





## H<sub>2</sub> On-Board Storage Options for Rail Vehicles

Mathias Böhm, Institute of Vehicle Concepts, German Aerospace Center 18/05/2022, Madrid, EHEC 2022





#### H<sub>2</sub> is Entering the Rail Sector



































Railcar

**Tram** 











Loco





















#### FCH2RAIL Project in Numbers

- Start date: 01 January 2021
- Duration: 48 Months
- Total budget: 13.3 Mio €
- H2020 Innovation Action funded by Fuel Cells and Hydrogen 2 Joint Undertaking, now Clean Hydrogen Partnership
- 7 technical Work packages, 29 Milestones, 43 Deliverables
- 2 Demonstrators: Fuel Cell Hybrid Power Pack and Bi-Mode Train
- 8 Beneficiaries from Belgium, Germany, Spain and Portugal























# FCH<sub>2</sub>RAIL

#### H<sub>2</sub> Storage Technology Fundamentals

Hydrogen needs to be compressed, liquefied or materially bonded to achieve competitive energy densities compared to diesel:

- physical-based
  - Compressed Gaseous Hydrogen (CGH<sub>2</sub>) @ 30-70 MPa
  - Cryo-compressed Hydrogen (CcH<sub>2</sub>) @ < -40 °C + high pressures</li>
  - Liquid Hydrogen (LH<sub>2</sub>) @ -252,85 °C
- material-based
  - hydrogen stored in chemical or physical compounds (liquids or solids)













### H<sub>2</sub> Storage Technologies for Railways

Due to available technology, successful application for bus & heavy duty and lower costs, **35 MPa CGH<sub>2</sub>** systems are most used.





Data basis: review of 47 hydrogen rail projects + 21 conceptual designs, feasibility and case studies (Böhm et al., submitted to the Int. Journal of Hydrogen Energy, 04/2022).





#### **Installation Position inside Trains**

Depending on vehicle type and clearance gauge, most of the H<sub>2</sub> storage systems in demonstrator, prototype and series railway vehicles are mounted on the roof.

mounted in dedicated power car







on the hood



no information

e.g. Siemens Mireo Plus H

e.g. Stadler (Zillertalbahn)

e.g. Stadler Flirt H2





**European Union** 

under the hood



#### H<sub>2</sub> System Storage Capacity

- Largest H<sub>2</sub> storage capacities are installed in railcars
- Lower amounts of H<sub>2</sub> were installed in demonstrators and prototypes
- For multi-car railcars, the current storage capacity at 35 MPa is described as sufficient for daily operation by vehicle manufacturers













### FCH2RAIL H<sub>2</sub> Storage System









#### Available H<sub>2</sub> Storage Systems

- CGH<sub>2</sub> systems are available on the market for different H<sub>2</sub> capacities, certified for road
- 35 MPa systems are lighter than 70 MPa but need more storage volume for the same H<sub>2</sub> amount





system weight [kg] per kg H<sub>2</sub>







Data basis: worldwide requests to manufacturers: CLD, Faber cylinders, Faurecia, Hexagon Purus, Luxfer Gas Cylinders, MAHYTEC, NPROXX, Quantum Fuel Systems, Steelhead Composites, Worthington.







# H<sub>2</sub> Storage System Development for Trucks FCH<sub>2</sub>RAIL

Several OEMs and manufacturers currently work on the further development of LH<sub>2</sub> and CcH<sub>2</sub> storage technology, making the technology also conceivable for railway applications in the future.



MB GenH2 Truck prototype on testing grounds in Wörth, DE (05/2022)



CryoTRUCK consortium (MAN Truck & Bus, Clean Logistics, Cryomotive, IABG, TUM)



sLH<sub>2</sub> storage tanks











# FCH<sub>2</sub>RAIL

#### H<sub>2</sub> Storage System Comparison

- 35 MPa → 70 MPa: energy density increases by 1.68, lower on storage system level
- CHP targets are slightly behind expectations for CGH<sub>2</sub> and are difficult to achieve in the future
- LH<sub>2</sub> and CcH<sub>2</sub> systems could double the volumetric energy storage capacity compared to CGH<sub>2</sub> but no series tank systems available, technology under development
- For vehicle integration, additional packaging factors need to be considered, which includes the valves, pipes and mounting depending from diameter and construction space

substance level storage system level

|                     | CGH <sub>2</sub> | CGH <sub>2</sub> | CGH <sub>2</sub>   | LH <sub>2</sub> *) | sLH <sub>2</sub> *) | CcH <sub>2</sub> *)  |
|---------------------|------------------|------------------|--------------------|--------------------|---------------------|----------------------|
| pressure [MPa]      | 35               | 50               | 70                 | 0.4                | 1.6                 | 30                   |
| density [g/L]       | 23.31)           | 30.81)           | 39.2 <sup>1)</sup> | 63 <sup>2)</sup>   | >63 <sup>2)</sup>   | 72 <sup>3)</sup>     |
| vol. capacity [g/L] | 15-18            | 15-21            | 18-26              | 28-40              | 58-60               | 33-46 <sup>3)</sup>  |
| grav. capacity [%]  | 2.5-8.6          | 3.2-5.6          | 1.7-6.8            | 4.5-5.3            | ~10                 | 7.5-10 <sup>3)</sup> |
| TRL [-]             | 7-9              | 7-9              | 7-9                | 7                  | 6                   | 74)                  |

<sup>\*)</sup> no series tank systems available, technology in development for road transport; <sup>1)</sup> isothermal data for T = 25°C [NIST Chemistry WebBook, SRD 69 - Isothermal Properties for Hydrogen, 2018]; <sup>2)</sup> BMW presentation 2012; <sup>3)</sup> Cryomotive presentation 2021; <sup>4)</sup> for cars, TRL 7-8 for heavy-duty trucks in 2023/24;

#### **Clean Hydrogen Partnership Targets**

| 2 | 020 | 2024 | 2030 |  |
|---|-----|------|------|--|
|   |     |      |      |  |
|   |     |      |      |  |
|   | 30  | 33   | 35   |  |
|   | 5.3 | 5.7  | 6    |  |
|   |     |      |      |  |

https://www.clean-hydrogen.europa.eu/knowledgemanagement/key-performance-indicators-kpis en (on-board gaseous hydrogen storage tank in general)





## FCH<sub>2</sub>RAIL

#### Conclusions

- CGH<sub>2</sub> storage systems are the most advanced technology (TRL 7-9) for rail vehicles; systems are market-available and certified for road at various pressure levels
- 35 MPa dominating for railcars; higher energy densities are beneficial, especially for mainline locomotives
- Currently no available sector-specific regulations; existing regulations from road are used; hazards are addressed by individual actions up to an acceptable risk level – but standardization is on the way
- Efforts to promote the **development of LH<sub>2</sub>- and CcH<sub>2</sub>-storage-systems** for trucks (TRL 4-7) making the technology also conceivable for future railway applications
- Alternative storage solutions e.g. ammonia (TRL 5) and LOHC (TRL 2-3) have been considered for railways and are currently discussed also for other sectors









Fuel Cell Hybrid PowerPack for Rail Applications

#### Thank you for your attention





Mathias Böhm

German Aerospace Center (DLR)

Institute of Vehicle Concepts | Vehicle Systems and Technology Assessment Rutherfordstraße 2 | 12489 Berlin

Dipl.-Ing. **Mathias Böhm** | Research Associate

mathias.boehm@dlr.de

www.DLR.de/FK



Co-funded by the European Union