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Background and motivation

 Aviation is one of the sectors considered as ,hard-to-abate” with respect to its climate impact
* New solutions need to be found to reach the goals of the Paris Agreement of 2016

» Power-to-Liquid (PtL) as aviation fuel is one possible solution, especially for longer distances

This work:
» Impacts of the flight emissions of a fleet of narrow-body aircraft with expected entry into service in 2040
» Passenger-demand based simulation of a global route network
» Analysis includes fuel production phase and fleet operation
» Environmental impact analysis considers the aircraft performance during flight

» Consideration of the geographic position and altitude of the aircraft for climate change impacts
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Case study description

System: Fleet of advanced short-range turbofan aircraft with entry into service in 2040

Parameter Value

Design range 1500 nm / 2780 km
Design cruise mach number 0.78
Number of passengers 250 Overview of the aircraft

System boundaries:
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Synthetic fuel production (Power-to-Liquid)
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[1] van der Giesen et al., Energy and Climate Impacts of Producing Synthetic Hydrocarbon Fuels from CO2, Environ. Sci. Technol., Vol. 48, No. 12, 2014, pp. 7111-7121.
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From traffic forecast to route network

Workflow integration of route network calculation
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» Passenger demand forecast on airport pair level based on socioeconomic factors

» Passenger and flight volumes are constrained by airport capacities
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DLR.de ¢ Chart 6

Papantoni et al. « LCA of PtL for Aviation: A Case Study of a Passenger Aircraft

Engine emissions and climate impact assessment
Methodology
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[1] Linke, F., Grewe, V., and Gollnick, V., “The Implications of Intermediate Stop Operations on Aviation Emissions and Climate,” Meteorologische Zeitschrift, Vol. 26, No. 6, 2017, pp. 697—-709.
[2] Dahlmann, K., Grewe, V., Fromming, C. and Burkhardt, U. “Can we reliably assess climate mitigation options for air traffic scenarios despite large uncertainties in atmospheric processes?”
Transportation Research Part D 46 (2016) 40-55
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Turbofan emissions |Annually aggregated (2040)
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Environmental assessment methodology

Goal: Comparison of the environmental impacts generated by the selected aircraft fleet using different fuels by
means of a life cycle assessment (LCA)

Product/System Narrow-body turbofan aircraft fleet using fossil jet fuel vs.
synthetic fuel from renewable energy (PtL)

Geographical boundaries Global

Temporal boundaries 2040 — 2070

Foreground & background data Ecoinvent 3.7.1
LCI other studies (secondary data)
EXACT project (primary data)

Allocation model Cut off by classification
Impact assessment method ILCD 2.0 (2018)
Software Brightway2 and inhouse software (AirClim)
Functional Unit 1 passenger kilometer
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Results of LCA — Climate change

GWP,,, of fuel through lifetime of the fleet Contribution of different species to ATR100
0.12 during combustion (without fuel production)
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PV ES: multi-Si photovoltaic panels, 3kWp, slanted-roof installation, Spain
Wind GB: wind onshore, 1-3 MW, United Kingdom
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Results of LCA — Other impact categories
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Summary and Outlook

The potential of synthetic fuels from renewables to reduce climate impact of aviation has been demonstrated.

Impact categories with higher burdens of PtL from renewables compared to fossil fuel have been identified.

Future developments of the energy sector and energy-intensive industry should be taken into account for
more consistent assessment of the background activities involved in the lifecycle of the aircratft.

Reuse and recycling options should be considered for the fuel production technologies to further reduce their
environmental impact.

A combination of different means will be needed to reduce the climate impact of aviation: technological (e.g.
new fuels, electrification, etc.) and operational (e.g. climate-optimized flight trajectories).
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Thank you for your attention!

Contact
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