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Adaptive vector field guidance without a priori
knowledge of course dynamics and wind

Ximan Wang, Spandan Roy, Stefano Farì and Simone Baldi Senior member, IEEE

Abstract—The high maneuverability of fixed wing Unmanned
Aerial Vehicles (UAVs) exposes these systems to several dynamical
and parametric uncertainties, severely affecting the fidelity of
modelling and causing limited guidance autonomy. This work
shows enhanced autonomy via adaptation mechanisms embedded
in the guidance law: a vector field method is proposed not
requiring a priori knowledge of the UAV course time constant, of
coupling effects, and of wind amplitude/direction. Stability and
performance are assessed using Lyapunov theory. The method
is tested on software-in-the loop and hardware-in-the-loop UAV
platforms, showing that the proposed guidance law outperforms
state-of-the-art guidance controllers and standard vector-field
approaches in the presence of significant uncertainty.

Index Terms—Vector field, fixed-wing UAV, adaptive guidance,
unknown dynamics, adaptive sliding mode control.

I. INTRODUCTION

Fixed-wing Unmanned Aerial Vehicles (UAVs) are emerg-
ing in several fields, due to their aerodynamic efficiency as
compared to standard aircrafts built under the constraints
imposed by the presence of a human pilot [1]–[3]. To replace
the human pilot, autopilot software suites for fixed-wing UAVs
(ArduPilot, PX4, DJI, NAVIO2, AscTec Trinity, just to name
a few) use measured/reconstructed states [4]–[8] to control
aileron, rudder, elevator and thrust, so as to reach the set
points provided by the guidance law [9]. Proposed guidance
laws include geometric approaches [10], [11], acceleration-
based control [12], model predictive control [13], and many
more [14], [15]. This work focuses on vector field guidance, a
method originally proposed in [16] and further improved [17]–
[19], based on the generation of a field of desired courses as set
points to the autopilot. Accordingly, we follow the modelling
and control architecture from the book of the proposers of
vector field guidance [9], noting that a similar architecture
is adopted by most of the aforementioned autopilot software
suites. The vector field method has become standard even
beyond UAV applications: extensions of the method have
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appeared for n-dimensional navigation [20], localization [21],
obstacle avoidance and formation control [22].

Typical guidance laws are designed under the assumptions
that UAV parameters (e.g. roll/pitch/course time constants) are
known, course dynamics are linear, longitudinal and lateral
motions are not coupled [9]. However, high maneuverabil-
ity exposes fixed-wing UAVs to unmodelled dynamics and
parametric uncertainties, which affect the fidelity of the UAV
model and degrade the ideal performance [23], [24]. Studies
on wind compensation [25]–[27] and guidance [28], [29] have
shown that guidance performance is severely compromised by
uncertain dynamics. Adaptive guidance ideas have been shown
to compensate different levels of uncertainty: a not-exhaustive
list comprises estimation methods [30]–[32], model reference
adaptive control [33]–[35], switching control [36], L1 adaptive
control [37], deep learning [38], [39], among others. Despite
the progress in the field, no vector-field approach has been
proposed for the relevant problem of guidance with no a priori
knowledge of UAV course dynamics and wind environment.
Previous studies by the same authors [33], still required
knowledge of course time constant, nominal knowledge of
wind and a priori bounded unmodelled dynamics. The main
contributions of this work are:

• Achieving vector-field path following without structural
knowledge of the unmodelled coupling effects and with-
out a priori knowledge of the course time constant and
of wind amplitude/direction;

• Connect the adaptive vector field method to the uncer-
tainty framework of adaptive sliding mode cf. [40]–[43]
and references therein, while extending it to consider
unmodelled dynamics without a priori constant bound.

The first contribution is made possible by including estimation
in the guidance laws, to compensate the uncertain terms.
The second contribution is possible by considering a state-
dependent uncertainty bound. Stability and performance (in the
sense of uniformly ultimately boundedness, i.e. convergence
of the tracking error to a tunable bound) is proven using
Lyapunov theory, and effectiveness is tested on software-in-
the-loop and hardware-in-the-loop platforms comprising full
UAV dynamics, wind effects and Ardupilot/PX4 autopilots.
The proposed method outperforms the state-of-the-art vector
field approaches in dealing with significant uncertainty.

The rest of the paper is organized as follows: Sect. II
describes the uncertainty setting for UAV dynamics, Sect. III
recalls the standard vector field guidance, and Sect. IV presents
the proposed adaptive vector field guidance. Simulations are
in Sect. V, with concluding remarks in Sect. VI.
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Figure 1. Block diagram for simplified course dynamics (adapted from Figure
5.3 in [9])

II. UAV UNCERTAINTY SETTING

Fixed-wing UAVs can be modelled using 6-DOF Euler-
Lagrange equations of motion [9, Chap. 3]. However, to
the purpose of guidance, the overall dynamics are usually
simplified: after ignoring coupling effects, the dynamics of
the roll angle ϕ can be described by [9, Chap. 5]

ϕ̇ = p+ dϕ1
(1)

where p is the roll rate, and dϕ1
is an aggregate disturbance

dϕ1
= q sinϕ tan θ + r cosϕ tan θ (2)

where θ is the pitch angle and r the yaw rate.
After differentiating (1), the block diagram in Fig. 1 can be

obtained, showing how the aileron input δa and the disturbance
dϕ2

affect the dynamics of the course angle χ

dϕ2 ≜ḋϕ1 + Γ1pq − Γ2qr +
1

2
ρVa

2Sb×[
Cp0

+ Cpβ
β − CPp

b

2Va
(dϕ1

) + C
r

br

2Va
+ Cpδr

δr

]
(3)

where β is the side slip angle, q is the pitch rate, Va the
airspeed, ρ the air density, S and b are geometric parameters of
the aileron, Γ(·) are coefficients related to the inertia matrix of
the UAV, and C(·) are coefficients related to the aerodynamics
of the UAV. Fig. 1 and (3) clearly show that unmodelled
state-dependent terms are aggregated in dϕ2

, and similar holds
for the disturbance dχ shown in Fig. 1 (the interested reader
can refer to the details in [9, Chap. 6]). These disturbances
take a very complex form and depends on many parameters.
However, despite the presence of state-dependent terms, it is
common in the literature (refer to the same book [9, Chaps.
9 & 10] or to [16], [17], [21], [22], [44]) to assume the
disturbance to be bounded a priori and the course dynamics
to be the following ideal dynamics for guidance purposes

χ̇ = α(χc − χ). (4)

Here, χ is the course of the UAV, representing the angle
between the north and the ground velocity Vg; χc is the
command course from the controller, and α is a positive
constant that defines the response speed of the course-hold
loop (a cascaded PID not shown in Fig. 1 but present in most
autopilot software suites for fixed-wing UAVs). Two comments
with respect to (4) are in order:

Figure 2. The wind triangle for a fixed-wing UAV. Note that calculating the
groundspeed Vg or V ′

g requires a priori knowledge of the wind.

1) The dynamics (4) rely on the assumption that longitudinal
and lateral dynamics are decoupled: in this work, we
consider more realistic course dynamics

χ̇ = α(χc − χ) + ∆(χ) (5)

where ∆(χ) is an uncertainty term. The disturbances (2)-
(3) reveal that finding a closed-form structure for the
term ∆(χ) is difficult. We follow an approach motivated
by the control-theoretic framework of sliding mode [45,
Assumpt. A2, eq. (8)], showing that for a first order
system ẋ = f(x) + u + ∆(x), nonlinear unmodelled
dynamics ∆(x) can be represented as

||∆(x)|| ≤ c0 + c1||x||, (6)

where c0, c1 are some constants. We will consider un-
modelled course dynamics as in (13) in Sect. IV.

2) The steps in [9], [44] show how α in (4) is affected in
a complex way by aerodynamic coefficients which cannot
be perfectly known, and can even change depending on
the altitude and velocity. Therefore, the parameter α in
(5) should be considered as uncertain or even unknown.

Fig. 2 shows that the wind affecting the airspeed Va com-
prises a constant component (with magnitude W and angle
ψW , giving the nominal groundspeed Vg) and time-varying
perturbation (with amplitude A(t) and angle ψA(t), giving the
actual groundspeed V ′

g ). Time-varying wind perturbations are
typically neglected, resulting in the guidance dynamics

ẋ = Va cosψ +W cosψW = Vg cosχ

ẏ = Va sinψ +W sinψW = Vg sinχ
(7)

where ψ is the heading angle between the north and the
airspeed velocity Va, x and y are the coordinate of the earth
frame. A third comment follows:

3) The wind introduces another source of uncertainty. The
uncertainty in (7) is reflected in the fact that the ground
speed Vg is not known since a possibly unknown wind
component influences it, as shown in Fig. 2.

It is worth mentioning that aspects 2) and 3) are overlooked
both in the standard guidance literature, and also in the
aforementioned framework of sliding mode, thus requiring a
different design departing from existing frameworks.
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Figure 3. Vector fields for straight line and orbit paths.

III. STANDARD VECTOR-FIELD GUIDANCE

The vector field (VF) is based on specifying a desired course
at a certain coordinate, to guide the UAV towards some paths.
Two primitive paths are considered: the straight line and the
orbit path, with fields of desired courses shown in Fig. 3.

A. Straight-Line Guidance

As in [16], let us consider without loss of generality a
straight line parallel to the x-axis. The VF which describes
the reference course to drive the UAV on the line is

χd(ey) = −χ∞
2

π
tan−1(key) (8)

where ey is the tracking error (distance in y-direction), χ∞ ∈
(0, π2 ] is the course reference when the error is large, and k a
governs the VF smoothness. If the straight line is not parallel
to the x-axis as in Fig. 3, it suffices to use the rotation matrix
from inertial to path frame. In [16] it is shown that the control
law which is able to let χ→ χd and ey → 0 as t→ ∞ is

χc = χ− χ∞
2

π

βsVg
α

sin(χ)− κ

α
sat

(
χ̃

ε

)
(9)

where χ̃ = χ − χd, βs = k/(1 + (key)
2), κ and ε are

parameters governing control aggressiveness and counteracting
a possible chattering in the control action, and

sat(x) =

{
x if |x| < 1,

sgn(x) otherwise.
(10)

It is worth mentioning that the continuous sat function is used
in [16] to approximate the behavior of a sgn function and avoid
discontinuity in the closed-loop solutions.

B. Orbit Guidance

The strategy for orbit guidance builds course VF around the
desired orbit (cf. Fig. 3):

χd(d̃) = γ + λ
(π
2
+ tan−1(kd̃)

)
(11)

where is d̃ = d − R, d is the UAV distance from the orbit
center, R is the orbit radius and γ is the angle between the
north and the UAV position with respect to the orbit center. For
easiness of analysis, the UAV position is expressed in polar

coordinates: λ is 1 for clockwise path and −1 for counter-
clockwise path. In [16] it is shown that the control law which
is able to let χ→ χd and d̃→ 0 as t→ ∞ is

χc = χ+
Vg
αd

sin(χ− γ) + βo
λVg
α

cos(χ− γ)− κ

α
sat

(
χ̃

ε

)
(12)

where βo = k/(1 + (kd̃)2), and the parameters k, κ, ε are
similar to the straight-line case. The proof of the Lyapunov
stability for (9) and (12) is given in [16] and will not be further
discussed. One crucial observation on (9) and (12) follows.

Remark 1. The guidance laws (9) and (12) require knowledge
of the course time constant α, and of the groundspeed Vg . Fig.
2 and (7) show that the groundspeed requires knowledge of
the wind. No guidance law has been proposed in VF literature
[20], [21], [46] in the absence of such prior knowledge.

IV. ADAPTIVE VECTOR-FIELD GUIDANCE

To depart from the ideal assumptions in the literature, the
following state dependency of uncertainty ∆ is considered:

|∆(χ)| ≤ c0 + c1
∣∣χ̃+ χd

∣∣ ≤ κ0 + κ1 |χ̃| (13)

for some scalars κ0, κ1 ∈ R+. We have used (6) and the
fact that χd is bounded by definition. Under the assumption
that κ0, κ1 are known, the modelling approach (13) was
proposed in sliding mode literature (cf. [45, eq. (8)] and
related works) as a way to model complex (state-dependent)
disturbances. Notice that (13) includes the fact that ∆(χ) may
not be bounded a priori by a constant. However, we want to
deal with κ0, κ1 being unknown, which is not considered in
standard sliding mode literature. It is worth mentioning that
even adaptive sliding mode literature (cf. [40]–[43] and related
works) models uncertainty as |∆(χ)| ≤ κ0, with possibly
unknown κ0: state-dependencies entering through the course
cannot be fully captured by this approach.

For state-dependent uncertainties, the following is a stan-
dard notion of stability [47, Def. 4.6]:

Definition 1. The solutions of a nonlinear system ẋ = f(x)
are Uniformly Ultimately Bounded (UUB) with ultimate bound
b if there exist positive constants b and c and for every a ∈
(0, c), there is a time T (a, b) such that

∥x(0)∥ ≤ a⇒ ∥x(t)∥ ≤ b, ∀t ≥ T (a, b). (14)

We now propose an adaptive VF with the distinguishing
feature of compensating for lack of knowledge of α, of Vg and
of state-dependent ∆(χ). We introduce appropriate estimators
and refer to the approach as adaptive VF guidance. It will be
proven that the proposed approach achieves UUB solutions,
with the ultimate bound being a performance indicator.

A. Straight-Line Adaptive Guidance
Since α > 0, (5) can be written as

αχ̇ = −χ+ χc +∆, (15)

where α ≜ 1/α,∆ ≜ ∆/α. For control design purposes, the
derivative of (8) is calculated in [16] as

χ̇d = −χ∞
2

π
βsVg sin(χ), (16)
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Being Vg unknown, χ̇d is not available for control deign. Then
observing (13), (15) we have∣∣∆∣∣ ≤ κ∗0 + κ∗1 |χ̃| , (17)

where κ∗0 ≜ κ0/α, κ
∗
1 ≜ κ1/α are unknown positive constants.

For ease of controller design, let us also define κ∗2 ≜ αVg ,
which is also an unknown positive constant.

Based on the uncertainty structure (17), a guidance law is
proposed as

χc = −Λχ̃+ χ− κ̂2χ∞
2

π
βs sin(χ)− ρ sat

(
χ̃

ε

)
, (18a)

ρ = κ̂0 + κ̂1|χ̃|, (18b)

where Λ ∈ R+ is a user-defined scalar, and κ̂i are the estimates
of κ∗i i = 0, 1, 2, evaluated via the following adaptive laws:

˙̂κ0 = |χ̃| − ζ0κ̂0, (19a)
˙̂κ1 = |χ̃|2 − ζ1κ̂1, (19b)

˙̂κ2 = χ∞
2

π
βs sin(χ)χ̃− ζ2κ̂2, (19c)

with κ̂i(0) > 0, i = 0, 1, 2, (19d)

where ζi ∈ R+ are user-defined scalars.
The following result can be derived:

Theorem 1. By employing the guidance law (18), the resulting
trajectories of the UAV (15) and the parameters in the adaptive
law (19) are Uniformly Ultimately Bounded (UUB).

Proof. See the Appendix. Tunability of the ultimate bound is
elaborated at the end of the proof according to (39)-(40) and
standard Lyapunov arguments [47, Sect. 4.8].

B. Orbit Adaptive Guidance

For control design purposes, the derivative of (11) is calcu-
lated in [16] as

χ̇d = Vg

(
sin(χ− γ)

d
+ λβo cos(χ− γ)

)
. (20)

The corresponding guidance law is defined as

χc = −Λχ̃+ χ+ κ̂2

(
sin(χ− γ)

d
+ λβo cos(χ− γ)

)
− ρ sat

(
χ̃

ε

)
, (21a)

ρ = κ̂0 + κ̂1|χ̃|, (21b)

with the following adaptive laws:

˙̂κ0 = |χ̃| − ζ0κ̂0, (22a)
˙̂κ1 = |χ̃|2 − ζ1κ̂1, (22b)

˙̂κ2 = −
(
sin(χ− γ)

d
− λβo cos(χ− γ)

)
χ̃− ζ2κ̂2,

(22c)
with κ̂i(0) > 0, i = 0, 1, 2. (22d)

with similar design parameters as before.
The following result can be derived:

Theorem 2. By employing the guidance law (21), the resulting
trajectories of the UAV (15) and the parameters in the adaptive
law (22) are Uniformly Ultimately Bounded (UUB).

Proof. See the Appendix. Tunability of the ultimate bound
is elaborated at the end of the proof according to (47) and
standard Lyapunov arguments [47, Sect. 4.8].

Remark 2. Differently from (9) and (12), no a priori knowl-
edge of course time constant, wind and unmodelled dynamics
is required; the gains κ̂0 and κ̂1 compensate online the
uncertainty term (17), stemming from the unmodelled term
(13); the gain κ̂2 plays the role of an estimator for the ground
velocity. The course time constant α is estimated jointly via
κ̂0, κ̂1, κ̂2 (as κ∗0, κ∗1, κ∗2 all contain 1/α). These estimation
actions mark a difference with the standard adaptive-free VF
and with other adaptive-free robust methods.

Remark 3. The adaptive laws in (19) and (22) reveal that the
control gains adjust automatically according to the tracking
error, thanks to the effect of the stabilizing leakage terms
−ζiκ̂i, i = 0, 1, 2. In other words, the adaptive laws keep
a balance between increasing the estimates when the error is
large, and keep the estimates bounded. As ζ0, ζ1, ζ2 become
smaller, adaptation is faster. However, this might lead to larger
gains κ̂0, κ̂1κ̂2 (i.e. the uncertainty can be overestimated) and
high control input. This indicates a trade-off between small
control inputs and robustness to unmodeled dynamics.

Remark 4. The proposed guidance laws (18) and (21) share
a structure similar to (adaptive) sliding mode

χc = χ− Λχ̃+ χ̇d − ρ sat

(
χ̃

ε

)
. (23)

The main differences are that χ̇d is given a priori in adaptive
sliding mode control (whereas we include adaptation due to
the uncertainty in Vg), and that ρ estimates a constant bound
for the uncertainty (whereas we estimate a state-dependent
bound). First-order dynamics (5) usually assume the rudder
loop to be well tuned and damped. If this is not the case and
sideslip dynamics generate moderately damped second-order
Dutch roll dynamics (e.g. triggered by cross-wind) [48], one
can in principle consider such effects as additional unmodelled
dynamics. Accordingly, one could consider a more complex
description of the uncertainty by adding extra terms, e.g. a
quadratic term

|∆(χ)| ≤ κ0 + κ1 |χ̃|+ κq |χ̃|2 (24)

with unknown scalars κ0, κ1, κq . Besides the previously
introduced adaptive laws for κ̂0, κ̂1, this eventually leads to
an additional adaptation term

ρ = κ̂0 + κ̂1|χ̃|+ κ̂q|χ̃|2 (25a)
˙̂κq = |χ̃|3 − ζqκ̂q. (25b)

Structural knowledge can be embedded in the upper bound
(24), provided that the upper bound is linear in the uncertain
parameters. Alternatively, the structure (23) can be modified
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Figure 4. Straight line, Scenario 3: tracking error (the standard and ideal VF
have similar performance and their lines overlap)

in the sense of sliding mode for second-order dynamics:

χc = χ− Λξ̃ + χ̈d − ρ sat

(
ξ̃

ε

)
, (26)

with ξ̃ = ˙̃χ + Λ2χ̃, for Λ,Λ2 > 0. This road is not explored
here to avoid departing too much from the original vector field
idea, and it can be a relevant future work.

V. EXPERIMENTAL RESULTS

The performance of the proposed adaptive VF is assessed,
as compared to the standard VF and to an ideal VF method,
which differ for the following a priori knowledge (cf. Fig. 2):

• Standard VF: knowledge of the time constant α is needed,
and only the constant wind component is known, i.e.
Vg(t) = ||Va(t) +W (t)||;

• ‘Ideal’ VF: knowledge of the time constant α is needed,
and both constant and time-varying wind components are
known, i.e Vg(t) = ||Va(t) +W ′(t)|| (we put ‘ideal’ in
quotes because this approach still relies on simplified
course dynamics, leading to degraded performance);

• Adaptive VF: the time constant α and all wind compo-
nents are estimated.

The standard and ideal VF are inspired by the recent works
[19], [33], where it is further illustrated that the VF in general
does not give optimality guarantees in the sense of ‘optimal
control’. However, as the final goal of any guidance law is the
minimization of a tracking error, such a tracking error can be
considered a measure of optimality and evaluated experimen-
tally. Experiments are carried out on a software-in-the-loop
UAV platform where the functionalities of the ArduPilot au-
topilot are replicated in Matlab, and on a hardware-in-the-loop
UAV platform where a PX4 autopilot hardware is connected
to a Gazebo/ROS environment. Therefore, the experiments
include the autopilot inner-loop dynamics (cascaded loops)
embedded in ArduPilot/PX4, and allow to capture realistic
effects of the inner loop on the guidance layer. Note that
ArduPilot and PX4 are open-source suites constantly updated

Figure 5. Orbit, Scenario 1: tracking error (the standard and ideal VF have
the same performance and their lines overlap)

by a large UAV community, i.e. they represent the newest state
of the art in the field.

The experiments offer a way to compare different sliding
mode techniques in view of the following facts:

• The standard VF is essentially a sliding mode control
method which assumes parametric knowledge of the
course time constant and the nominal wind;

• The ‘ideal’ VF is also a sliding mode control method, but
with more knowledge of the wind disturbance;

• Our adaptive VF is an advanced adaptive sliding mode
control without parametric knowledge. Yet, it is different
from standard adaptive sliding mode control since the
latter still requires nominal parametric knowledge and
assumes the uncertainty to be bounded a priori.

A. Software-in-the-loop experiments

The 6 degrees-of-freedom fixed-wing UAV and wind dy-
namics have been implemented in a Matlab software-in-the-
loop UAV platform developed at TU Delft, which replicates
the open-source ArduPilot autopilot code (cf. [49] for im-
plementation details and for all the details about the UAV
model, which is a based on a Hobby-King Bixler UAV). We
take the following environmental conditions: constant wind
amplitude is W = 4 m/s with wind angle ψW = 230◦;
and a Dryden turbulence [9, Sect. 4.4]. To draw conclusions
on the effectiveness of adaptation in different conditions, all
environmental conditions have been combined to obtain three
wind scenarios, summarized in Table I.

The reader is referred to previous work by the same authors
[33] to see how high-order state-dependent unmodelled dy-

Table I
FLIGHT ENVIRONMENTAL CONDITIONS

Scenario Constant wind Turbulence
#1 No No
#2 Yes No
#3 Yes Yes
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Figure 6. Orbit, Scenario 2: path in x-y plane (the small box is a zoom to
highlight the improved tracking of the adaptive VF)
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Figure 7. Orbit, Scenario 3: path in x-y plane (the small box is a zoom to
highlight the improved tracking of the adaptive VF)

namics arise from approximating the Bixler course dynamics
as first-order dynamics (5). The first-order time constant of
the course dynamics can be estimated as α = 0.4578. Both
the standard and the ideal VF use this time constant.

Table II
PARAMETERS OF THE GUIDANCE LAWS

χ∞ k ε κ ζ0, ζ1 ζ2
π/2 0.1 m−1 1 rad π/2 rad2/s 0.01 0.001

The performance of the standard, adaptive and ideal VF
are first evaluated on primitive paths (straight line and orbit),
using the root mean square (RMS) steady-state tracking error
calculated in the last portion of the path when epy or d̃ have
converged. The parameters χ∞, k, ε, κ, ζ0, ζ1 and ζ2 in Table
II have been tuned so as to find a good compromise between
convergence speed and smooth response.

Tables III and IV (straight line and orbit, respectively)
highlight how the proposed adaptive VF outperforms, in all
scenarios, the standard and the ideal VF. Note that in Scenarios

Figure 8. Orbit, Scenario 2: tracking error (the standard and ideal VF have
the same performance and their lines overlap)

Figure 9. Orbit, Scenario 3: tracking error (the standard and ideal VF have
similar performance and their lines almost overlap)

1 and 2 the standard and the ideal VF have exactly the
same performance since there is no wind perturbation. For
the straight line case, Fig. 4 clearly shows that the adaptive
VF better counteracts with time the effect of the wind in
Scenario 3 (38% improvement). Even with exact knowledge
of the wind, the ideal VF performs quite poorly, due to the
inaccurate knowledge of α (the adaptive VF again gives 38%
improvement). Something similar also occurs in Scenario 2
(constant wind) and will not be shown due to space limitations.

For the orbit case, Fig. 5 clearly shows that the standard

Table III
STRAIGHT-LINE RMS TRACKING ERRORS (IN PARENTHESES IS THE LOSS

OF PERFORMANCE AGAINST THE ADAPTIVE VF)

Standard VF ‘Ideal’ VF Adaptive VF
Scenario RMS error RMS error RMS error

#1 0 (+0%) 0 (+0%) 0
#2 0.654 (+38%) 0.653 (+38%) 0.472
#3 0.673 (+38%) 0.673 (+38%) 0.488
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Figure 10. Setup for hardware-in-the-loop experiments: a PX4/Raspberry Pi 3B+ controller uses MAVROS node to share data with a Gazebo 3D simulator

and the ideal VF have a steady-state tracking error: such
error is completely removed by the adaptive VF. A significant
reduction of the tracking error (76-89%) by the adaptive VF
also occurs in Scenarios 2 and 3, which are depicted in Figs.
6-9 in terms of tracking error and path in the x-y plane. In all
cases it can be seen that the adaptation mechanism reduces the
oscillations of the error: oscillations are present due to the fact
that the wind effect changes when the UAV is travelling along
the orbit. Due space limitations, the adaptive gains κ0, κ1κ2
are not shown, but one can verify the boundedness of the gains
directly from the adaptive laws (19) and (22): if the tracking
error χ̃ is bounded, then κ̂is are bounded using bounded-input-
bounded-output notions, as ζis are positive constants.

Table IV
ORBIT RMS TRACKING ERRORS (IN PARENTHESES IS THE LOSS OF

PERFORMANCE AGAINST THE ADAPTIVE VF)

Standard VF ‘Ideal’ VF Adaptive VF
Scenario RMS error RMS error RMS error

#1 0.146 (+∞) 0.146 (+∞) 0
#2 0.776 (+76%) 0.776 (+76%) 0.441
#3 0.821 (+89%) 0.798 (+84%) 0.434

B. Hardware-in-the-loop experiments

A hardware-in-the-loop UAV platform is set up using the
PX4 open-source flight controller with Raspberry Pi 3B+,
ROS with MAVROS communication node (to communicate
with PX4), and Gazebo as a 3D UAV simulator (cf. Fig.
10, left). PX4 is another popular autopilot suite: its inner-
loop dynamics implement an TECS-L1 guidance law1: also,
it allows to program in C++ other control laws: in this study
we programmed both the standard VF and the adaptive VF in
the PX4/Raspberry Pi 3B+ hardware (the ideal VF could not
be programmed because the Gazebo wind environment can
provide the wind time-varying component as a measurement).

Gazebo is used not only as a 3D simulator for rendering
of environments, but also as a physical simulator of the
UAV dynamics in 6 degrees of freedom. The UAV model

1Total energy control system with position control based on L1 norm https:
//docs.px4.io/master/en/config_fw/advanced_tuning_guide_fixedwing.html

is generated in Gazebo following the tutorial2: it is a 1.5kg
standard structure fixed-wing UAV including aileron, rudder
and elevator. The rotor is one puller at the head of the UAV
and the airspeed is in the range [10 - 25]m/s (refer to the
template3). The subsystems are connected as follows: Gazebo
simulates and visualizes the world environment and the UAV,
and it provides the sensor data to PX4; PX4 calculates the
guidance commands depending on the embedded algorithm
and send them back to Gazebo; finally, Gazebo delivers the
commands to the UAV after simulating the actuator dynamics.
As compared to the software-in-the-loop experiments, the
hardware-in-the-loop UAV platform is also able to simulate
state estimation errors (GPS and IMU measurement errors and
the sensor fusion layer) which therefore add more realism to
the experiments4.

Similarly to the software-in-the-loop experiments, we define
several wind scenarios and paths to test the performance in
different environments. We have a scenario with average wind
2 m/s with variance of 0.5 m/s and direction ψW = 45◦

(Scenario #4), and a scenario with average wind of 5 m/s,
direction ψW = 45◦, variance of 0.5 m/s and gusts up to 7
m/s (Scenario #5). We define three paths: a straight line path,
an orbit path, and a combined path with lines and orbits (cf.
Fig. 10, right). The results of the guidance laws are shown
in Table V in terms of RMS error. Notice that the standard
VF is implemented in two conditions: one with α = 0.4578,
and one where α has been carefully tuned so as to improve
performance. Because the adaptive VF is able to improve
even over the optimized standard VF, this further validates the
effectiveness of the proposed strategy: even if the optimized α
makes the standard VF at least four times better, still 3-19%
improvements are observed thanks to adaptation. As compared
to the previous tables, it can be seen that Scenario #5 is
quite extreme for the UAV, but still the proposed adaptive
VF outperforms all strategies. The TECS-L1 guidance works
good for orbit following under low wind (Scenario #4, only
1% degradation) but is less effective for straight line and high
wind, 102-462% degradation).

2http://gazebosim.org/tutorials
3https://github.com/PX4/PX4-SITL_gazebo/blob/

e580bbcd1eb6902c658ed3ece3b3b28dfd57eb17/models/plane/plane.sdf.jinja
4https://docs.px4.io/master/en/simulation/gazebo.html
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Table V
3D SIMULATION RMS TRACKING ERRORS (IN PARENTHESES IS THE LOSS

OF PERFORMANCE AGAINST THE ADAPTIVE VF)

TECS-L1 Standard VF Standard VF Adaptive
RMS error RMS error RMS error VF

(α = 0.4578) (optimized α) RMS error
Line
#4 5.161 (+462%) 1.419 (+54%) 1.036 (+13%) 0.919
#5 11.62 (+102%) 12.20 (+112%) 5.932 (+3%) 5.762

Orbit
#4 2.319 (+1%) 2.613 (+14%) 2.370 (+3%) 2.300
#5 5.810 (+102%) 6.105 (+112%) 2.966 (+3%) 2.881

Combi.
#4 6.705 (+333%) 4.416 (+185%) 1.839 (+19%) 1.548
#5 18.95 (+233%) 16.68 (+194%) 5.804 (+2%) 5.683

Overall the simulations show that the proposed adaptive VF,
by compensating for the lack of knowledge in course dynam-
ics and wind environment, can bring to improved guidance
performance in several wind and path scenarios.

VI. CONCLUSIONS

As compared to state-of-the-art guidance for fixed-wing
UAVs, this work has proposed a novel guidance law that does
not require precise knowledge of the course time constant,
while the course dynamics can be affected by state-dependent
uncertainty representing couplings. A dedicated control design
and stability analysis was given to address these challenges.
The effectiveness of the proposed method in handling such
uncertainty was tested on software-in-the-loop and hardware-
in-the-loop UAV platforms, showing that the proposed method
outperforms several guidance approaches relying on precise
UAV dynamics. An interesting question is the level of uncer-
tainty that makes the system fail: to the best of our experience,
failure will be largely dependent on how the underlying
autopilot layer (low-level control) is tuned. For our autopilot
(tuned via the AutoTune procedure5 of Ardupilot), we never
experienced system failure. It is intuitive to expect that when
the autopilot layer is poorly tuned, any guidance algorithm can
do little to cope with this situation: investigating this point in
an analytic or numerical way could be an interesting future
work. Further connecting the vector field idea to higher order
(adaptive) sliding mode [42], [50] is another interesting topic
for further study.

APPENDIX

Before starting the analysis, let us notice that the combi-
nation of the adaptive laws (19a)-(19b), (22a)-(22b) and the
initial conditions (19d),(22d) imply that

κ̂0(t), κ̂1(t) ≥ 0,∀t ≥ 0. (27)

for both straight line and orbit path.

5https://ardupilot.org/plane/docs/automatic-tuning-with-autotune.html

PROOF OF THEOREM 1 (STRAIGHT-LINE CASE)
The closed-loop stability in the straight-line case is analysed

using the following Lyapunov function

W =
1

2
αχ̃2 +

1

2

2∑
i=0

(κ̂i − κ∗)2. (28)

Define an overall uncertainty term

∆c ≜ ∆+ κ∗2χ∞
2

π

k

1 + (key)2
sin(χ) (29)

Observing the structure of sat(·) as in (18a), the overall
stability analysis is carried out for the following two cases,
using the common Lyapunov function (28).

Case (i): |χ̃| ≥ ϵ
Using (15) and (18), the time-derivative of (28) yields

Ẇ = χ̃(−χ+ χc +∆c) +

2∑
i=0

(κ̂i − κ∗i )
˙̂κi

≤ −Λχ̃2 − (κ̂0 − κ∗0)|χ̃| − (κ̂1 − κ∗1)|χ̃|2

− (κ̂2 − κ∗2)χ∞
2

π
βsχ̃ sin(χ) +

2∑
i=0

(κ̂i − κ∗i )
˙̂κi. (30)

From (19a)-(19c) we have
1∑

j=0

(κ̂j − κ∗j )
˙̂κj = (κ̂j − κ∗j )|χ̃|j+1 − ζj κ̂

2
j + ζj κ̂jκ

∗
j , (31)

(κ̂2 − κ∗2)
˙̂κ2 = (κ̂2 − κ∗2)χ∞

2

π
βsχ̃ sin(χ)− ζ2κ̂

2
2 + ζ2κ̂2κ

∗
2.

(32)

The following simplifications can be made for i = 0, 1, 2

κ̂iκ
∗
i − κ̂2i =−

(
κ̂i√
2
− κ∗i√

2

)2

− κ̂2i
2

+
κ∗i

2

2

≤−
(
κ̂i√
2
− κ∗i√

2

)2

+
κ∗i

2

2
. (33)

Substituting (31)-(33) into (30) yields

Ẇ ≤ −Λχ̃2 −
2∑

i=0

(
ζi(κ̂i − κ∗i )

2

2
− ζiκ

∗
i
2

2

)
. (34)

Using the definition of W in (28) yields

Ẇ ≤ −ϱW +
1

2

2∑
i=0

ζiκ
∗
i
2, (35)

where ϱ ≜ mini{Λ, ζi/2}
max{α/2, 1/2} > 0 by design.

Define a scalar 0 < δ < ϱ. Then, Ẇ in (35) simplifies to

Ẇ ≤− δW − (ϱ− δ)W +
1

2

2∑
i=0

ζiκ
∗
i
2. (36)

Defining a scalar B1 ≜
∑2

i=0 ζiκ
∗
i
2

2(ϱ−δ) , it can be noticed that
Ẇ ≤ −δW when W ≥ B1.

Case (ii): |χ̃| < ϵ.
Using (15) and (18), for this case we have

Ẇ ≤ −Λχ̃2 − ρ
|χ̃|2

ϵ
+ |∆̄||χ̃|+ (κ̂2 − κ∗2)βsχ̃+

2∑
i=0

(κ̂i − κ∗i )
˙̂κi
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≤ −Λχ̃2 + κ∗0|χ̃|+ κ∗1|χ̃|2 + (κ̂2 − κ∗2)χ∞
2

π
βs sin(χ)χ̃

+

2∑
i=0

(κ̂i − κ∗i )
˙̂κi (37)

Then, following the same lines of proof as in Case (i) we have

Ẇ ≤− δW − (ϱ− δ)W +
1

2

2∑
i=0

ζiκ
∗
i
2 + κ̂0|χ̃|+ κ̂1|χ̃|2.

(38)

In Case (ii) we have |χ̃| < ϵ. From (19a)-(19b) it can be noted
that |χ̃| ∈ L∞ ⇒ κ̂0, κ̂1 ∈ L∞. Therefore, ∃ς ∈ R+ such that
(κ̂0|χ̃|+ κ̂1|χ̃|2) ≤ ς , yielding

Ẇ ≤− δW − (ϱ− δ)W +
1

2

2∑
i=0

ζiκ
∗
i
2 + ς (39)

and Ẇ ≤ −δW holds when W ≥ B2 ≜
1
2

∑2
i=0 ζiκ

∗
i
2+ς

ϱ−δ .
Observing the results of Cases (i) and (ii) ( (36) and (39)),

we get Ẇ ≤ −δW when W ≥ max{B1, B2} and the closed-
loop system is UUB, implying χ̃, κ̂i ∈ L∞ for i = 0, 1, 2. Fur-
ther, the Lyapunov function as in (28) yields W ≥ (1/2)αχ̃2.
Therefore, following the definition of ultimate bound as in [47,
Sect. 4.8], the ultimate bound Bs on straight line path tracking
error χ̃ is found to be

Bs =

√
2max{B1, B2}

α
. (40)

Tunability: the ultimate bound on the path tracking error can
be considered as a performance indicator. From the structures
of the error bounds B1 and B2 (as below (36) and (39)),
one can derive that a high value of Λ and low values of
ζi improve tracking accuracy. However, it should be noticed
that increasing Λ or decreasing ζi result in higher control
input (due to the larger values of ρ): the trade-off between
tracking error and control effort is standard in control, and
requires to tune these parameters according to the application
requirements.

PROOF OF THEOREM 2 (ORBIT CASE)

The stability analysis for the orbit path follows similar steps
of straight path case, with Lyapunov function (28) and overall
uncertainty term for the orbital path as

∆c ≜ ∆+ κ∗2

(
sin(χ− γ)

d
+ λβo cos(χ− γ)

)
(41)

Observing the structure of sat(·) as in (21a), the overall
stability analysis is carried out for the following two cases,
using the common Lyapunov function (28).

Case (i): |χ̃| ≥ ϵ. Using (15) and (20), we get

Ẇ = χ̃(−χ+ χc +∆c) +

2∑
i=0

(κ̂i − κ∗i )
˙̂κi

≤ −Λχ̃2 − (κ̂0 − κ∗0)|χ̃| − (κ̂1 − κ∗1)|χ̃|2 +
2∑

i=0

(κ̂i − κ∗i )
˙̂κi

+ (κ̂2 − κ∗2)

(
sin(χ− γ)

d
+ λβo cos(χ− γ)

)
χ̃. (42)

From (22a)-(22c) we have
1∑

j=0

(κ̂j − κ∗j )
˙̂κj = (κ̂j − κ∗j )|χ̃|j+1 − ζj κ̂

2
j + ζj κ̂jκ

∗
j , (43)

(κ̂2 − κ∗2)
˙̂κ2 = (κ̂2 − κ∗2)χ̃

(
sin(χ− γ)

d
+ λβo cos(χ− γ)

)
− ζ2κ̂

2
2 + ζ2κ̂2κ

∗
2. (44)

The same simplifications (33) apply to the orbit case, leading
along similar steps to

Ẇ ≤− δW − (ϱ− δ)W +
1

2

2∑
i=0

ζiκ
∗
i
2. (45)

Defining the scalar B1 as before, we have Ẇ ≤ −δW when
W ≥ B1.

Case (ii): |χ̃| < ϵ. Using (15) and (20), for this case we get

Ẇ ≤ −Λχ̃2 − ρ(|χ̃|2/ϵ) + |∆̄||χ̃|+
2∑

i=0

(κ̂i − κ∗i )
˙̂κi

+ (κ̂2 − κ∗2)

(
sin(χ− γ)

d
+ λβo cos(χ− γ)

)
χ̃

≤ −Λχ̃2 + κ∗0|χ̃|+ κ∗1|χ̃|2 +
2∑

i=0

(κ̂i − κ∗i )
˙̂κi

+ (κ̂2 − κ∗2)

(
sin(χ− γ)

d
+ λβo cos(χ− γ)

)
χ̃. (46)

We obtain that ∃ς ∈ R+ such that (κ̂0|χ̃|+κ̂1|χ̃|2) ≤ ς , giving

Ẇ ≤− δW − (ϱ− δ)W +
1

2

2∑
i=0

ζiκ
∗
i
2 + ς (47)

and Ẇ ≤ −δW when W ≥ B2. The results (45) and (47)
reveal that Ẇ ≤ −δW when W ≥ max{B1, B2} and the
closed loop is UUB, implying χ̃, κ̂i ∈ L∞ for i = 0, 1, 2.
Tunability: following similar lines of Theorem 1, the ultimate
bound Bo on path tracking error is analogous to (40), i.e.

Bo =

√
2max{B1, B2}

α
. (48)

Therefore, similar trade-offs arise: increasing Λ or decreasing
ζi result in smaller ultimate bound but may result in higher
control.
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