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Abstract
Trade wind convection organises into a rich spectrum of spatial patterns, often
in conjunction with precipitation development. Which role spatial organisa-
tion plays for precipitation and vice versa is not well understood. We analyse
scenes of trade-wind convection scanned by the C-band radar Poldirad during
the EUREC4A field campaign to investigate how trade-wind precipitation fields
are spatially organised, quantified by the cells’ number, mean size, and spa-
tial arrangement, and how this matters for precipitation characteristics. We find
that the mean rain rate (i.e., the amount of precipitation in a scene) and the
intensity of precipitation (mean conditional rain rate) relate differently to the
spatial pattern of precipitation. Whereas the amount of precipitation increases
with mean cell size or number, as it scales well with the precipitation frac-
tion, the intensity increases predominantly with mean cell size. In dry scenes,
the increase of precipitation intensity with mean cell size is stronger than in
moist scenes. Dry scenes usually contain fewer cells with a higher degree of
clustering than moist scenes do. High precipitation intensities hence typically
occur in dry scenes with rather large, few, and strongly clustered cells, whereas
high precipitation amounts typically occur in moist scenes with rather large,
numerous, and weakly clustered cells. As cell size influences both the inten-
sity and amount of precipitation, its importance is highlighted. Our analyses
suggest that the cells’ spatial arrangement, correlating mainly weakly with pre-
cipitation characteristics, is of second-order importance for precipitation across
all regimes, but it could be important for high precipitation intensities and to
maintain precipitation amounts in dry environments.
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1 INTRODUCTION

The trades are raining. This fact is, however, given minimal
attention in many studies of the trades (e.g., Rieck et al.,

2012; Siebesma et al., 2003; Stevens, 2005). Trade wind
convection is typically described as non-precipitating and
randomly distributed “popcorn” convection (e.g., Betts,
1997; Siebesma, 1998; Stevens, 2005). Since the trade-wind
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region and its clouds, important to cool our Earth, emerged
as central to the issue of climate change because they
dominate the spread in climate sensitivity among climate
models (e.g., Bony and Dufresne, 2005; Vial et al., 2013),
new studies have proven this description to be wrong.
Field studies and satellite imagery have emphasised how
trade-wind convection organises into a rich spectrum of
spatial patterns, often in conjunction with precipitation
development (Schulz et al., 2021; Snodgrass et al., 2009;
Stevens et al., 2020). This raises the question of the role
of spatial organisation for precipitation and vice versa. To
address this question, this study investigates the spatial
behaviour of precipitating shallow convection and how it
matters for precipitation characteristics in the trades.

A fair part of the motivation for our study dates back
to the Rain In Cumulus over the Ocean (RICO) field cam-
paign (Rauber et al., 2007). RICO showed that shallow pre-
cipitation is common in the trades, with about one-tenth
of the cloudy areas raining (Nuijens et al., 2009; Snodgrass
et al., 2009). Other studies estimate that warm rain showers
contribute 20–30% to the total precipitation amount over
tropical oceans and 70% to the total precipitation area (Lau
and Wu, 2003; Short and Nakamura, 2000). Precipitation
might be key to understand the vertical thermodynamic
structure, cloudiness, and spatial organisation of the trade
regime (e.g., Vogel et al., 2016). Controls on precipita-
tion in shallow convection, however, remain poorly con-
strained and the representation of precipitation in large
eddy simulations differs largely (vanZanten et al., 2011).
An understanding of how spatial organisation influences
precipitation rates might help interpret and reduce these
differences (Stevens et al., 2021).

Besides quantifying precipitation rates, the RICO cam-
paign highlighted that precipitation was often observed
with arc-shaped cloud patterns associated with cold-pool
outflows (Snodgrass et al., 2009; Zuidema et al., 2012).
These cold-pool signatures reflect how precipitation links
processes acting on different scales. The evaporation of
precipitation on the microscale can induce cold pools
(Seifert and Heus, 2013; Touzé-Peiffer et al., 2022) and local
circulations on the mesoscale, which can trigger the birth
of new convective cells and pattern the convection. These
local circulations may change the characteristics of clouds,
and therefore also precipitation formation. Precipitation,
convection, and their spatial patterns or organisation are
thus highly intertwined. Understanding their interplay
could be crucial for a better understanding of the individ-
ual processes. In turn, to better understand their interplay,
a view from the different individual perspectives might be
needed.

However, recent studies have mainly focused on the
perspective of clouds and their spatial patterns (e.g., Bony

et al., 2020; Denby, 2020; Rasp et al., 2020). An investi-
gation from the perspective of precipitation on its inter-
action with spatial organisation and an analysis of pre-
cipitation patterns in the trades is lacking. Which role
spatial organisation plays for precipitation and vice versa
is poorly understood. Bony et al. (2020) show that cloud
patterns differ in their cloudiness and net radiative effect.
How do precipitation characteristics relate to precipitation
patterns in the trades? For the case of deep convection,
using a storm-resolving model, Brueck et al. (2020) found
that mesoscale tropical precipitation varies independently
from the spatial arrangement of its convective cells. Louf
et al. (2019), investigating radar observations in the Trop-
ics, found that rainfall intensities are strongest for few
large cells. How does shallow convection differ from deep
convection or resemble it in these relationships?

To address our questions, we investigate scenes of
trade-wind convection scanned by the C-band polariza-
tion diversity radar (Poldirad; Hagen et al., 2021) dur-
ing the EUREC4A field campaign (Stevens et al., 2021),
which took place in January and February 2020 in the
western tropical North Atlantic near Barbados. In these
scenes, we analyse how trade-wind precipitation fields are
organised into spatial patterns and how this relates to
the scenes’ precipitation amount and intensity. While the
amount of precipitation is related to the scene heating and
drying (e.g., Nuijens et al., 2009), the intensity of precip-
itation is important in a local sense for the triggering of
cold pools, for example (Snodgrass et al., 2009). Spatial
organisation is not straightforward to define, and differ-
ent metrics weight different attributes. We jointly anal-
yse three attributes to investigate the spatial pattern into
which trade-wind precipitating convection is organised:
the number, size, and spatial arrangement of cells. Given
the relationship between water vapour, precipitation, and
organisation found in earlier studies (e.g., Bretherton and
Blossey, 2017; Nuijens et al., 2009), we further include
vertically integrated water vapour as measured by Global
Navigation Satellite System (GNSS) receivers (Bock et al.,
2021) during EUREC4A as a supplementary variable in our
analysis.

The data and methods used in this study are described
in Section 2. First, we investigate the spatial organisation
in trade-wind precipitation fields (Section 3) by analysing
the number, size, and spatial arrangement of rain cells and
how they covary (Section 3.1). Second, we show how the
moisture environment of rain cells relates to their spatial
behaviour and identify two moisture regimes (Section 3.2).
With this information, we then analyse and interpret the
relationship between the cells’ spatial organisation and the
amount and intensity of precipitation in Section 4. Finally,
we show how the relationship between precipitation and
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F I G U R E 1 Time series of precipitation amount P, precipitation intensity I (thick lines display hourly means of the dataset used in the
analysis, shading full dataset), and integrated water vapour W [Colour figure can be viewed at wileyonlinelibrary.com]

its spatial pattern behaves in the diurnal cycle (Section 5),
before we conclude in Section 6.

2 DATA AND METHODOLOGY

2.1 EUREC4A field campaign

EUREC4A was designed to elucidate the coupling between
clouds, circulation, and convection (Bony et al., 2017). The
field campaign took place in January and February 2020 in
the western tropical Atlantic, with most operations based
out of the island of Barbados and targeting a comprehen-
sive observation of clouds, precipitation, and their atmo-
spheric and oceanic environment in the trades upwind of
Barbados. A thorough overview of EUREC4A is provided
in Stevens et al. (2021). Here, we exploit observational
data from the C-band radar Poldirad that was deployed
on Barbados to provide a detailed view of the upstream
precipitating trade-wind convection (Hagen et al., 2021).
Furthermore, we include observations of vertically inte-
grated water vapour from GNSS receivers (Bock et al.,
2021) at the Barbados Cloud Observatory (Stevens et al.,
2016).

2.1.1 C-band research radar Poldirad

Poldirad is a polarimetric C-band research radar of the
German Aerospace Center (Schroth et al., 1988). During
EUREC4A, Poldirad took long-range surveillance scans
at a 5 min schedule with a maximum range of 375 km
in a sector of about 100◦ eastward and upwind of Bar-
bados, thus mapping out the spatial distribution of rain
cells in the trade-wind region. Here, we use the gridded
data interpolated on a 1 × 1 km2 grid with a size of 400 ×
400 km2 from these long surveillance scans and covering
the month of February (Figure 1). This dataset and the
radar’s deployment in the EUREC4A field campaign are
described in detail in Hagen et al. (2021). For our analyses
we examine the scans between the 25 and 175 km range
(see Figure 2) as the radar beam remains below about

3 km height up to this range and the frequency of strong
echoes is approximately constant, and to limit effects of
sea clutter. To discriminate between meteorological echoes
and non-meteorological echoes (like sea clutter, vessels,
aircraft, and other targets), a threshold in the copolar
correlation coefficient 𝜌HV was applied (see Hagen et al.,
2021).

The dataset by Hagen et al. (2021) provides a rain
rate derived from the commonly used Z–R relationship
Z = 200R1.6 (Marshall et al., 1955). Here, we use another
Z–R relationship, Z = 148R1.55, as in Nuijens et al. (2009),
which is specifically derived for shallow precipitation. Dif-
ferences in the Z–R relationship lead to uncertainties in
the absolute estimation of rain rates, which, however, is
not the aim of this study and a shortcoming we accept
for this paper. Please also note that peaks in rainfall are
smoothed by the radar beam and the gridding, resulting
in lower absolute rain rates. Additionally, the Poldirads’
radar beams showed an elliptical shape that caused the
cells to appear stretched in the azimuthal direction, result-
ing in an overestimation of the size of the rain cells. For
an estimation of this effect, please see Hagen et al. (2021,
appendix A).

For each scene scanned by the radar, we calculate
the precipitation amount P (rain rate averaged across the
entire scene, which includes non-precipitating and pre-
cipitating areas) and precipitation intensity I (rain rate
averaged across the precipitating area only), whereby P =
I ⋅ F and F is the rain fraction. To give an overview of the
dataset, Figure 1 shows the time series of both P and I.
Gaps in a continuous operation are caused by failures and
limited personnel resources. In our subsequent analyses
we exclude radar scans from the period February 13–15
because not only shallow cloud systems were present and
captured by the radar at this time (Villiger et al., 2022).
We also exclude all scans with less than five precipitat-
ing cells as a characterisation of the spatial arrangement is
difficult for scenes with few objects. The dataset captures
maxima in P up to roughly 0.2 mm⋅hr−1, which compares
well to precipitation amounts observed in the RICO cam-
paign (Nuijens et al., 2009), and values of I up to roughly
4 mm⋅hr−1. Please note that the dominant relationships

http://wileyonlinelibrary.com
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R / mm·hr–1 F I G U R E 2 Example scene of
(a) rain rate, (b) rain mask, and (c) rain
cell segmentation from February 11,
2020, 0050 h. For symbols, see text
[Colour figure can be viewed at
wileyonlinelibrary.com]

between precipitation characteristics and spatial organisa-
tion that we show in the following are qualitatively similar
when we consider only independent scenes; that is, only
about every 6 hr.

2.1.2 Integrated water vapour observations

To analyse the moisture environment of the rain cells, we
use integrated water vapour W observations from GNSS
receivers (Bock et al., 2021) installed at the Barbados Cloud
Observatory. This dataset provides high temporal resolu-
tion integrated water vapour measurements at a 5 min
time interval. To provide an estimate of W for the scenes
scanned by the radar to the east, we shift the time series
of W by 100 km (i.e., to the scene centre approximately)
assuming a mean wind speed of 6 m⋅s−1 and smooth the
time series with a running mean of 100 km/6 m⋅s−1 to
account for a field mean. The integrated water vapour
field is rather smooth, so that changes in the interpolation
details do not lead to substantial differences. According to
Nuijens et al. (2009), most of the variability in moisture,
when conditioned on precipitation, is in the lower free
troposphere. The time series of W is also shown in Figure1.

2.2 Identification of rain cells
and derivation of their spatial attributes

To identify the rain cells that populate each scene, we
follow Brueck et al. (2020). We use a lower thresh-
old of 0.1 mm⋅hr−1 (i.e., ∼7 dBZ) to define a rain
mask that segments precipitating objects from their
non-precipitating environment. The rain cells are derived
by a two-dimensional watershed segmentation technique
based on the local precipitation maxima. To detect the
local maxima, the precipitation field is first smoothed
with a multidimensional Gaussian filter with a standard

deviation for the Gaussian kernel of 1. The filtering is
not applied to, and does not affect, the precipitating
area and rate. The local maxima are detected by using
a maximum filter. This dilates the image. If a pixel is
unchanged following this dilation (i.e., the dilated image
equals the original image), then that pixel is a local max-
imum. The local maxima serve as starting points for
the watershed procedure. In this procedure, the precip-
itating neighbourhood surrounding a local maximum is
filled until it gets into contact with another neighbour-
hood. Owing to possible regridding artefacts, we only
consider rain cells of minimum two pixel size. Further-
more, we exclude rain cells that touch the scene boundary.
Figure 2 shows the segmentation for one exemplary
scene.

After the segmentation procedure, we calculate for
each scene the cells’ geometrical properties size, num-
ber, and distance between cells. From these, we derive the
attributes that we will use to analyse the organisation of
trade-wind precipitation fields into spatial patterns. Size,
number, and distance are common ingredients in metrics
of spatial organisation; for example, in the Simple Convec-
tion Aggregation Index (Tobin et al., 2012), the Convective
Organisation Potential (White et al., 2018), or the Radar
Organisation Metric (Retsch et al., 2020). Depending on
the metric, certain spatial properties are weighted more
heavily than others. Therefore, rather than focusing on just
one metric, we choose to investigate three attributes of spa-
tial organisation together, based on the number, size, and
spacing between cells.

For each scene, we derive the mean cell size S, which
we express in terms of the area equivalent diameter to
provide a length scale similar to the distances between the
cells. We will provide an overview of the individual cell
sizes and show how the mean cell size scales with the dis-
tribution of cell sizes in a scene in Section 3. The product
of mean cell size expressed in terms of the area (𝜋∕4) ⋅ S

2

and the number of cells N equals the precipitating area

http://wileyonlinelibrary.com
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F I G U R E 3 Time series of (a)
mean cell size S, (b) number of cells N
and (c) the spatial arrangement of cells
quantified by IORG (thick lines display
hourly means of the dataset used in the
analysis, shading full dataset)

Time (UTC)

A = F ⋅ Ascene with F the rain fraction and Ascene the scene
area. The first two measures, S and N, hence inform about
the spatial composition of the precipitation area. We will
use this relationship in our analyses. The time series of S
and N are shown in Figure 3a,b.

To assess the spatial arrangement of cells, we use the
index IORG (Tompkins and Semie, 2017; Weger et al., 1992).
Please note that the naming of IORG might be mislead-
ing here, as we consider spatial arrangement as only one
attribute of spatial organisation. IORG is a metric of spa-
tial arrangement based on nearest-neighbour distances
and compares the observed distances between the cells
with the distances of a random distribution with the same
number of cells. If nearest-neighbour distances are on
average smaller than expected from a random distribu-
tion, the cells are considered clustered, otherwise they are
regularly distributed. The time series of IORG is shown in
Figure 3c. Formally, IORG is defined as the integral below
the curve of the cumulative density function of the actual
observed nearest-neighbour distances (NNCDF) plotted
against the NNCDF for a random distribution of the cells.
A value of 0.5 corresponds to a random distribution, val-
ues larger than 0.5 indicate clustering, whereas values
smaller than 0.5 indicate regularly distributed cells. To
obtain the random distribution of distances for our domain
size, we follow Brueck et al. (2020) and randomly dis-
tribute disks with the same areas and same number as the
cells present in the scene domain. The random distribu-
tion results from taking the mean over 100 realisations of
this procedure. As a consistency check, we investigated
a second metric of spatial arrangement based on the dis-
tances between all possible pairs of cells (Tobin et al.,
2012), which compares the observed mean all-neighbour
distance with the random mean all-neighbour distance.
Both metrics show the same relationships, so that we only
show IORG in the remainder of this article. Please also
note that the dominant relationships between precipita-
tion characteristics and spatial arrangement remain simi-
lar when using a different threshold on the number of cells;

for example, considering only scenes with at least 15 or
20 cells.

The time series in Figure 3 indicate that S, N, and IORG
do not vary independently from each other. S and N often
tend to increase and decrease together, and decreases in
IORG (towards a more regular distribution of rain cells)
tend to go along with increases in N; for example, on
February 11 or 19 . Figure 4 provides an overview of the
correlations between S, N, IORG, P, and I across the whole
dataset. As indicated by the time series, S and N are posi-
tively correlated. The IORG and N are negatively correlated
and IORG and S are weakly negatively correlated. In the
following, we will work our way from top to bottom in
Figure 4. We will first look more closely at S, N, and IORG
and investigate and interpret how and why they covary
(Section 3). To do so, we will span a phase space of S and
N, following analyses in deep convection studies (Brueck
et al., 2020; Louf et al., 2019). We will use this phase space
in our subsequent analyses to interpret the correlations
shown in Figure 4 in more detail. Analysing organisation
and precipitation in the phase space will help us to identify
two moisture regimes (Section 3.2), show that competing
effects lead to the weak correlation of P and I with IORG
(Section 4), and that I predominantly increases with S, but
that this increase differs with the moisture regime.

3 HOW ARE TRADE-WIND
PRECIPITATION FIELDS
SPATIALLY ORGANISED?

3.1 Number, size, and spatial
arrangement

Figure 2 shows a scene with a mean cell size S of about
9 km and cell sizes ranging between 2.8 and 20.7 km.
Therewith, the scene is exemplary for a large mean
rain cell size during EUREC4A (Figure 3a) and repre-
sents well the range of observed cell sizes (Figure 5a).
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F I G U R E 4 Spearman correlation coefficient R between cell
number N, mean cell size S, the cells’ spatial arrangement quantified
by IORG, precipitation amount P, and precipitation intensity I,
coloured according to the absolute correlation between a variable
pair [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 5a shows that a cell size larger than 20 km was
rarely observed. The slope of the distribution of cell sizes
falls off towards high cell sizes. This was similarly noted
by Trivej and Stevens (2010) for precipitation cells in the
RICO campaign. About 50% of the cells have a size smaller
than 5 km, and 10% of the cells have a size larger than
10 km. We investigate how the mean cell size relates to the
individual cell sizes in a scene. Figure 5b shows that the
maximum cell size and spread in cell sizes, quantified as
the interquartile range of cell sizes, increase with the mean
cell size. Both are strongly correlated with the mean cell
size with correlation coefficients of 0.89 and 0.83, respec-
tively. This suggests that a few cells drive the growth in
mean cell size. Processes that trigger this growth for a few
cells thus probably have a dominant role; for example, the
merging of cells or colliding cold pools that trigger large
rain cells.

The joint frequency of occurrence of mean cell size S
and cell number N is shown in Figure 6. The example
scene contains 24 cells (Figure 2), which is exemplary
for a moderate rain cell number N during EUREC4A.
About 60% of scenes contained less than 20 cells, and
most frequently the scenes contained a small cell number
between 5 and 15, and a mean cell size of around 5 km.
Figure 6 shows that N and S are positively correlated with
a correlation coefficient of 0.61 (Figure 4). In radar scans

measuring the number and size of rain cells in deep tropi-
cal convection, no positive correlation was found (Darwin
radar observations; Louf et al., 2019). In these observa-
tions, the largest cell sizes occur for small cell numbers,
whereas in our analyses the largest cell sizes occur for large
cell numbers (Figure 6). The difference between Darwin
and EUREC4A possibly reflects a difference between shal-
low and deep convection. In deep convection, large cells
likely induce local circulations that suppress the growth
of other cells around them. Our analyses suggest that this
may not always happen in shallow convection. Given their
positive correlation, the phase space of S and N spanned
here, which we will use in our subsequent analysis, allows
us to examine the relationship of a variable with cell num-
ber separately from the relationship of the same variable
with cell size.

In the example scene (Figure 2), the cells are dis-
tributed at an average distance of 70 km (LA) or 15 km if
only the distance to the nearest neighbour is taken into
account (LNN). Figure 7a,b shows how these two proper-
ties, LA and LNN, varied during EUREC4A and that LA and
LNN in the example scene are typical observed distances.
Most frequently an LA around 65 km and LNN around
14 km were observed. The distribution of LNN is unimodal
and skewed towards higher LNN (Figure 7b). LNN varies
only in a narrow range; that is, rain cells have a typical

r / –

r / –

r 
/ –

N
 / 

–

F I G U R E 6 Joint relative frequency of occurrence of mean
cell size S and number of cells N with individual histograms
[Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 5 (a) Distribution of
cell sizes P(Si) (solid line) and
cumulative distribution of cell sizes
C(Si) (dashed line). (b) Maximum
cell size Smax (dark colour) and cell
size spread, quantified as the
interquartile range of cell sizes Siqr

(light colour), as a function of mean
cell size S per scene
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F I G U R E 7 Relative
frequency of (a) mean distance
between all possible pairs of cells
LA, (b) mean distance between
nearest-neighbour cells LNN, and
(c) the IORG for all, dry
(W < median (W)), and wet
scenes (W > median (W)) with
median (W) = 36 kg⋅m−2

distance to their neighbouring cell. The distribution of LA
shows a less marked peak and is skewed towards small LA
(Figure 7a). Possibly, cold pools (e.g., visible in Figure 2
with the typical arc-shaped pattern) smooth and widen the
distribution of LA by their varying strength and extent.

If the rain cells in the example scene were randomly
distributed, LA would be around 90 km and LNN around
19.5 km. That is, the observed distances are shorter than
the random distances, and the scene in Figure 2 shows
a clustered state, which is classified by an IORG of 0.67
(Figure 2). As indicated in Figure 7a,b and shown in
Figure 7c, the rain cells’ arrangement is clustered in almost
all scenes (IORG > 0.5). This was similarly found in stud-
ies of deep convection (e.g., Brueck et al., 2020; Pscheidt
et al., 2019). That precipitation fields are usually clustered
fits with the idea that precipitation processes develop in
cloud complexes with several clustered updrafts and repre-
senting inhomogeneities. Precipitation does not occur ran-
domly but due to inhomogeneities in a field, and therewith
clustered.

We now analyse how the cells’ spatial arrangement,
cell number, and size covary by analysing the IORG in the
S–N phase space spanned before (Figure 8a). The analysis
reveals three main findings. First, few cells (small N) are
more clustered (higher IORG) than many cells (high N). For
a given S, IORG decreases with N. That is, clustering and cell
number are negatively correlated (R = −0.51, Figure 4).
Brueck et al. (2020), noting the same relationship, point
to thermodynamic considerations that can help explain
this behaviour. When conducting idealised simulations,
in a scene starting from homogeneous thermodynamic
conditions it can be seen that many randomly distributed
cells appear, whereas in the presence of inhomogenities
the number of cells in a scene can be limited. By sub-
sampling the scenes into four composites representing the
four corners of the S–N phase space (Figure 9) to show
the variability in each composite, we further note that
scenes with few cells have a wider range of possible spatial
arrangements than scenes with many cells do (Figure 9c).
In particular, few and small cells, indicative of little precip-
itation, occur in a variety of spatial arrangements, which

W / kg·m–2

P / mm·hr–1

I / mm·hr–1

F I G U R E 8 (a) IORG, (b) integrated water vapour W , (c)
precipitation amount P, (d) contribution to total precipitation
P∕

∑
P, and (e) precipitation intensity I as a function of mean cell

size S and cell number N [Colour figure can be viewed at
wileyonlinelibrary.com]

fits the subjective analysis of radar and satellite imagery
during the RICO campaign (Rauber et al., 2007).

Second, the covariability of clustering with cell size
is more complex than with cell number. Whereas IORG
increases with S in scenes with a small N, IORG decreases
with S in scenes with a large N (Figure 8a). Thus, over-
all, the correlation between S and IORG is weak (R = −0.29,
Figure 4). Third, IORG consequently maximises in the lower
right corner of the S–N phase space (Figure 8a); that is,
clustering is typically highest where cells are few and on
average large (see also Figure 9c). This was similarly found
for deep tropical convection (Brueck et al., 2020; Retsch

http://wileyonlinelibrary.com
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W / kg·m–2 P / mm·hr–1 I / mm·hr–1

F I G U R E 9 Interquartile range
(black box), median (white dot) and mean
(green line) of mean cell size S, cell
number N, and IORG for four composites
representing the four corners in the S–N
phase space with Ns < 20, Nl > 20,
Ss < 6 km, Sl > 6 km. The number of
scenes is equal in each composite [Colour
figure can be viewed at
wileyonlinelibrary.com]

et al., 2020). In Brueck et al. (2020), the degree of cluster-
ing increases with mean cell size at all cell numbers. The
difference between shallow and deep convection might be
explained by the idea that deep convective precipitation
often originates from large precipitating systems, where
large cells are part of a large convective object and hence
clustered, whereas trade wind showers can also be asso-
ciated with less organised precipitation systems, as sug-
gested by the gravel cloud pattern (Stevens et al., 2020).
Nevertheless, our analysis suggests that the organisation
of precipitation in trade-wind shallow convection shares
similarities to deep convection, in that clustering and cell
number are negatively correlated and the degree of clus-
tering is typically highest in scenes containing few and, on
average, large cells. Next, we will show how the different
scaling of IORG with S in regimes of small and large N is
related to different moisture regimes.

3.2 Moisture environment

Past studies have shown that water vapour path is related
to precipitation (e.g., Bretherton et al., 2004; Nuijens
et al., 2009) as well as organisation (e.g., Bretherton et al.,
2005;Tobin et al., 2012). Investigating W in the S–N phase
space (Figure 8b), we find that the scenes are on average
driest (low W) at small N and S and moistest (high W) at
large N and S. With a moistening of the environment, cells
tend to be larger and more numerous. However, whereas
W increases markedly with N for a given S, the increase of
W with S for a given N is weak. For a large cell number,
W tends to increase with S; but for a small cell number, W
varies weakly with S. Differences in the water vapour path
thus mainly appear in the number of rain cells and only
slightly in the mean size of the cells. Therefore, the S–N

phase space shows predominantly two regimes: a moist
regime (high W) at high cell number and a dry regime
(low W) at low cell number. That dry and moist scenes
differ predominantly in the number of cells they contain,
whereas the mean area of the cells only varies weakly with
W , was also found in radar observations (Louf et al., 2019)
and simulations (Brueck et al., 2020) of deep convection.
In a moist environment, clouds may be less affected by
entrainment, which allows them to reach deeper and even-
tually start to precipitate (Smalley and Rapp, 2020). Also,
clouds, and hence precipitating cells, may live longer in
moister environments. Both could explain the enhanced
cell numbers in moist compared with dry environments.
That large cells also exist in dry environments could be
related to clustering.

We now investigate how the moisture environment and
the degree of clustering are related. A comparison of W
and the IORG in the S–N phase space (Figure 8b) shows
that scenes with a small cell number are typically drier
and show a higher degree of clustering than scenes with
a large cell number (see also Figure 9d). Figure 7c dis-
plays the histogram of IORG in moist versus dry scenes
(W ≶ median (W) with median (W) = 36 kg⋅m−2). In dry
scenes, the distribution shifts towards a higher degree of
clustering. This agrees with idealised studies of radiative
convective equilibrium (Bretherton et al., 2005; Muller and
Held, 2012) and observations (e.g., Tobin et al., 2012),
which show that aggregated or clustered states of deep con-
vection are typically drier. Our analyses show the same
for shallow convection. Possibly, isolated rain cells, that
is with a low degree of clustering, can hardly exist in dry
environments as they are strongly affected by entrainment.
Clustering might reduce the updraft buoyancy reduction
through entrainment, allowing cells to develop in hostile,
dry environments (Becker et al., 2018).
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4 HOW DOES SPATIAL
ORGANISATION MATTER FOR
PRECIPITATION
CHARACTERISTICS?

4.1 Precipitation amount

First, we analyse how precipitation amount varies as a
function of cell size and number. Figure 8c shows that,
for a given S, P increases with N; and vice versa, for a
given N, P increases with S. Taken together, contours of
P follow well the contour lines of rain fraction F. For the
amount of precipitation, the intensity of rain showers is
hence of secondary importance, which is in agreement
with previous studies (e.g., Nuijens et al., 2009). Because
precipitation amount scales very well with precipitating
fraction, P is strongly correlated with S and N (R ≈ 0.85,
Figure 4). Consequently, precipitation amounts can be
similar for scenes with few and on average large cells or
scenes with many and on average small cells, given a simi-
lar rain fraction, and scenes with numerous and on average
large cells exhibit usually the highest precipitation amount
(Figure 9e).

We note two implications from the relationship of P
with N and S. First, although scenes with a mean cell size
of ∼5 km and small cell number occur most frequently,
they do not contribute the most to the total precipitation
during EUREC4A (Figure 8d). Figure 8d shows that the
precipitation contribution is shifted to larger and more
numerous cells compared with the frequency distribution
(Figure 6). Although they occur rarely, scenes with the
largest and most numerous cells do contribute the most to
the total precipitation, because of their high rain amount.
Additionally, a moderate cell size and number contribute
substantially to the total precipitation through a combi-
nation of a moderate rain rate and moderate frequency of
occurrence.

Second, as S is strongly correlated to the maximum
rain cell size and cell size spread (see Section 3), the
cell size spread and maximum cell size increases with an
increase in P. This fits observations by Trivej and Stevens
(2010) from the RICO campaign, who highlight that espe-
cially large cells at the tail of the size distribution vary
with precipitation area, which, we confirm, determines
to a first order the precipitation amount. We find that,
on average, the 20% largest cells in a scene have a mean
cell size 2.5 times larger than the mean scene cell size
and contribute half to the precipitating area and 60% to
the precipitation amount. This contribution increases up
to 70% in the 10% of rainiest scenes (not shown). That
is, as the amount of precipitation in a scene increases,
the precipitation is distributed more unevenly across
the cells.

Recalling our previous analyses, we notice that P varies
differently as a function of S and N than IORG. This is
clear when comparing P and IORG in the S–N phase space
(Figure 8c) and is shown in a more condensed form in
Figure 10, which aggregates the dominant relationships
between precipitation amount and cell size, number, and
arrangement. Figure 10 shows that P increases with S or
N, but IORG does not. At large N, IORG is systemically lower
than at small N and decreases with S. Though precipita-
tion amount maximizes at large N and S, the degree of
clustering minimises here, suggesting both are negatively
correlated with each other. This is also indicated by con-
tours of P and IORG in the upper part of the S–N phase space
(Figure 8c), which tend to be roughly parallel. At small N,
however, IORG increases with S (Figure 10), so that in the
lower part of the S–N phase space (Figure 8c) the contours
of P and IORG are perpendicular to each other, suggest-
ing they vary independently. Across the whole dataset,
the relationship between precipitation amount and clus-
tering is therefore negative but foremost weak (R = −0.41,
Figure 4). Consequently, precipitation amounts can be
similar for scenes with a quite different spatial structure
(Figure 10)—with rather many, small and weakly clus-
tered cells or few, large and more strongly clustered cells
(see also Figure 8c).

These analyses hence suggest that hypothesised mech-
anisms, such as that clustering increases precipitation
through cell interaction, play overall no or a subordi-
nate role for the precipitation amount in a scene, because
precipitation amount increases with rain fraction and
maximises when cells are large and numerous, whereas
the degree of clustering maximises when cells are large
but few. We find that scenes with small N and large
S, which show on average a high degree of clustering,
also contribute little to the total observed precipitation
amount (Figure 8d). This suggests that scenes with a
high degree of clustering neither precipitate the most
nor occur frequently enough to contribute much to the
precipitation amount; hence, the spatial arrangement of
rain cells is of second-order importance for precipitation
amount in the trades. Similar conclusions were drawn for
deep convection (e.g., Brueck et al., 2020; Pscheidt et al.,
2019).

Only when considering the moisture environment may
a positive effect of clustering on precipitation amounts be
seen. Combining the results of Figure 8b and 8c, at small
N in the dry regime, precipitation amount is higher for
scenes with larger S and a higher degree of clustering. Fur-
ther, keeping precipitation amount constant while moving
in the S–N phase space into scenes with small N, which
tend to be dry, an increase in the mean cell size and an
increase in the degree of clustering take place (see also
Figure 10). In this sense, clustering may be considered
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F I G U R E 10 Overview of
relationships between precipitation
characteristics and cell number, size,
and arrangement. (a) Precipitation
amount P and (b) precipitation intensity
I for bins of mean cell size S conditioned
on different cell numbers N. The
marker shading denotes the cells’
degree of clustering as quantified by the
IORG and the the moisture environment
as quantified by W ≶ 36 kg⋅m−2

important for maintaining precipitation amounts in dry
environments, as similarly found by Brueck et al. (2020)
for deep convection.

4.2 Precipitation intensity

We analyse the relationship between precipitation inten-
sity, cell number, and mean cell size using the S–N phase
space. Figure 8e shows that I increases with S for a given
N. For a given S, I does not systematically increase or
decrease with N (see also Figure 10). Consequently, the
positive correlation between I and N across the whole
dataset (R = 0.39, Figure 4) is due to an increase of I
with S (R = 0.52, Figure 4) and the covariation of N
with S (R = 0.61, Figure 4). Whereas both cell number
and size are important for the precipitation amount in
the trades, it seems predominantly the latter for precip-
itation intensity. This was similarly found in regimes of
deep tropical convection (Louf et al., 2019; Semie and
Bony, 2020) and is, for example, important for cumu-
lus parametrisations, where the convective area is a key
ingredient. Whereas the convective or precipitating area
well describes the precipitation amount, its composition
into cell size and number is decisive for precipitation
intensity.

Possible explanations for why precipitation intensity
increases with mean cell size are that large cells pro-
tect their updrafts better from dilution by entrainment,
which allows them to sustain stronger updrafts and grow
deeper (e.g., Kirshbaum and Grant, 2012; Schlemmer
and Hohenegger, 2014). Additionally, enhanced mois-
ture aggregation through shallow circulations that accom-
pany large clusters (Bretherton and Blossey, 2017) could
increase the liquid and rain water content. Also, large
cells may dissipate more slowly; that is, they live longer,
and therefore develop a moister (sub)cloud layer that
leads to less evaporation of the falling raindrops. Here,
we can only provide a quantification of this effect. To do
so, we investigate how the rain intensity of an individual

F I G U R E 11 Mean intensity Ii (solid) and maximum
intensity max(Ii) (dashed) of a cell binned as a function of cell size

cell scales with its size, shown in Figure 11 for the
mean and maximum rain intensity of a cell. Both maxi-
mum and mean rain intensity increase with cell size for
cell sizes above 3 km. Cells with a size around 10 km
have a mean intensity around 1 mm⋅hr−1. A maximum
intensity above 1 mm⋅hr−1 occurs in cells larger than
roughly 5 km. As roughly 50% of cells are larger than
5 km (see Section 3.1), roughly 50% of the cells exhibit
maximum intensities above 1 mm⋅hr−1, a threshold asso-
ciated with the formation of cold pools in past studies (e.g.,
Barnes and Garstang, 1982, Drager and van den Heever,
2017).

The analysis of I in the S–N phase space further shows
that the increase of I with S differs between small and
large N (Figure 8e), more explicitly shown in Figure 10. In
scenes with small N, the increase of I with S is stronger
than in scenes with large N. This could indicate that cells
are competing for moisture and heat—when there are
many cells, they can grow larger, but not as intense as
if there are few cells, because they have to compete with
many cells. We identified a moist regime at large N and
a dry regime at small N (Section 3.2), suggesting that I
increases more strongly with S in dry compared with moist
scenes and that precipitation intensities are thus highest
in dry scenes. Figure 12 confirms this. The distribution
of precipitation intensities in dry scenes shows a higher
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F I G U R E 12 a) Relative frequency of
precipitation intensity I for dry
(W > median (W)) and wet scenes
(W < median (W)). I as a function of (b) mean
cell size S and (c) rain fraction F. The shading
in (b) and (c) denotes the water vapour path
W . The lines in (b) and (c) denote the fit for
dry and wet scenes or scenes with high IORG

(IORG > p75 (IORG)) and low IORG

(IORG < p25 (IORG)). The slanted grey lines
labelled P denote the precipitation amount in
mm⋅hr−1 [Colour figure can be viewed at
wileyonlinelibrary.com]

variability and extends to larger values than in moist
scenes. Precipitation intensity is highest in dry environ-
ments, which was similarly observed by Louf et al. (2019)
for deep convection. Vogel et al. (2020) also find that, in
dry environments, simulated shallow clouds are deeper.
Because I increases with S and maximises in dry envi-
ronments, precipitation amount increases for the same
rain fraction when moving from a moist environment with
more numerous cells to a dry environment with larger cells
(Figure 12c).

Our previous analyses show that dry and moist scenes
also typically exhibit differences in the degree of cluster-
ing. We found that dry scenes are typically more clustered
than moist scenes, and more clustered convection may
help to let the clouds grow deeper and rain more intense,
possibly adding to the enhanced increase of precipitation
intensity with cell size in dry scenes. Figure 12 shows that
the increase of I with S is stronger in scenes with a high
degree of clustering than in scenes with a low degree of
clustering. This suggests that high precipitation intensi-
ties are related to scenes with a high degree of clustering.
Comparing the variations of precipitation intensity and
clustering in the S–N phase space (Figure 8e) or Figure 10,
this is confirmed. At large N or moist environments, I
increases with S, whereas IORG decreases with S. At small
N or in dry environments, both I and IORG increase with S.
Thus, both I and IORG maximise where S is large and N is
small (see also Figure 9c,f) and scenes are dry. The anal-
yses hence suggest that clustering is important for high
precipitation intensities occurring typically in dry environ-
ments. For a given mean cell size around 7 km, I and the
degree of clustering increase as one moves from scenes
with large N in the moist regime to scenes with a small N
in the dry regime (Figure 10). Overall, however, I and IORG
vary mostly perpendicular to each other in the S–N phase
space (Figure 8e), so that across all regimes the correla-
tion between clustering and precipitation intensity is weak
(R = −0.18, Figure 4).

5 DIURNAL CYCLE

Our analysis so far takes a snapshot view of precipitation.
To probe the evolution of the rain cells’ spatial organi-
sation, we lastly look at the diurnal cycle, a prominent
mode of variability in the Tropics, revisited recently by
Vial et al. (2019). This also allows us to add some con-
text to our results by discussing our analyses of precipi-
tation patterns in light of the analyses of cloud patterns
in the diurnal cycle (Vial et al., 2021; Vogel et al., 2021).
Measurements from the RICO field experiment show that
trade-wind convection exhibits a night-time to early morn-
ing peak and an afternoon minimum in precipitation
(Nuijens et al., 2009; Snodgrass et al., 2009), confirmed by
the analyses of Vial et al. (2019). Figure 13 shows this daily
cycle captured in our dataset with precipitation amount
peaking in the early morning and having its minimum
in the late afternoon before sunset (Figure 13a). Please
note that the diurnal cycle is not complete on all days due
to gaps in the measurements. Considering only the days
with no gaps in the measurements, the diurnal cycle is
similar.

The diurnal cycle of cell number and size roughly
follow the diurnal cycle of precipitation amount
(Figure 13c,d), which matches our previous analyses
(Section 4). Thereby, N tends to peak before S, suggesting
that the increase in precipitation in the night is initially
driven by more cells, then increasingly by larger cells.
As N peaks, rain cells exhibit a low degree of clustering
(Figure 13e). S stays high as N already decreases. This indi-
cates that small cells might dissipate earlier whereas large
cells live longer and/or that merging of cells are enhanced.
Cells are now spaced close to each other, indicated by
a large IORG. The early daytime between 0800 h and
1200 h, where S slowly decreases and IORG is high, is also
characterised by a relatively high precipitation intensity
(Figure 13b). Precipitation intensity does not show a clear

http://wileyonlinelibrary.com
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F I G U R E 13 Mean diurnal cycle of (a) precipitation amount
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S, and (e) the cells’ spatial arrangement quantified by the IORG.
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diurnal cycle. Vogel et al. (2021) find that cold pools pro-
long the peak in the diurnal cycle of precipitation into the
early afternoon, possibly shaping this behaviour seen here.

Vial et al. (2021) show how the subjectively defined
cloud patterns gravel, flowers, and fish (Stevens et al.,
2020) vary in the diurnal cycle. Please note that these cloud
patterns extend in part over a larger scale than the ones
analysed here. We may capture the gravel pattern, but only
the individual rain cells of a single flower and a part of
the fish pattern. Vial et al. (2021) show that the gravel
cloud pattern has a peak occurrence around midnight,
where we find rain cells to be rather small, numerous,
and weakly clustered. Flowers, the appearance of which is
mainly dominated through a large mean cloud size (Bony
et al., 2020), have a peak occurrence before sunrise, where
we also find rain cells to be rather larger, and fish has a
peak occurrence around noon, where we find rain cells
to be rather large and strongly clustered. This might indi-
cate that precipitation patterns and cloud patterns scale
with each other. Figure 13 shows that the relationships
revealed by our previous analyses are evident on the diur-
nal time scale and indicates how the number, size, and
spatial arrangement of rain cells might relate to cloud
patterns and the cells’ life cycle.

6 SUMMARY AND CONCLUSION

This study investigates the spatial behaviour of precip-
itating trade-wind convection and its implications for

precipitation characteristics in the trades as observed
during the EUREC4A field campaign. To do so, scenes
of trade-wind convection scanned by the C-band radar
Poldirad are examined. We investigate the spatial structure
in these scenes by analysing the size, number, and spatial
arrangement of rain cells and examine how these relate to
the scene’s precipitation amount and intensity, as well as
the water vapour path. A synopsis of the dominant rela-
tionships is given in Figure 10 and is summarised in the
following.

During EUREC4A, a mean rain cell size of 5 km and
a mean distance to the nearest neighbour of about 14 km
were most common. Up to 60 cells in one scene and a mean
cell size of 12 km were observed. In nearly all scenes, cells
were spaced closer than in a random distribution. That is,
the spatial arrangement in scenes of precipitation is almost
always clustered, which is in line with the expectation that
precipitation is related to inhomogeneities. In the diurnal
cycle, cell number tends to peak shortly before mean cell
size in the early morning, and before the degree of clus-
tering, which peaks around noon. Whereas cell number
and mean size are positively correlated and cell number
and clustering are negatively correlated, the relationship
between mean cell size and clustering is more ambigu-
ous and differs between scenes with a large and small
cell number. Scenes with few and, on average, large cells
exhibit typically the highest degree of clustering, which
was similarly found for deep convection (Brueck et al.,
2020; Retsch et al., 2020; Senf et al., 2019). This suggests
similarities between the spatial organisation of shallow
and deep precipitating convection. Based on the diurnal
cycle, we find indications that trade-wind precipitation
patterns may scale with cloud patterns, providing a first
observational baseline to study the relationship between
the spatial organisation of precipitation and clouds.

We identify two regimes: a moist regime that is char-
acterised by a large cell number, and a dry regime that
generally has a small cell number. In the dry regime, cells
are typically more clustered than in the moist regime,
which agrees with deep convective studies (Bretherton
et al., 2005; Muller and Held, 2012; Tobin et al., 2012).
Clustering might reduce the updraft buoyancy reduction
through entrainment, allowing cells to develop in hos-
tile, dry environments (Becker et al., 2018). Though we
find a systematic relationship between water vapour path,
cell number, and the degree of clustering, the relation-
ship between water vapour path and cell size is less clear.
Regarding the close relationship between water vapour
availability and precipitation in the trades highlighted in
Nuijens et al. (2009), our analyses suggest that precipi-
tation increases with water vapour path predominantly
because of more numerous cells that are more scattered
rather than larger cells.

http://wileyonlinelibrary.com
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We conclude that the amount and intensity of precipi-
tation behave differently to the spatial patterning in trade
wind precipitation fields:

• The amount of precipitation varies closely with cell
number and mean cell size because it scales well
with rain fraction. High precipitation amounts typically
occur in scenes that contain many, on average, large
and weakly clustered cells. Precipitation amounts can
be similar for scenes that differ markedly in their spatial
structure.

• The intensity of precipitation increases predominantly
with mean cell size. In dry scenes with few cells, this
increase is stronger than in moist scenes with many
cells. High precipitation intensities typically occur in
dry scenes that contain, on average, large, few, and
strongly clustered cells.

From the three spatial attributes investigated, cell size
and number are equally strongly related to precipitation
amount, and cell size is best related to precipitation inten-
sity, thus highlighting the importance of cell size for
precipitation characteristics. No causality can be derived
from these relationships, though. Clustering and precip-
itation characteristics are, across all regimes, negatively
and predominantly weakly correlated, and hence the spa-
tial arrangement of cells is of second-order importance for
precipitation in the trades. This was similarly noted for
deep convection (e.g., Brueck et al., 2020; Pscheidt et al.,
2019). We do find indications, however, that clustering
may be important for high precipitation intensities and to
maintain precipitation amounts in dry environments. Our
study shows that precipitation characteristics are related
to spatial precipitation patterns and suggests that a better
understanding of how spatial patterns are conditioned on
the environment (e.g., ambient moisture) will contribute
to our understanding of precipitation in the trades.
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