Error

All Sky Clear Sky (CFeff<0.5) Cloudy Sky (CFeff>0.5)
Tropics (0◦ - 30◦) 5.0 kg m−2 (18.2 %) 4.4 kg m−2 (14.0 %) 8.8 kg m−2 (27.4 %)

Midlatitudes (30◦ - 60◦) 4.1 kg m−2 (33.9 %) 4.0 kg m−2 (32.7 %) 4.3 kg m−2 (34.5 %)
Polar (60◦ - 90◦) 1.3 kg m−2 (38.8 %) 1.0 kg m−2 (43.4 %) 3.1 kg m−2 (34.9 %)

The estimated uncertainties of TCWV for TROPOMI observations at different latitudes and sky conditions368

are summarized in Table 3. The estimated error is in general lower for measurement taken under clear sky369

conditions (effective cloud fraction<0.5) compared to cloudy conditions (effective cloud fraction>0.5). However,370

the relative error for clear and cloudy sky measurements are quite similar at midlatitudes and polar regions.371

Cloudy measurements are usually associated with higher TCWV, and hence leads to lower relative error.372

3.4. Gridding and averaging373

Pixels from different orbits often overlap in higher latitudes. In order to compare to other data sets, the374

retrieved TCWV is binned to a regular latitude-longitude grid. We use a grid with a spatial resolution of375

0.25◦ × 0.25◦. The gridding process considers the overlapping area of the TROPOMI ground pixel and the376

latitude-longitude grid. The percentage of overlap is calculated and used as weight for the calculation of the377

mean grid cell value. The gridded TCWV can be express as Eq. 8:378

V CDg =

∑n
i=1 V CDi × wi∑n

i=1 wi
(8)

where V CDg is the gridded TCWV while V CDi represents each individual measurement that touches the grid379

cell. The weights are denoted as w which is the percentage of the grid cell covered by the satellite pixel.380
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The gridded TCWV is based on all valid vertical columns within a certain period, for example a day or a381

month. The root mean square of spectral fit residual is a good indicator of the measurement signal to noise382

ratio, and solar zenith angle is strongly related to the radiance intensity, therefore, they are used as data383

filtering criteria. Clouds shield water vapour in the lower troposphere and affect the measurement quality. In384

addition, small AMF indicated that most of the information is coming from the a priori profile instead of the385

measurement. Therefore, it is necessary to filter data with significant cloud contamination and low AMF. In the386

gridding process, we only use data with solar zenith angle smaller than 85◦, effective cloud fraction (or radiance387

cloud fraction) smaller than 0.5, root mean square of spectral fit residual less than 0.002, and AMF larger than388

0.1.389

4. Validation390

In this section, we present the validation results of the retrieved TROPOMI TCWV data set. TROPOMI391

TCWV is compared to ERA5 reanalysis data, GOME-2, MODIS and SSMIS satellite observations. Brief392

descriptions of these data sets can be found in Section 2. Validation against ground based observations will be393

addressed in separate studies.394

4.1. Spatial distribution comparison395

Figure 6: Monthly averaged TCWV from TROPOMI (1st row), ERA5 reanalysis data (2nd row), GOME-2A & B (3th row),
MODIS Terra (4th row), and SSMIS (5th row). Data from January (1st column), April (2nd column), July (3th column) and
October (4th column) of 2019 are shown. Note that SSMIS only provide data over surface covered by water.

Figure 6 shows the monthly average spatial distribution of TCWV from TROPOMI, ERA5, GOME-2,396

MODIS, and SSMIS for January, April, July and October of 2019. These months are chosen as examples397
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for winter, spring, summer and autumn, respectively. All data sets are in spatial resolution of 0.25◦ × 0.25◦.398

Missing data are mainly due to the filtering of measurements with solar zenith angle larger than 85◦. All five399

data sets show similar spatial patterns of water vapour. TROPOMI observations in general agree well with400

ERA5 reanalysis, while underestimation of TCWV can be observed over tropic and subtropic areas, e.g., the401

Amazon, central Africa, India and Indonesia. These discrepancies are probably related to albedo effects in the402

visible band over vegetation and aerosol/cloud contamination. Compared to GOME-2 and SSMIS observations,403

TROPOMI data in general shows lower values over ocean in the tropics, especially along the equator. This404

discrepancy is partly related to the differences in satellite overpass time and measurement wavelength band. We405

have assessed the effect of different satellite overpass time on TCWV values by comparing ERA5 data during406

GOME-2 (∼09:30 LT) and TROPOMI (∼13:30 LT) overpass time. The results shows that ERA5 TCWV is407

in the morning (∼09:30 LT) in general 4 - 6 % higher than that at noon (∼13:30 LT). In addition, microwave408

measurements (i.e., SSMIS) are sensitive to water vapour within and below clouds (except some very thick rain409

clouds) and provide observations of TCWV in all sky conditions over ocean, while measurements in the visible410

band (i.e., TROPOMI) are strongly influenced by clouds. Proper cloud screening has to be applied to remove411

cloud contaminated data. As TCWV under cloudy conditions is expected to be higher, filtering cloudy data412

would result in a dry bias in the average values. Compared to MODIS observations, TROPOMI measurements413

in general show higher TCWV over oceans. MODIS NIR measurements are known to be less sensitive to water414

vapour in the lower troposphere over oceans due to low albedo at this wavelength band. Previous studies415

reported that MODIS is underestimating TCWV by 3 - 13 kg m−2 (Liu et al., 2006; Prasad and Singh, 2009),416

and our result is consistent with these studies.417

4.2. Correlation and bias418

Figure 7: Comparison of TROPOMI TCWV to (a) ERA5 reanalysis data, (b) GOME-2, (c) MODIS, and (d) SSMIS observations.
Histograms of the differences of TCWV between TROPOMI and reference data sets are shown in the bottom panels. Monthly
averaged data from May 2018 to May 2021 with spatial resolution of 0.25◦ × 0.25◦ are used in the comparison.

The statistical comparisons of TROPOMI TCWV to ERA5 reanalysis data, GOME-2, MODIS, and SSMIS419
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observations are shown in Figure 7a-d, respectively. Histograms of the differences of TCWV between TROPOMI420

observations and reference data sets are shown in Figure 7e-h. The histograms of measurements over land (red421

lines), water (blue lines) and all surface (black lines) are shown. Monthly averaged data from May 2018 to May422

2021 with spatial resolution of 0.25◦ × 0.25◦ are used in the comparison. The scatter plots show that TROPOMI423

observations agree well with the reference data sets, with a Pearson correlation coefficient (R) range from 0.96424

to 0.99. The discrepancies over different surfaces are shown in the Histograms. Compared to ERA5, TROPOMI425

observations on average underestimate TCWV by 1.24 kg m−2 over land, while a small wet bias of 0.73 kg m−2
426

is observed over water. Compared to GOME-2 measurements, TROPOMI data shows a dry bias of 1.74 kg m−2
427

and 1.98 kg m−2 over land and water, respectively. Part of the discrepancy between TROPOMI and GOME-2 is428

related to the difference in overpass time (see Section 4.1), which account for approximately 1 kg m−2 of the dry429

bias. The comparison to MODIS data shows a wet bias of 1.25 kg m−2 over water and a dry bias of 1.51 kg m−2
430

over land. TROPOMI observations over water are on average 3.25 kg m−2 lower than SSMIS data. Details of431

the correlation and bias compared to the reference data sets are summarized in Table 4. Our result is in line432

with the previous study that SSMIS data in general shows a wet bias of 2 - 3 kg m−2 (Stephens et al., 1994).433

Table 4: Summary of correlation and bias for the comparison of TROPOMI TCWV against different data sets.

Data set
Land Water All Surface

R Bias (kg m−2) R Bias (kg m−2) R Bias (kg m−2)
ERA5 0.990 -1.24± 2.01 0.994 0.73± 1.75 0.991 0.10± 2.05

GOME-2 0.952 -1.98± 4.39 0.970 -1.74± 3.81 0.967 -1.80± 3.98
MODIS 0.979 -1.51± 3.19 0.984 1.25± 3.07 0.976 0.36± 3.36
SSMIS – – 0.987 -3.25± 2.57 – –
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Figure 8: Time series of correlation coefficient (upper panels) and bias (bottom panels) between TROPOMI and reference data
sets. Comparison over land (left panels) and water (right panels) are shown. Comparison to ERA5 (black lines), GOME-2 (blue
lines), MODIS (red line), and SSMIS (green line) are indicated. Shadowed areas indicate 1σ variation range.

Figure 8 shows the time series of correlation coefficient and bias of TCWV between TROPOMI and reference434
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data sets. Statistical parameters for observations over land and water from May 2018 to May 2021 are shown.435

The correlation between the TROPOMI observations and reference data sets is in general very good, with a436

Pearson correlation coefficient (R) ranging from 0.89 to 0.99 over land, and 0.95 to 0.99 over water. TROPOMI437

data agrees better with ERA5 reanalysis data with R of 0.98 - 0.99, while a lower correlation coefficient R438

of 0.88 - 0.98 is found in the comparison to GOME-2 observations. The correlation between TROPOMI and439

reference data sets shows a seasonal pattern, with higher correlation during winter of the Northern Hemisphere440

and lower during summer. This effect is more significant for observations over land, especially in the comparison441

with GOME-2 observations. We attribute the relatively larger seasonal effect for the comparison to GOME-2 to442

the differences in overpass time (TROPOMI at ∼13:30 LT, GOME-2 at ∼09:30 LT) and seasonal variations of443

the diurnal pattern of water vapour. The remaining discrepancies are mainly due to the sensitivity of different444

wavelength bands in relation to the seasonal variation of surface albedo and cloud/aerosol conditions. This effect445

has been reported in the comparison of GOME-2 observations in the blue and red band (Chan et al., 2020).446

TROPOMI observations in general underestimate TCWV over land by 0.3 - 3.6 kg m−2. The comparison of447

TROPOMI TCWV to ERA5 and MODIS over water shows a wet bias from 0 - 1.7 kg m−2, while the comparison448

to GOME-2 and SSMIS shows a dry bias from 1.1 - 3.8 kg m−2. The dry bias is more significant in summer of449

the Northern Hemisphere. Considering the differences in measurement time and measurement sensitivity, the450

small discrepancies among these data sets are considered reasonable.451

4.3. Zonal comparison452

Water vapour columns derived from TROPOMI and reference data sets are sorted by their latitudes with 1◦453

resolution for each month; the resulting time series are shown in Figure 9. Observations over land and water are454

separated in the comparison. Monthly averaged data from May 2018 to May 2021 are shown. The zonal mean455

values at different latitude bands are summarized in Table 5. TROPOMI retrieval of TCWV in general shows456

good zonal agreement with other data sets, indicating all data sets captured similar spatio-temporal variations457

of water vapour. Higher values are observed over tropical regions over both land and water, while TCWV at458

upper latitudes is in general much lower. Significant seasonal patterns are also observed in all data sets, with459

higher columns during summer and lower values in winter (of the corresponding hemisphere). Compared to460

ERA5 data, the dry bias of TROPOMI over lands in the tropics (15◦ S - 15◦ N) is slightly higher (1 - 2 kg m−2)461

than that at upper latitudes, while a small wet bias of 1 - 3 kg m−2 are observed over water in the subtropics462

(15◦ - 30◦). The wet bias over water along equator is almost 0.463

For the comparison to GOME-2 observations, a clear north-south dependency is observed. Dry bias of464

TROPOMI over lands in the tropic and subtropic areas in the Southern Hemisphere (0 - 30 ◦ S) are significantly465

higher (∼5 kg m−2) than that in the Northern Hemisphere. TROPOMI also measured higher TCWV than466

GOME-2 (1 - 4 kg m−2) over water in tropic and subtropic areas in the Southern Hemisphere (0 - 30 ◦ S), while467

this bias is much less pronounced in the Northern Hemisphere. The north-south dependency of discrepancy468

between GOME-2 and TROPOMI is mainly related to the differences in overpass time. This north-south469

dependency is much less significant in the comparison to MODIS data, as MODIS and TROPOMI overpass470
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Figure 9: Monthly zonal average if TCWV from TROPOMI (1st row), ERA5 (2nd row), GOME-2 (3th row), MODIS (4th row),
and SSMIS (5th row). Data are separated for observations over land (left column) and water (right column).

roughly at the same time. Compared to MODIS, TROPOMI measures lower TCWV over land and higher471

values over water. The discrepancies (dry bias over land and wet bias over water) are more significant over472

tropics and subtropics. The dry bias in the comparison to SSMIS observations over water is rather homogeneous473

(2 - 3 kg m−2) with only slightly stronger dry bias in the tropics (15◦ S - 15◦ N).474
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Table 5: Summary of zonal mean and the corrsponding 1σ standard deviation of TCWV for all data sets at different latitude
bands.

Latitude
Zonal mean and standard deviation of TCWV (kg m−2)

Land
TROPOMI ERA5 GOME-2 MODIS SSMIS

90◦S - 60◦S 2.38± 1.87 2.35± 1.94 4.32± 2.68 1.05± 1.15 –
60◦S - 30◦S 9.84± 3.19 10.87± 3.56 13.75± 3.65 11.56± 4.33 –
30◦S - 0◦ 25.77± 11.66 28.08± 11.95 32.08± 13.22 28.93± 11.81 –
0◦ - 30◦N 24.58± 10.80 26.69± 11.38 25.86± 11.37 27.57± 11.68 –

30◦N - 60◦N 9.42± 5.40 10.68± 6.02 11.53± 6.07 11.1± 6.43 –
60◦N - 90◦N 5.42± 3.39 6.2± 3.97 7.33± 4.08 4.93± 4.27 –

Latitude
Water

TROPOMI ERA5 GOME-2 MODIS SSMIS
90◦S - 60◦S 4.61± 1.54 4.78± 1.46 6.44± 2.41 3.58± 1.61 7.76± 1.43
60◦S - 30◦S 13.08± 5.51 12.24± 5.01 14.54± 4.18 11.98± 5.10 16.02± 5.64
30◦S - 0◦ 33.41± 7.59 32.01± 7.99 31.68± 9.16 30.76± 6.95 37.30± 9.13
0◦ - 30◦N 37.78± 8.95 36.39± 9.22 38.76± 10.10 33.33± 7.37 41.71± 10.36

30◦N - 60◦N 15.85± 8.46 15.18± 7.83 18.17± 8.71 14.56± 6.53 19.25± 8.26
60◦N - 90◦N 7.35± 3.76 8.05± 4.01 9.87± 5.24 6.6± 3.95 10.18± 4.32

Figure 10: (a) Monthly averaged TCWV over northeast South America derived from TROPOMI observations in July 2019. (b)
TROPOMI monthly averaged GE LER and (c) OMI monthly minimum albedo climatology.
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5. Fine scale features of water vapour475

Fine scale features of water vapour can be observed from UVN space sensors with the significant enhancement476

of spatial resolution of TROPOMI. As the satellite ground pixels are not fully overlapped with each other for477

measurements within a certain period, i.e., the repeat cycle of the satellite orbit, this feature can be used to478

resample the data in a spatial resolution higher than the original satellite ground pixel when producing monthly479

average maps. This technique has been used to generate high resolution satellite maps for local and regional480

studies (Wenig et al., 2008; Chan et al., 2012, 2015). In order to exploit the full resolution of TROPOMI, we481

have gridded the TROPOMI TCWV data in a much finer resolution of 0.01◦ × 0.01◦. The data filtering and482

gridding follows the description in Section 3.4. Figure 10a shows the monthly averaged TROPOMI TCWV over483

the northeast part of South America in July 2019. Some dynamical features of water vapour can be observed484

from the monthly averaged map. Enhanced water vapour columns can be seen not only over the main stream485

of the Amazon river, but also over smaller branches, e.g., Xingu, Tapajós and Madeira Rivers. Lower water486

vapour columns are also observed over the mountain areas at the borders among Venezuela, Guyana and Brazil.487

To make sure the fine scale structures measured are not artifacts caused by the input surface albedo, we have488

plotted the surface albedo data used in the retrieval in Figure 10b. Surface albedo derived from OMI is shown489

in Figure 10c for reference. The TROPOMI albedo is in resolution of 0.1◦ × 0.1◦, while the OMI albedo is is in490

much coarser resolution of 0.5◦ × 0.5◦. Albedo from TROPOMI observations over the main stream of Amazon491

River is slightly higher than its surroundings. However, some of the smaller branches, i.e., Xingu River, does492

not show up in the albedo map. Satellite measurement sensitivity is higher over surface with higher albedo, and493

results in higher air mass factors. As the spectral retrieval of slant column is independent to surface albedo,494

increase of air mass factor would results lower vertical columns. However, TCWV observed by TROPOMI over495

rivers are still higher than its surroundings which implies that the enhancement of TCWV is actually related to496

the increase of water vapour. The example of fine scale structures of water vapour demonstrated here indicates497

that the enhanced spatial resolution of TROPOMI data is useful not only for studies on global scale, but also498

for climate studies in local and regional scales.499

6. Summary and conclusion500

We presented the total column water vapour (TCWV) retrieval algorithm developed for the TROPOspheric501

Monitoring Instrument (TROPOMI) observations in the visible blue spectral band being developed and validated502

in the framework of the Sentinel 5 Precursor Product Algorithm Laboratory (S5P-PAL) project from the503

European Space Agency (ESA). The TROPOMI TCWV algorithm was based on the GOME-2 TCWV retrieval504

with optimization on the spectral fit, air mass factor calculations, and a new approach to retrieve surface505

properties from TROPOMI observations. The TROPOMI TCWV retrieval features a dynamic a priori profile506

algorithm, making it independent from profile information from a chemistry transport model. This feature507

avoids the model errors propagating to the satellite retrieval, or bias due to updates of model version. This508

makes it a better option for the processing of an independent long-term climate record.509
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The developed TCWV retrieval is applied to TROPOMI obsevations from May 2018 to May 2021. The510

TCWV results are validated by comparing to ERA5 reanalysis data, GOME-2, MODIS, and SSMIS satellite511

observations. TCWV derived from TROPOMI observations show very good spatio-temporal consistency with512

the other data sets, with a Pearson correlation coefficient (R) ranging from 0.96 to 0.99. The mean bias between513

TROPOMI and ERA5 data is -1.24 kg m−2 for measurements over land and 0.73 kg m−2 for measurements over514

water. The comparison to MODIS observations show similar results with small dry bias of 1.51,kg m−2 for515

measurements over land and a small wet bias of 1.25 kg m−2 for measurements over water. Slightly larger516

dry bias of 1.98 kg m−2 for measurements over land and 1.74 kg m−2 for measurements over water are found517

when compared to GOME-2 obserations. Compared to SSMIS data over water, TROPOMI observations are518

bias low by 3.25 kg m−2. The agreements to other data sets are slightly better in summer of the Northern519

Hemisphere compared to that of winter. The small discrepancies found between TROPOMI and reference520

data sets are related to the differences in measurement technique, measurement time, surface albedo issues, as521

well as cloud and aerosol contamination. Validation of TROPOMI TCWV against ground based observations,522

i.e., Global Positioning System (GPS), sun-photometer, and radiosonde measurements, will be addressed in523

separate studies. In addition, we have demonstrated that fine scale water vapour structures can be observed524

by TROPOMI over the Amazon basin, indicating the data set will also be useful for local and regional climate525

studies. The algorithm presented in this paper could be used for generating the operational ESA/EU TCWV526

products from TROPOMI/Sentinel-5 Precursor and will be the baseline for the future AC-SAF TCWV products527

from the Copernicus missions Sentinel-4 and Sentinel-5.528
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