CONSTRUCTING A VOLUME GEOMETRY MAP FOR
HEXAHEDRA WITH CURVED BOUNDARY GEOMETRIES

Sandro Elsweijer*"

Johannes Holke®

Jan Kleinert" Dirk Reith*

January 14, 2022

ABSTRACT

In (dynamic) adaptive mesh refinement (AMR), a given input mesh is refined and coarsened during the computation to optimally
adapt the resolution of the computational mesh to specific requirements. The input mesh is often the output of a mesh generator
and provides information on the geometry of the domain. It is desired to keep its resolution as coarse as possible in order to benefit
from the AMR mesh hierarchy and efficient mesh indexing algorithms. We present a novel approach to equip the coarse mesh with
high-order geometry data and evaluate this geometry on the fine mesh elements in order to ensure geometric accuracy of the refined
mesh elements, even for coarse input meshes. To this end, we construct a volume geometry map for hexahedral cells from given
curved boundary geometry data and discuss our implementation in a state-of-the-art AMR library.

Keywords: adaptive mesh refinement, computational geometry, hexahedron, high-order meshes, mesh generation

1. INTRODUCTION

Tree-based adaptive mesh refinement (AMR) [1,2] starts with
an initial unstructured coarse mesh C as input. The purpose
of this mesh is to model the topology and geometry of the
computational domain Q. Each cell of the coarse mesh is then
refined further into subelements up to a desired resolution
according to given refinement rules. The resulting fine mesh
is then used to numerically solve the problem at hand (e.g., a
time-dependent partial differential equation (PDE)). During
the computation, the fine mesh resolution may change dynam-
ically in order to optimally adapt to the specific problem.

Structured, recursive refinement methods lead to a refinement
tree in each coarse cell. Utilizing the tree structure drastically
increases the performance of the mesh handling in terms of
runtime, memory and parallel scalability compared to using
fully unstructured meshes [1, 3].

In general, the coarser the input mesh, the larger the benefit
from the structured refinement. But the coarse mesh carries

“Bonn-Rhein-Sieg University of Applied Sciences, Institute of
Technology, Resource and Energy-Efficient Engineering, Sankt Au-
gustin, Germany

TGerman Aerospace Center (DLR), Institute for Software Tech-
nology, Cologne, Germany, johannes.holke @dlr.de, corresponding
author

all information on the geometry of the domain and fewer
coarse cells may result in a loss of information and hence
accuracy of the geometry.

When the geometrical position of a fine mesh element or a
point inside such an element is required for the computation,
we compute it using the available geometry information of
the coarse mesh. Since the fine mesh is constructed during
the computation and can change arbitrarily, we do not know
the position of the elements and possible points beforehand.
Therefore, we require a general rule to evaluate the geometry
at any point inside the coarse mesh reference element.

We present an approach to increase the geometric accuracy
of the fine mesh. We do this by storing information from the
original geometry at the coarse mesh level and developing an
evaluation scheme to calculate correct geometric coordinates
for any arbitrary point in the mesh; see Figure 1 for a visual-
ization.
Thus, for each hexahedron coarse mesh cell C, we construct
a function

Ge: 0,1 = R? 1)

mapping any point inside a unit cube reference element to
its geometric position in the computational domain. This
function should take all available information on the geometry
of the coarse cell into account. Commonly used geometry

Figure 1: A coarse mesh (left, green) is used as input for
adaptive mesh refinement (right, uniformly refined twice).
‘We enhance the coarse mesh with the original geometry in-
formation (left, blue) to be able to arbitrarily adapt the fine
mesh while maintaining geometrical accuracy.

models that serve as input for mesh generators use boundary
representations of surfaces and curves of the geometry.

‘We describe the volume map with given arbitrary parameter-
ized curve and/or surface data and present an implementation
in the t8code AMR library [4] using the Open CASCADE
Technology (OCCT) library for geometry evaluation [5]. In a
first step, we concentrate on hexahedral mesh elements. How-
ever, we believe a generalization to tetrahedra, prisms and
pyramids is possible, which will be part of future research.

Our approach differs from common approaches on high-order
mesh generation such as [6, 7] and the references therein,
where during pre-processing new points are introduced into
existing meshes and projected onto curved boundaries to pro-
duce finer resolved input meshes. In contrast, our geometry
evaluation happens during the simulation on any arbitrary po-
sition inside the coarse cells and does not require the solution
of PDEs or the minimization of energy functionals. Its appli-
cation is not restricted to tree-based AMR and could be used
in all adaptive mesh settings where coarse cells are refined. A
similar approach to ours uses radial basis functions [8].

2. FROM BOUNDARY GEOMETRY TO
VOLUME GEOMETRY EVALUATION

In general, a parameterized curve 7y is a map

Y- Q}’:: [Umins Umax) — R37 ()
()

and a parameterized surface ¢, a map

0: Qo = [Umin, Umax) X [VminsVmax] — R37 3)

(w,v) +— o(u,v).

In our setting, a geometry is composed of vertices, (parame-
terized) curves and (parameterized) surfaces. In a first step,
this geometry is meshed with an initial coarse mesh using a
mesh generator. For each edge and face of a coarse mesh cell,
we assume that the mesh generator can provide us with the

Figure 2: Mapping of the unit square to the actual, geometry-
deformed cell volume. The map is based on linear interpo-
lations and the displacements of linked surfaces and linked
edges; see (5). The 3D case is analogous.

information of a parameterized curve or surface that they lie
on'. We denote these as linked edges and linked faces of the
coarse mesh cell. The edges of a linked face automatically
carry the face’s geometry (restricted to that edge). Hence, if a
face is linked, we do not require its corresponding edges to
be linked, too. Note that multiple coarse mesh cells may link
to the same parametrized curve or surface.

For each linked face F' (and linked edge E) of a coarse mesh
cell C — interpreted as the unit cube — we obtain an associated
parameterized surface o (parameterized curve Yg) and a
geometry map

Gr:[0,1? — Qs — R3,
(x,y) = (M,V) = GF(M7V)7

@

(or Gg in 1D). The first inclusion map is a linear embedding
of the unit square (interval) into the parameter space Qg
(Q¢,). Itis, hence, completely determined by the values of
the corners of the unit square (interval). We call these values
the u, v parameters of the nodes on the geometric entity and
can obtain their values from the input mesh; see Section 2.

The task at hand is to construct the volume map G¢ (1) of
a coarse mesh cell. Provided the vertex coordinates and the
maps G, Gg for each linked face and edge are known.

Our solution (as depicted in Figure 2 for the 2D case) is the
following: For a point P = (P;,P,,P;) € [0,1]? in the refer-
ence coarse mesh cell, we split G¢(P) into the sum of the
(tri-)linear interpolation Lc (P) from the vertex coordinates
(as if no geometry information was present) and the remain-
der, which are the displacements Dg(P) and D (P) of the
edge/face geometry interpolation from the linear interpolation

Ge(P) =Lc(P)+). De(P)+ Y. Dr(P). (5
linked linked
edges E faces F

I'This assumption is reasonable for most common mesh generators
and holds in particular for Gmsh [9] which we use in our implemen-
tation.

‘We can now compute the terms on the right-hand side of (5)
to get G¢(P). Here, L¢(P) can be calculated from the vertex
coordinates of the cell.

To compute the displacement of P for a face F' (of the unit
cube reference cell), we first determine the orthogonal pro-
jection mg(P) of P onto F. We then evaluate the surface
geometry map G (4) at the projected point, and subtract the
linear interpolation Lg (7g (P)).

Since the influence of the geometry of the face should de-
crease with the distance of P from it, and should be zero on
the opposite face, we scale the result with 1 minus the dis-
tance of P from the surface. This equals P; resp. 1 — P;, where
i is the orthogonal coordinate to the face F. For example for
the face .7 determined by x = 0 we scale with 1 — P, and the
total displacement calculates to

Dﬂ(P):(Gf(PyaPz)_Lﬂ(Pyvpz))(I_Px)~ (6)
For the face determined by x = 1 we scale with P,.

The computation of the displacement of a linked edge follows
the same scheme. For the final scaling we need to take the
two orthogonal directions of the edge into account, and scale
with the product of P; or 1 — P; and P; or 1 — P;. With this
scaling we ensure that the influence decreases the further P
is away from the edge and that it is zero on any face that is
not adjacent to the edge. For example the edge & determined
by x =0 and z = 1 is scaled with (1 — P;)P; and the total
displacement is

Dg(P) = (Gg(P) —Le(R)) (1—P)P..)

Summarizing, we compute the volume geometry evaluation
of a coarse cell by adding up the linear interpolation and the
displacements for each of the cell’s linked edges and faces.

Coupling with mesh generators

We use the open source mesh generator Gmsh [9] for gen-
erating input meshes. In its parametric mesh format, each
geometric entity (vertex, curve, surface or volume of the
meshed geometry) gets its own label and each coarse mesh
node is labeled according to the geometric entity on which it
is located. Moreover, the u,v parameters of each node that
lies on a geometric entity are stored. Thus, there is no need
to manually recombine the nodes with their geometries and
re-calculate the parameters, as it would be mandatory for
non-parametric meshes.

However, this information is not sufficient to enable the
geometry-based AMR. A node can only be stored with one
geometric entity at once (the entity it was generated on by
Gmsh). This means some nodes get stored with the geometric
entity of a vertex, some with that of a curve or surface, and
the rest is not parametric.

Moreover, a node on a geometric vertex lies on all curves
and surfaces connected to this vertex as well. This can cause
that a quadrilateral face can have nodes on geometries with

different dimensions (e.g. on a vertex, two different curves
and a surface). This is a challenge, because our geometrical
description from section 2 interpolates between the param-
eters of each node of the face. But in this case the nodes
on a vertex have no parameters, the nodes on curves have
an u-parameter and only the nodes on a surface have an u-
and v-parameter. We obtain the missing parameters using the
OCCT library.

3. EXPERIMENTS

Our first experiment is the meshing and refining of the NACA
6412 profile. We use Gmsh to generate the initial geometry in
the OCCT brep format and then mesh it. After reading the
mesh and the brep file in t8code, we use t8code’s Adapt
algorithm [3] to refine the mesh along the wing boundary.
The coordinates of the new elements are computed using (5)
and map exactly to the initial NACA geometry; see Figure 3.

Figure 3: Top: Coarse input mesh of a NACA 6412 profile.
Bottom: Adaptive mesh refined at the boundary with its coor-
dinates evaluated according to the curved geometry using (5).

In the second experiment, we compare our curved geometry
evaluation of a coarse input mesh with a linear geometry
evaluation of the same input mesh. Our test geometry is
a hollow cylinder that we mesh with different coarse mesh
resolutions. The initial coarse mesh c(consists of four cells,
which we divide into eight subcells recursively to obtain the
coarse meshes ¢, with 4 x 8™ cells.

‘We now compare the geometry linked versions of these coarse
meshes with their non-linked (pure linear) versions. As a
test scenario, we advance a plane through the cylinders and
refine all elements in a certain proximity to the plane by
three adaptive refinement levels. This resembles real world
simulations, where we would use the adaptive refinement to
track important features in the mesh, such as an interface
between two fluids or a shock wave. To get a consistent
amount of elements, we will also refine the coarse mesh by
£ levels so that m 4 ¢ = 6. The plane advances in five time
steps. An example of this is shown in Fig. 4

SV

(a) Linear cell volume description

T

(b) Geometry-based cell volume description

Figure 4: A plane of refined elements (in beige) is moved
through the cylinder meshes c;. One mesh (top) uses the
linear cell volume description, while the other (bottom) uses
the new geometry-based cell volume description.

We measure the time spent on the algorithms for load-
balancing, mesh adaptation, 2:1 balance and ghost layer cre-
ation [3] and the runtimes of the geometry evaluations using
14 MPI ranks in parallel. The results and more details on the
measurements can be found in [10].

As can be expected, the runtime of the curved geometry eval-
uation using (5) is more expensive than the evaluation of the
linear geometry, but remains reasonably bounded — at most
6.6 times for ¢g. This factor decreases to 2.9 for ¢3 and 2.4
for cg, because there are proportionally more coarse mesh
cells with no geometry linked to them.

The adapt algorithm is the only one of the tested AMR algo-
rithms which uses the cell volume description. It does so to
decide whether an element is close to the refinement plane or
not. We chose this criterion deliberately to get and observe
the influence of the geometry evaluation. As expected, only
the adapt algorithm’s runtime is affected by the new coarse
mesh cell volume description and increased by a factor of 2.8
for ¢g, 1.9 for ¢3 and 1.6 for c¢g. This is significantly less than
the increase of the geometry evaluation runtime alone.

4. CONCLUSION

We have successfully constructed a volume geometry map
for hexahedral cells given curved boundary information and
demonstrated its usability in adaptive mesh refinement with
the library t8code. With this technique, information such as
element volumes, face areas, or positions of quadrature points
in high order meshes can be calculated correctly with respect
to the actual geometry.

Further research will include an integration of the techniques
into simulation use cases with in-depth performance and ac-
curacy evaluations. Additionally, we strive to extend the
method to the remaining standard 3D element shapes tetrahe-
dra, prisms and pyramids.

Our results are promising that a significant reduction in the
coarse mesh size for tree-based AMR is possible even for
complex geometries. Existing AMR simulation codes can

benefit from an increased geometrical resolution and a de-
creased coarse mesh overhead. Additionally, our technique
opens up memory efficient and scalable tree-based AMR for
use cases with complex geometries that are traditionally dom-
inated by classical pure unstructured meshes.

References

—
—
—

Burstedde C., Wilcox L.C., Ghattas O. “p4est: Scalable
Algorithms for Parallel Adaptive Mesh Refinement on
Forests of Octrees.” SIAM Journal on Scientific Com-
puting, vol. 33, no. 3, 1103-1133, 2011

[2

—

Burstedde C., Holke J. “A tetrahedral space-filling curve
for nonconforming adaptive meshes.” SIAM Journal on
Scientific Computing, vol. 38, C471-C503, 2016

3

—

Holke J. Scalable algorithms for parallel tree-based
adaptive mesh refinement with general element types.
PhD thesis, Rheinische Friedrich-Wilhelms-Universitat
Bonn, 2018

[4

—

Holke J., Burstedde C., Elsweijer S., et al. “t8code:
Parallel AMR on hybrid non-conforming meshes.”,
2022. URL https://github.com/holke/t8code/
releases/tag/IMR2022

[5

—

“Open CASCADE Technology.” URL https://www.

opencascade.com/open-cascade-technology/

[6

—_

Shephard M.S., Flaherty J.E., Jansen K.E., Li X., Luo
X., Chevaugeon N., Remacle J.F., Beall M.W., O’Bara
R.M. “Adaptive mesh generation for curved domains.”
Applied Numerical Mathematics, vol. 52, no. 2, 251—
271, 2005

[7

—

Mengaldo G., Moxey D., Turner M., Moura R.C., Jas-
sim A., Taylor M., Peir6 J., Sherwin S.J. “Industry-
Relevant Implicit Large-Eddy Simulation of a High-
Performance Road Car via Spectral/hp Element Meth-
ods.” CoRR, vol. abs/2009.10178, 2020

[8] Krais N., Beck A., Bolemann T., Frank H., Flad D.,
Gassner G., Hindenlang F., Hoffmann M., Kuhn T.,
Sonntag M., Munz C.D. “FLEXI: A high order discon-
tinuous Galerkin framework for hyperbolic—parabolic
conservation laws.” Computers & Mathematics with
Applications, vol. 81, 186-219, 2021

[9

—

Geuzaine C., Remacle J.F. “Gmsh: A 3-D finite element
mesh generator with built-in pre- and post-processing
facilities.” International Journal for Numerical Methods
in Engineering, vol. 79, no. 11, 1309-1331, 2009

[10] Elsweijer S. “Curved Domain Adaptive Mesh Refine-
ment with Hexahedra.” Tech. rep., Hochschule Bonn-
Rhein-Sieg, Jul. 2021. URL https://elib.dlr.de/
143537/

