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Abstract
Animal re-identification based on image data, either recorded manually by photographers or automatically with camera traps, 
is an important task for ecological studies about biodiversity and conservation that can be highly automatized with algorithms 
from computer vision and machine learning. However, fixed identification models only trained with standard datasets before 
their application will quickly reach their limits, especially for long-term monitoring with changing environmental conditions, 
varying visual appearances of individuals over time that differ a lot from those in the training data, and new occurring indi-
viduals that have not been observed before. Hence, we believe that active learning with human-in-the-loop and continuous 
lifelong learning is important to tackle these challenges and to obtain high-performance recognition systems when dealing 
with huge amounts of additional data that become available during the application. Our general approach with image features 
from deep neural networks and decoupled decision models can be applied to many different mammalian species and is per-
fectly suited for continuous improvements of the recognition systems via lifelong learning. In our identification experiments, 
we consider four different taxa, namely two elephant species: African forest elephants and Asian elephants, as well as two 
species of great apes: gorillas and chimpanzees. Going beyond classical re-identification, our decoupled approach can also 
be used for predicting attributes of individuals such as gender or age using classification or regression methods. Although 
applicable for small datasets of individuals as well, we argue that even better recognition performance will be achieved by 
improving decision models gradually via lifelong learning to exploit huge datasets and continuous recordings from long-term 
applications. We highlight that algorithms for deploying lifelong learning in real observational studies exist and are ready 
for use. Hence, lifelong learning might become a valuable concept that supports practitioners when analyzing large-scale 
image data during long-term monitoring of mammals.
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Introduction

Many ecological studies for monitoring biodiversity or 
analyzing animal behavior require the identification of indi-
viduals. Typically, a lot of images or even videos are col-
lected either automatically by camera traps or manually by 
photographers. The huge amount of collected image data 
then needs to be evaluated to first perform a visual identi-
fication and afterwards a downstream task like recognizing 
activities of individuals, or counting individuals to estimate 
population sizes and to track changes in population sizes 
over time. Instead of manually investigating the large image 
collections, algorithms from computer vision and machine 
learning enable an automatic identification to support 
practitioners.

Our work focuses on a general approach of utilizing 
image features extracted by deep neural networks as abstract 
but high-level visual representations of individuals and we 
exploit different convolutional neural network architectures 
for this task. We demonstrate that based on these representa-
tions, individuals can be distinguished automatically using 
classifiers trained with extracted features from annotated 
reference images. Hence, in our approach, we decouple the 
feature extraction with deep neural networks from the deci-
sion model used to perform the classification, in contrast to 
an end-to-end learning of features and decision rules. To 
show the general applicability of our approach, we consider 

several taxa in our experiments: elephants (African and 
Asian) and great apes (gorillas and chimpanzees) shown in 
Fig. 1.

Moreover, besides the identification of individuals, we 
also show the usefulness of the extracted image features for 
predicting several attributes of the animals. These are, for 
example, discrete attributes such as the gender (binary clas-
sification: male vs. female) or the age group (multi-class 
classification: infant, juvenile, subadult, adult and elderly). 
However, also continuous attributes like the age of the indi-
vidual can be estimated from the extracted image features 
using regression approaches.

One advantage of our decoupled approach that separates 
the feature extractor from the decision model is that we can 
easily exchange the final part of the processing pipeline and 
use either classification models or regression models for the 
prediction, depending on the task that should be solved. We 
do not need to change or re-train the neural network that is 
used for feature extraction when switching to another task 
and can, therefore, exploit the richness and compactness of 
the feature representations for multiple prediction problems. 
Hence, pre-trained neural networks can be leveraged to avoid 
costly network training from scratch, which is often difficult 
with limited amount of labeled training data for an indi-
vidual identification task, especially at the beginning of a 
monitoring study. In contrast, extracting features once and 
then training a conventional classifier, e.g., a linear support 

Fig. 1  Overview of the different 
taxa and example images for the 
species that are considered for 
automatic visual identification 
in this paper: the African forest 
elephant (Loxodonta cyclotis) 
in the top left image (from the 
ELPephants dataset presented 
by Körschens and Denzler 
2019), the Asian elephant 
(Elephas maximus) in the top 
right image (from a video pro-
vided by the CCC lab: https:// 
cccon serva tion. org/), the West-
ern lowland gorilla (Gorilla 
gorilla gorilla) in the bottom 
left image (from the dataset 
of Brust et al. 2017), and the 
chimpanzee (Pan troglodytes) 
in the bottom right image (from 
the C-Tai dataset of Freytag 
et al. 2016)

https://ccconservation.org/
https://ccconservation.org/
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vector machine (SVM) or a Gaussian process (GP) model, 
can be done quickly and in the field.

A second advantage of our decoupled approach is the 
easy integration of lifelong learning (Käding et al. 2016d). 
Instead of learning identification systems only once before 
the application using a fixed training set of annotated 
images, we also want to take changes into account, which 
naturally arise during the application when monitoring ani-
mals for a longer time period. For example, new individuals 
might enter the scenes that have not been recorded before 
and, therefore, need special treatment. Even known indi-
viduals might occur in unusual poses, their visual appear-
ances change due to aging or injuries, or they are partially 
occluded in the images by other animals or vegetation. To 
avoid false predictions of an automatic system in such chal-
lenging scenarios, feedback from experts should be incor-
porated to resolve these hard cases where the algorithms 
have problems or are most uncertain. Furthermore, not all 
incoming images need to be checked manually, and instead, 
the recognition system could automatically select only a sub-
set of most relevant images whose labels are then verified by 
the experts to reduce the annotation efforts. This selection 
process is the main task of active learning (Settles 2009), 
a key ingredient of lifelong learning to incorporate expert 
knowledge and feedback via a concept called human-in-the-
loop (Käding et al. 2016d).

We, therefore, propose the combination of our decou-
pled approach with lifelong learning to incorporate addi-
tional knowledge over time by requesting further annota-
tions for selected images during the application (Käding 
et al. 2016d). This allows for continuous improvements 
of the automatic identification system by exploiting newly 
recorded data and corresponding labels provided by experts. 
These labeled images are used to update the decision model 
of our approach (a classifier or a regression model) with 
incremental learning techniques to avoid costly re-training 
from scratch. This leads to a feedback loop of continuously 
requesting further annotations of domain experts to improve 
the recognition system over time, and this feedback loop can 
be repeated many times. Hence, learning to distinguish indi-
viduals can be improved over and over again by incorporat-
ing more and more annotated images during the application.

With lifelong learning, it is meant that the system learns 
during its whole life span that is basically defined by the 
duration of its application. This is in contrast to the com-
mon approach of taking any pre-trained neural network with 
parameters learned on standard datasets, probably slightly 
adapting it for the target task by fine-tuning on a small target 
dataset, and trying to solve the identification task with this 
fixed recognition model. While such an approach is nowa-
days easily achievable due to many well-documented deep 
learning frameworks that provide different neural network 
architectures with pre-trained parameters, its rating might 

be questionable. Depending on the study design and the 
benchmark used for evaluation, fixed pre-trained models 
can achieve good performance on rather small-scale data-
sets when there are only little variations of the underlying 
data distribution. However, long-term monitoring in practice 
has to cope with several additional challenges as mentioned 
above, such that the recognition system needs to adapt to 
new situations and circumstances, ideally by also incorporat-
ing expert feedback to verify certain cases that are difficult 
to decide. Those mechanisms are provided by lifelong learn-
ing, and we argue that considering long-term monitoring 
of mammals as an application for lifelong learning leads to 
continuous model improvements and increased recognition 
performance.

Our experimental results in “Experiments” are a collec-
tion of different studies (Freytag et al. 2016; Käding et al. 
2016a; Brust et al. 2017; Körschens et al. 2018; Körschens 
and Denzler 2019) that we conducted during the last years 
in the context of animal re-identification and attribute pre-
diction, now put under one umbrella because the developed 
recognition systems for different animal species share the 
same general approach in terms of algorithmic design. While 
the original work published at computer vision and machine 
learning venues aimed at describing the developments of the 
different algorithms from a technical perspective, we con-
sider them here from the application point of view. We put 
them in relation to each other in context of the same general 
approach, and with their basic ability to incorporate life-
long learning techniques that can directly be applied to the 
incorporated decision models for improving them. We also 
present new results for identifying Asian elephants in camera 
trap videos (“Identifying Asian elephants”) and highlight the 
advanced possibilities for monitoring animals beyond iden-
tifying individuals. These possibilities are on the one hand 
attribute predictions of individuals and on the other hand 
lifelong learning with human-in-the-loop because the lat-
ter becomes more and more important for real applications 
and long-term monitoring (Stewart et al. 2021). Lifelong 
learning and the involved active sample selection via active 
learning strategies helps to reduce the workload of trained 
field experts for annotating data, since it becomes impossible 
to manually inspect all images due to the huge amount of 
recordings that are collected over time.

Related work

In this section, we briefly review related work on algo-
rithms for the tasks we want to solve. After mentioning 
relevant work on image classification and object detection 
in general (“Image classification and object detection”), we 
also list approaches for fine-grained recognition of differ-
ent animal species (“Fine-grained recognition and species 
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classification”), because it is a highly related task similar 
to identifying individuals (“Identifying individuals”) from 
a machine learning perspective. Furthermore, we discuss 
previous work on lifelong learning with a particular focus 
on active learning and human-in-the-loop aspects (“Lifelong 
learning and active learning”).

Image classification and object detection

Image classification methods can be used to assign discrete 
labels such as the ID of an individual animal to an entire 
image. In case of multiple animals in a single image, it 
makes sense to localize each individual in an image, e.g., 
by a rectangular bounding box, and assign an ID to each 
animal separately. This joint estimation of bounding boxes 
and class labels (IDs) is in general called object detection. 
In the following, we review related work on image clas-
sification and object detection based on recent deep neural 
network developments.

Deep neural networks for image classification

Deep neural networks and in particular convolutional neu-
ral networks (CNNs) have already been developed decades 
ago (LeCun et al. 1989; Matan et al. 1990; LeCun et al. 
1990; LeCun and Bengio 1995; LeCun et al. 1998), and 
they consist of multiple data processing units arranged in 
separate but interconnected layers to transform input data 
like images directly into the desired outputs like classifi-
cation scores used for individual identification. However, 
their major breakthrough in the computer vision com-
munity and especially for the task of image classification 
has been achieved by Krizhevsky et al. (2012). With the 
support of powerful graphical processing units (GPUs), 
they have been able to train a large CNN architecture 
often referred to as AlexNet on the well-known ImageNet 
dataset (Deng et al. 2009; Russakovsky et al. 2015) and 
improved classification accuracy by a large margin com-
pared to competing approaches. Since then, various neu-
ral network layers and different architectures have been 
proposed that further improved the performance for auto-
matic image classification, for example, ResNet (He et al. 
2016) and Inception (Szegedy et al. 2016) architectures 
besides others (Simonyan and Zisserman 2015; Chollet 
2017; Xie et al. 2017). In particular, the size of the net-
works has grown over time, with an increasing number of 
layers and network parameters to enable more expressive 
power of the learned feature representations. Although 
developed for object recognition in general, these deep 
neural networks are able to learn rather generic feature 
representations from example data. Hence, neural net-
works pre-trained on object category datasets like Ima-
geNet (Russakovsky et al. 2015) can also be applied as 

feature extractors to obtain reasonable numerical represen-
tations for images of objects in a specific domain, e.g., for 
monitoring certain animals. Sometimes, the networks are 
slightly adapted to the new domain by a transfer learning 
technique called fine-tuning (Yosinski et al. 2014; Sha-
rif Razavian et al. 2014; Long et al. 2019). Transfer learn-
ing means that the knowledge extracted from one data-
set during the training of a neural network for a certain 
classification task can be transferred to and exploited for 
another classification task, e.g., using a neural network for 
identifying individuals that has originally been trained to 
recognize general object categories. Furthermore, CNNs 
often serve as backbone network architectures for object 
detection methods like the ones listed in the following.

Object detection with deep neural networks

There exist many approaches for localizing objects in 
images, however, in the following, we focus on those based 
on deep learning methods. One of the first deep object detec-
tors has been proposed by Girshick et al. (2014) and is called 
region-based CNN (R-CNN). Object proposals determined 
with an unsupervised method are selected as candidates, 
for which features are extracted by a backbone CNN and 
classified by a support vector machine (SVM), one for each 
class, to determine the corresponding class label. This strat-
egy improved previous sliding window-based approaches 
for object detection (Dalal and Triggs 2005; Felzenszwalb 
et al. 2010) and our approach for identifying individuals 
described in “Methods” follows a similar concept. Note 
that the R-CNN approach has been extended and improved 
in several ways (Girshick 2015; Ren et al. 2015; He et al. 
2017).

Another general object detection approach based on deep 
learning is YOLO proposed by Redmon et al. (2016). This 
detector is trained end-to-end and is able to obtain all detec-
tions for an image with a single forward pass of the network 
and minimal post-processing operations. Another state-of-
the-art approach for object detection is single-shot detec-
tion (SSD) proposed by Liu et al. (2016). Similar to YOLO, 
they also use only a single forward pass per image but use a 
more complex output encoding together with assumptions 
about the aspect ratios of bounding boxes as well as pre-
dictions on different scales. Further improvements of the 
YOLO approach have been published as YOLOv2 (Redmon 
and Farhadi 2017), like more fine-grained feature maps and 
the awareness of multiple object scales by resizing the net-
work during training. In the context of wildlife monitoring, 
dedicated object detectors based on R-CNN or YOLO have 
been trained (Parham et al. 2018; Beery et al. 2019; Tabak 
et al. 2019).
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Fine‑grained recognition and species classification

Fine-grained recognition denotes an image classification 
task for which the classes often differ only slightly in small 
details because objects or instances belong to the same 
domain. This domain is typically given by a joint superclass, 
e.g., identifying different car models where all objects are 
cars (Krause et al. 2013). However, fine-grained recognition 
is more frequently applied in the context of animal species 
classification, e.g., distinguishing different bird species (Wah 
et al. 2011; Cui et al. 2018; Korsch et al. 2019, 2021b) or 
moth species (Rodner et al. 2015; Böhlke et al. 2021b, a; 
Korsch et al. 2021a). Besides early studies on fine-grained 
recognition with deep neural networks (Branson et al. 2014; 
Rodner et al. 2016), many approaches have been developed 
that can coarsely be partitioned in two subsets.

The first subset contains global approaches that solely 
process the entire image with a neural network as in stand-
ard image classification, either relying on smart pre-training 
and transfer learning (Krause et al. 2016; Cui et al. 2018) or 
applying advanced feature pooling strategies for aggregat-
ing localized visual information (Lin et al. 2015; Gao et al. 
2016; Simon et al. 2020). On the other hand, the second sub-
set denotes part-based and attention-based approaches (Ge 
et al. 2019; He et al. 2019; Korsch et al. 2019; Zhang et al. 
2019), which rely on detecting relevant image regions often 
associated with semantic parts such as the beak, the belly, 
and the wings of a bird. These regions are then encoded 
using feature representations from deep neural networks 
that should help focus on the small details for distinguish-
ing visually similar classes. While automatic species clas-
sification is already quite challenging due to the high visual 
similarity of different species from the same class, order, or 
family, the distinction of individuals from the same species 
is more complicated since relevant features might be even 
harder to determine.

Note that species recognition is not always a fine-grained 
recognition problem, e.g., when considering camera traps 
in forests or national parks where the system needs to dis-
tinguish different wild animals such as deer, fox, and wild 
boar. However, these species recognition tasks are also com-
monly tackled with deep neural networks (Villa et al. 2017; 
Norouzzadeh et al. 2018; Willi et al. 2019; Tabak et al. 2019; 
Schneider et al. 2020a).

Identifying individuals

Traditional methods for identifying individuals of a certain 
animal species follow a non-invasive genetic mark-recapture 
approach that allows for precise estimates but requires high 
levels of expertise leading to limited scalability (Kühl 2008; 
Guschanski et al. 2009; Arandjelovic et al. 2010; Roy et al. 
2014). Camera traps offer a cheap and widely accessible 

alternative for long-term usage  (Schneider et al. 2019), 
e.g., in combination with distance sampling (Howe et al. 
2017) or capture-recapture models (Kühl 2008; Pebsworth 
and LaFleur 2014). Thus, recording large amounts of visual 
data for monitoring purposes also requires computer vision 
algorithms for automatic evaluations (Schneider et al. 2019), 
since manual investigations would be too time-consum-
ing (Schneider et al. 2020a).

The field of animal biometrics  (Kühl and Burghardt 
2013) is dedicated to detecting visual patterns that enable 
the distinction of individuals (Crall et al. 2013; Cheema and 
Anand 2017) and different systems have been developed for 
animal detection and re-identification (Crall et al. 2013; 
Berger-Wolf et al. 2017; Parham et al. 2018; Yang et al. 
2019; Bakliwal and Ravela 2020). However, recent advances 
in recognizing human faces (Taigman et al. 2014; Schroff 
et al. 2015; Parkhi et al. 2015) have inspired the identifica-
tion of great apes (Loos et al. 2011; Loos 2012; Loos and 
Ernst 2013; Brust et al. 2017; Freytag et al. 2016; Crunchant 
et al. 2017; Schneider et al. 2020b) and elephants (Ardovini 
et al. 2008; Körschens et al. 2018; Körschens and Denzler 
2019; Kulits et al. 2021) based on the detected faces of the 
animals. Further animals that have been considered for auto-
matic re-identification are tigers (Shukla et al. 2019; Yu 
et al. 2019; Liu et al. 2019; Weideman et al. 2020) and tur-
tles (Carter et al. 2014; Dunbar et al. 2021), as well as ringed 
seals (Nepovinnykh et al. 2020) and manta rays (Moskvyak 
et al. 2020).

Lifelong learning and active learning

A typical machine learning workflow in an academic set-
ting, including a part of the experiments in this work, is 
best described in terms of a waterfall model (Data Science 
Process Alliance 2021). The discrete steps of collecting data, 
deriving and optimizing a model, and finally deploying it, 
are performed in order and once each. In contrast, lifelong 
learning (Käding et al. 2016d) assumes a continuous stream 
of unlabeled data. Repeatedly, a small fraction is selected for 
labeling by active learning methods (Settles 2009; Freytag 
et al. 2014; Käding et al. 2016a, 2018; Wang et al. 2017; 
Brust et al. 2019) and then used to update the model incre-
mentally (Käding et al. 2016c; Rebuffi et al. 2017; Castro 
et al. 2018). The continuity of lifelong learning aligns well 
with long-term monitoring projects, and active learning 
specifically is identified as a promising research avenue in 
this context (Norouzzadeh et al. 2018). Drawbacks of the 
waterfall learning approach for monitoring are illustrated by 
Beery et al. (2018) with solutions involving repeated training 
proposed by Beery et al. (2019).

Active learning improves annotation time efficiency in 
animal presence detection (Käding et al. 2016a), species 
classification (Evans et al. 2014; Brust et al. 2020) as well 
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as re-identification tasks (Norouzzadeh et al. 2020). Con-
tinuous data and model updates are posed as a fundamental 
problem for animal identification by Stewart et al. (2021). 
An annotation interface for ecological monitoring studies is 
provided by Kellenberger et al. (2020) and a graphical user 
interface implementing a lifelong learning approach for ani-
mal monitoring is described by Brust et al. (2021).

Methods

In this section, we first describe our general approach of 
using image features from deep neural networks and decou-
pled decision models to perform the prediction task (“Gen-
eral approach using deep image features and decoupled 
decision models”). We then characterize the two involved 
building blocks individually: the feature extraction using a 
backbone CNN network that is restricted to the image region 
of the localized animal and its head (“Individual localiza-
tion and deep image feature extraction”), and the applica-
tion of standard machine learning models for classification 
or regression to perform an identification task or to predict 
attributes of the animals (“Classification and regression for 
individual identification and attribute prediction”). Decou-
pling the feature extraction from the final decision model for 
predicting the desired outputs easily allows for incorporating 
lifelong learning, where we want to integrate further knowl-
edge via expert annotations for new images following the 
human-in-the-loop concept (“Lifelong learning with human-
in-the-loop”). However, integrating human feedback typi-
cally requires active learning strategies for selecting the most 

relevant images that need to be annotated to gain most from 
the additional annotation efforts, and incremental learning 
techniques to update the models (“Active learning strategies 
and incremental learning”).

General approach using deep image features 
and decoupled decision models

Our general approach is visualized in Fig. 2 and the main 
idea is to decouple the feature extraction with powerful CNN 
architectures from the final decision model that performs the 
prediction based on the extracted feature representations. 
To obtain meaningful features for an identification task, the 
feature extraction is restricted to the image region covered 
by the individual or even more localized to the correspond-
ing head region, which is obtained by an object detection 
approach. Afterwards, the extracted features can be used 
to perform either individual identification or attribute pre-
diction with dedicated decision models, which are machine 
learning models either for classification to obtain discrete 
outputs or for regression to obtain continuous outputs. In 
the next section, we specifically focus on the feature extrac-
tion for individuals which first need to be localized in the 
image. Note that localizing an individual or its head can be 
skipped if one is interested in an identification of individuals 
in manually taken photographs, where each image already 
contains only a single individual or its head in a close-up 
view. However, for a wider range of applications includ-
ing the identification in images from camera traps, we also 
include the localization step.

Fig. 2  Overview of our general approach: the head of an individual 
is first detected with a deep learning object detector, then features 
from the corresponding image patch are extracted using a pre-trained 
deep neural network architecture. Finally, the extracted features can 

be used by a decision model to predict the desired outputs, e.g., either 
a classifier to obtain the corresponding ID or a regression method to 
obtain continuous attribute values. The chimpanzee image is taken 
from the C-Zoo dataset of Freytag et al. (2016)
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Individual localization and deep image feature 
extraction

Given an image containing one or multiple animals of the 
same species, we first run an object detector to localize each 
individual and determine a corresponding bounding box. For 
this task, a deep learning detector such as R-CNN or YOLO 
can be used as mentioned in “Image classification and object 
detection”. Since one usually has not enough training data 
for a single species to train such a detector from scratch, 
pre-trained detection networks for standard object categories 
are used and fine-tuned with a small set of annotated images 
with animals from the target species.

As confirmed by domain experts, the head of an animal 
usually contains many discriminative features for distin-
guishing individuals, and it, therefore, makes sense to focus 
on the head regions for extracting meaningful feature rep-
resentations. Hence, one can directly fine-tune the detec-
tor only for the heads and not for the whole bodies, which 
requires corresponding bounding box annotations. In case of 
great apes, it is then advantageous to fine-tune a face detec-
tor trained to localize human faces in images instead of a 
detector for common objects, mainly because of the higher 
similarity of ape faces to human faces and because of the 
large amount of available datasets for human face recogni-
tion that can be used to pre-train the detector (Schroff et al. 
2015; Parkhi et al. 2015; Taigman et al. 2014).

Given the corresponding bounding boxes, we extract 
feature representations from these image regions by apply-
ing deep neural networks to the associated image patches. 
Due to the limited amount of annotated data that is usually 
available for an identification task, it is not possible to learn 
parameters of large, powerful neural network architectures 
only from the images of the species under investigation. The 
reason for this is that there are way more parameters to esti-
mate for large network architectures compared to the num-
ber of training images, which leads to heavy overfitting of 
the learned model to the training dataset because the model 
would be able to memorize each individual example. In the 
supplemental material of Käding et al. (2016c), we show 
that the negative impact of fine-tuning only the last layer, as 
opposed to more layers or the whole network, is negligible 
even when there is sufficient training data. To leverage their 
advantages in our restricted training data scenarios, we apply 
pre-trained neural networks as black-box feature extractors, 
where the network parameters have been determined using 
large-scale datasets of common object categories, e.g., Ima-
geNet (Russakovsky et al. 2015). Common architectures like 
AlexNet (Krizhevsky et al. 2012) or residual networks like 
ResNet50 (He et al. 2016) are implemented in various deep 
learning frameworks and can easily be applied off-the-shelf. 
Given the extracted feature representations, a classifier can 
be learned from annotated training data using these features 

as inputs and delivering a class label that is associated with 
the ID of an individual. However, classifiers can also be used 
for predicting discrete attributes from the extracted feature 
representations, and methods for regression allow the esti-
mation of continuous attributes like the age of an individual.

Classification and regression for individual 
identification and attribute prediction

Since we decoupled the feature extraction with deep neu-
ral networks from the final prediction for the correspond-
ing task, we are free to choose another machine learning 
model that operates on the extracted features for estimating 
animal IDs or attributes. This final model for prediction can 
be substituted according to the task that needs to be solved, 
and it could either be a multi-class classifier for animal re-
identification or age group prediction, a binary classifier for 
gender prediction, or a regression model for estimating con-
tinuous values like the age of an animal.

For classification tasks, we rely on support vector 
machines (SVMs) that have been widely used for both 
binary and multi-class classification (Cortes and Vapnik 
1995; Schölkopf and Smola 2001). The idea of SVMs is to 
find decision boundaries in the feature space that separate 
different classes (e.g., individual animals) with a maximum 
margin, i.e., maximizing the distance between the examples 
of each class and the decision boundary while ensuring that 
examples of the same class are on the same side of the deci-
sion boundary. With SVMs it is possible to determine linear 
decision boundaries, i.e., hyperplanes in the feature space 
via linear SVMs, or non-linear decision boundaries using 
kernel functions and kernel SVM (Schölkopf and Smola 
2001).

Although there exist support vector approaches for 
regression (Schölkopf and Smola 2001), we use Gaussian 
processes (GPs) for regression tasks (Rasmussen and Wil-
liams 2006). They have the advantage that uncertainties can 
be estimated together with the predicted output, because 
the model is formulated in a probabilistic manner, and that 
closed-form solutions exist for learning the model param-
eters under the assumption of a Gaussian noise model. Note 
that GPs can also be used for classification via label regres-
sion (Rasmussen and Williams 2006; Kapoor et al. 2010; 
Rodner et al. 2017). Furthermore, SVMs and GPs have the 
advantage that there exist update rules and algorithms for 
incremental learning and incorporating additional data (Cau-
wenberghs and Poggio 2001; Diehl and Cauwenberghs 2003; 
Lütz et al. 2013; Freytag et al. 2014), which is an important 
aspect for lifelong learning.

Alternatives such as random forests, nearest-neighbor 
rules, and other classifiers are not considered in our evalu-
ation. Since the features generated by a pre-trained neural 
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network are trained to be linearly separable by definition, 
there is little need for highly non-linear or overparameter-
ized classifiers. Instead, we leverage the high computational 
efficiency of SVM and GP models.

Lifelong learning with human‑in‑the‑loop

Lifelong learning denotes a concept, where learning a rec-
ognition system is not fully automatic, but where human 
knowledge and intervention is integrated in the training 
algorithms to improve learning and to make the final deci-
sions of the recognition system more robust. It can be seen 
as a semi-automatic learning approach and to emphasize the 
human interaction part, it is called learning with human-
in-the-loop. The loop is usually referred to a continuous 
training process of a recognition system in the context of 
long-term applications where additional data becomes avail-
able over time. We visualize this loop in a lifelong learning 
cycle in Fig. 3. Given an initial model learned with labeled 
training data, the following steps are repeated over and over 
again during an application, where new unlabeled data 
becomes available due to continuous recordings. First, active 
learning strategies are applied to select valuable samples 
that are supposed to be the most interesting and important 
ones with potentially the largest impact on improving the 
current model. Of course the main question here is how to 
select these samples and details are given in the next sec-
tion (“Active learning strategies and incremental learning”). 
The selected samples are then passed to the domain experts 
for annotation. This is the human interaction part and one 
common goal is to reduce the labeling efforts of the experts 
or to keep it on a reasonable and maintainable level because 

manual inspection is usually a time-consuming task. Finally, 
we have additional labeled data provided by expert feedback, 
which can be used to improve the model via incremental 
learning and corresponding model parameter updates. In the 
next step, the loop starts again with automatically selecting 
samples from the incoming data. Due to incorporating expert 
feedback during learning, the continuous training loop is 
also called feedback loop.

Note that one can further think of a combined recogni-
tion approach, where the automatic system makes several 
proposals for an individual and an expert has to decide for 
the final ID label based on the provided set of candidates. 
In this way, the system supports the experts in the applica-
tion by reducing the set of possible choices, and we reflect 
such an option in our experimental results by providing 
also top-5 accuracies, meaning that the system is successful 
when the correct individual is among the five highest ranked 
IDs, besides top-1 accuracies, which are used for evaluat-
ing a fully automatic identification. However, in a scenario 
where the system makes several suggestions per individual, 
an expert is involved in every decision for every record-
ing, which might be helpful for studies at smaller scales 
but becomes infeasible for large-scale monitoring activities.

We, therefore, consider human-in-the-loop for improv-
ing the training of the recognition system over time in a 
lifelong learning setup, where we get access to additional 
image data during the application. To learn from the addi-
tional data, appropriate annotations for the new data are 
required. While it would also be possible to request bound-
ing box annotations, which could even be provided by lay-
men who do not need to be able to distinguish individuals, 
we rely on the general detectors mentioned in “Individual 

Fig. 3  Overview of our pro-
posed lifelong learning cycle 
realizing the human-in-the-loop 
concept. After learning an 
initial model with annotated 
training data, a continuous 
feedback loop is established 
that leverages additional data 
recorded during the applica-
tion. Active learning strategies 
select valuable examples from 
the incoming data stream that 
are then annotated by experts 
(human interaction) and finally 
used to update and improve the 
model via incremental learning. 
Chimpanzee images are taken 
from the C-Zoo dataset of 
Freytag et al. (2016)
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localization and deep image feature extraction” to localize 
animals in the images automatically and focus on request-
ing ID labels or attribute annotations from experts. Note 
that few additional bounding box annotations might be 
helpful for camera trap videos, in which multiple indi-
viduals need to be tracked and identified (see “Identifying 
Asian elephants” for a corresponding application). In this 
case, annotating the first few frames with locations and 
IDs could be helpful to improve the final performance of 
the system.

However, when we want to integrate additional image 
data in the learning process, the main challenge is to select 
which images need to be annotated by experts to gain the 
largest improvements of the recognition system because it is 
usually too expensive to label all incoming data. On the one 
hand, it is too expensive in terms of human resources and 
time that is spent by trained experts for the labeling. They 
might not even be able to go through all the recorded images 
in reasonable time, since the datasets of large-scale long-
term monitoring studies are simply overwhelming and con-
tinuously increasing. On the other hand, it is too expensive 
from a computational resources point of view. There is only 
limited data storage available such that not all incoming data 
can be stored permanently. Furthermore, training or updat-
ing a model with an ever increasing size of the training data-
set takes large computational time, also with sophisticated 
incremental learning techniques, and might even become 
infeasible at some point if there is no appropriate sample 
selection involved.

Therefore, useful data selection strategies have been 
developed as the key ingredient for active learning meth-
ods (Settles 2009; Freytag et al. 2014; Käding et al. 2016a, 
2018; Wang et al. 2017; Brust et al. 2019) to tackle the 
sample selection problem. One obvious requirement for an 
application in unconstrained environments is the annota-
tion of data that belongs to a new and previously unknown 
individual, i.e., which has not been observed in the training 
dataset. Updating the classifier with data of new individuals 
allows for increasing the number of individuals the system 
can recognize over time. While there exist methods that 
specifically focus on automatically detecting instances of 
unknown classes known as novelty detection (Bodesheim 
et al. 2013, 2015), active learning strategies also incorporate 
mechanisms for choosing images of unknown individuals 
that should be presented to an expert for annotation (Käding 
et al. 2015). Furthermore, related work on open set recogni-
tion (Scheirer et al. 2013, 2014) and open world recogni-
tion (Bendale and Boult 2015) deal with classification prob-
lems, for which the number of different classes is not fixed 
but might grow during the application.

For performing active learning with human-in-the-loop 
in a lifelong learning application such as animal monitor-
ing and identification, a continuous feedback loop needs 

to be implemented that consists of several steps: selecting 
a subset of the incoming data for annotation, requesting 
the labels from experts, incorporating the additional data 
in the learning process of the system, and updating the 
model to enable improved predictive performance. We use 
the WALI framework (Käding et al. 2016d) for this pur-
pose, where WALI stands for watch-ask-learn-improve and 
resembles the four steps mentioned before. Note that these 
steps can be repeated many times during an application 
that continuously delivers new data, which leads to a so-
called lifelong learning cycle (Käding et al. 2016d). After 
improving the model with learned parameter updates from 
additionally annotated data, the incoming data stream is 
further monitored and analyzed (watch), selecting the 
presumably most relevant images for requesting expert 
annotations (ask), and learning from these additional 
data samples (learn) to update the model parameters and 
obtain an improved recognition system (improve). This 
feedback loop ensures that the most current knowledge 
influences the selection performed by active learning. For 
more details about WALI, we refer to the original work of 
Käding et al. (2016d).

To summarize, the two most important aspects in a life-
long learning cycle are a clever selection of data for anno-
tating and efficient algorithms for incremental learning 
to update the model parameters continuously. Hence, we 
discuss active learning strategies and incremental learning 
techniques in the following.

Active learning strategies and incremental learning

To update a recognition model with additional training sam-
ples, interesting and relevant samples have to be selected 
from the incoming data during the application such that 
experts can annotate them. The goal of active learning is 
to choose those samples that improve the recognition sys-
tem the most when they have been labeled and used to 
update the model parameters. There exist several strategies 
for selecting meaningful samples, and the most prominent 
and most intuitive one is uncertainty sampling (Lewis and 
Gale 1994; Settles 2009; Wang et al. 2017). This means that 
those images are selected for annotation, for which the cur-
rent model is most uncertain about its prediction. Hence, a 
human expert should resolve such situations, e.g., if a clas-
sifier is less confident and favors multiple classes (IDs) for 
a single individual.

Typically, a classifier provides a soft output score, i.e., a 
continuous scalar value, for each class. This value reflects 
the confidence of the classifier that the corresponding class 
is present in the image under investigation. Sometimes, the 
output scores are probabilities for observing a certain class 
but stochastic properties (outputs are between zero and 
one, and sum up to one over all classes) are in general not 
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required, since simply the class with the largest output score 
can be assigned. Hence, the soft output score can in principle 
directly be used as a measure of confidence for the classifier. 
Another easy implementation of uncertainty sampling for 
a classification model is the best-vs-second-best approach 
also known as margin sampling (Settles 2009; Wang et al. 
2017). If the difference between the highest score and the 
second-highest score of a classifier is small, the model is 
highly uncertain about assigning one of these two classes to 
an image. Formally, the feature representation lies close to 
the decision boundary of the classifier in the feature space, 
which increases the risk of a misclassification. In this case, 
an expert should provide the correct label.

However, extending models with samples selected by an 
uncertainty criterion does not always lead to the best model 
improvements in terms of achievable recognition perfor-
mance, which we also show in our experiments in “Life-
long learning of age predictors”. There exist more advanced 
active learning strategies, e.g., selecting unlabeled samples 
based on the expected model output change (EMOC) crite-
rion (Freytag et al. 2014; Käding et al. 2016a, b, 2018). With 
EMOC, those samples are selected for annotation, which are 
expected to change the future model outputs the most after 
they have been used to update the model parameters. This 
makes sense because highly informative examples are likely 
to cause large changes of model outputs for future predic-
tions after the model updates, and therefore, those examples 
are most valuable for the model evolution. Hence, samples 
selected by the EMOC criterion have a large impact on the 
behavior of the model, and it has been shown that EMOC is 
able to select the most influential examples including those 
of unseen categories or objects in new poses for classifica-
tion tasks (Freytag et al. 2014; Käding et al. 2016a, b).

Another advantage of EMOC is that it can not only 
be used for classification, but also for regression mod-
els (Käding et al. 2018). Although with Gaussian processes 
for regression, one can directly compute the uncertainty of 
an estimate in terms of the predictive variance (Rasmus-
sen and Williams 2006), it has been shown empirically that 
EMOC selects samples that are more beneficial for faster 
learning of accurate models (Freytag et al. 2014; Käding 
et al. 2016a, b). Hence, we propose using the EMOC crite-
rion to select samples for any task, no matter if it is a clas-
sification task (individual identification or discrete attrib-
ute prediction) or a regression task (continuous attribute 
prediction).

Once the additional samples have been annotated by 
domain experts, the recognition model needs to be updated 
via incremental learning techniques. Although there exist 
approaches for updating deep neural networks in con-
tinuous learning via fine-tuning  (Käding et al. 2016c), 
there are several challenges that arise in a lifelong learn-
ing scenario (Lomonaco and Maltoni 2017; Maltoni and 

Lomonaco 2019), such as catastrophic forgetting (McClos-
key and Cohen 1989; Robins 1993; French 1999; Shmelkov 
et  al. 2017; Hayes et  al. 2020). Since in our general 
approach (see “General approach using deep image features 
and decoupled decision models”), pre-trained neural net-
works are used for feature extraction only because feature 
extraction is decoupled from solving the final downstream 
task with a classification or regression model, we do not 
update neural network parameters and keep the feature 
extraction network constant. Note that this is even in line 
with attempts for end-to-end incremental learning of neural 
networks (Castro et al. 2018), where the feature extraction 
part is kept unchanged as well. Hence, we also only update 
the final classification or regression models, which ena-
bles a tight feedback loop between annotators and active 
learning methods due to very quick model updates. For 
SVM classifiers, there are efficient update algorithms for 
incremental learning available (Cauwenberghs and Pog-
gio 2001; Diehl and Cauwenberghs 2003), and in case of 
Gaussian process regression models, there exist closed-
form solutions for incremental learning (Lütz et al. 2013; 
Freytag et al. 2014).

Experiments

With our experiments, we demonstrate that our general 
approach works well in numerous applications, includ-
ing different animal species that are considered as well as 
different tasks that need to be solved (identification and 
attribute predictions). We first show results for identify-
ing individual elephants (“Identification of African forest 
elephants” and “Identifying Asian elephants”), followed 
by the identification of gorillas (“Identifying gorillas”) and 
chimpanzees (“Identifying chimpanzees”). Then, our results 
for predicting attributes of animals are presented (“Attrib-
ute predictions”). Finally, we demonstrate the application 
of lifelong learning, for which we picked the task of age 
prediction (“Lifelong learning of age predictors”). Note 
that all datasets involved in our experiments including the 
one for lifelong learning are of rather small scale in terms 
of number of example images. Nevertheless, the benefits 
of lifelong learning are already visible and we expect even 
further improvements of the recognition systems in actual 
long-term monitoring applications.

Identification of African forest elephants

The first experiment we present is about the identification 
of African forest elephants (Loxodonta cyclotis) (Körschens 
and Denzler 2019), using images that are recorded manually 
by photographers. We start with a short description of the 
underlying dataset.
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ELPephants dataset

For identifying African forest elephants, we use the ELPe-
phants dataset presented by Körschens and Denzler (2019), 
which contains images from a long-term monitoring study 
of elephants in the Dzanga bai clearing of the Dzanga-Ndoki 
National Park in the Central African Republic. The data-
set covers 276 elephant individuals and consists of 2078 
manually taken images taken over about 15 years, with each 
image having a single annotation for the depicted individual. 
Although there is little to no occlusion of the animals in the 
images due to manually taken photographs in the clearing, 
there are several other challenges besides varying view-
points, like occlusion of useful features for identification 
through mud, aging of individuals during this long time 
span, as well as changing appearance of individuals due to 
new scars and broken tusks due to fights that might occur 
over time. For more details about this dataset, we refer to 
the descriptions of Körschens and Denzler (2019). In our 
experiments, the dataset is split randomly into 1573 images 
for training and 505 images for testing using a 75%/25% 
stratified split. Since our approach to this specific problem 
assumes a closed set of individuals, the number of individu-
als in each split is the same and there are no held-out indi-
viduals in the test set.

The elephant identification system (EIS)

For the identification of individual elephants, there are 
several characteristic features such as size and shape of 
the tusks, which also vary between male and female ele-
phants (Körschens and Denzler 2019). Furthermore, signs 
from fights or other injuries are important, like broken tusks 
as well as scars, rips or holes in the ears. We, therefore, 
focus on the head including ears, tusks, and trunk of the 
elephants for the identification. Our elephant identification 
system (EIS) (Körschens and Denzler 2019) uses an elephant 
head detector, which is a YOLO network (Redmon et al. 
2016) trained on 1285 elephant images from Flickr.1 These 
images are not part of the dataset for identification and have 
been manually annotated with bounding boxes covering 
head, ears, tusks, and trunk of each individual (Körschens 
and Denzler 2019). When applying the head detector on the 
identification dataset for which we only have a single ID 
label per image, we might obtain multiple bounding boxes 
due to noise or multiple elephants present in the image, and 
we need to keep only one bounding box for the identifica-
tion. Hence, we select the most prominent bounding box as 
the one that covers the largest image area, weighted by the 
confidence score of the detector (Körschens and Denzler 
2019).

For the selected head region, features are extracted using 
a ResNet50 network (He et al. 2016) pre-trained on Ima-
geNet (Russakovsky et al. 2015), and we compare different 
network layers with respect to their representation power. 
Feature extraction and model training was performed on the 
original images and their horizontally flipped versions to 
account for an appropriate data augmentation strategy. We 
then use a linear SVM classifier to perform the identifica-
tion task. To enable the possibility for considering multiple 
images of the same individual for the identification task in 
an extended application, e.g., when there are short videos 
available or when the photographer takes multiple images 
of the same individual on the same day (perhaps from differ-
ent viewpoints), a simple aggregation step can be added. In 
case of multiple images for a single decision, we follow the 
concept of late fusion and combine the classifier outputs of 
the individual images by averaging class confidence vectors 
obtained from the SVM classifier to obtain the final classi-
fication scores. This allows for easily integrating images of 
different viewpoints to allow for a more robust identification.

Elephant identification results

Our EIS described before consists of an elephant head detec-
tor, followed by feature extraction from the head region 
using a deep neural network, and classification of the head 
for identification. The head detector achieves an average pre-
cision of 90.78%, evaluated on 227 manually annotated test 
images (Körschens and Denzler 2019).

For identifying individuals, we have tested different acti-
vation layers from the ResNet50, whose outputs are used as 
a feature representation to describe an elephant head and to 
perform the classification. It turned out that the activation 
layers from the 13th and 14th convolutional block, in the fol-
lowing denoted by activation40 and activation43, 
performed best. Hence, we only report results for these lay-
ers, for which we also added different maximum pooling 
layers to account for translation invariance.

The results (top-1 and top-5 accuracies) are shown in 
Table 1, and we observe that the best results are achieved 
with features from the activation40 layer. When tak-
ing only a single image for the identification of an elephant 
into account, the best result of our EIS is a top-1 accuracy 
of 56.0% for fully automatic identification with a region size 
for maximum pooling of 6×6 . Regarding the top-5 accuracy, 
pooling with a smaller region size ( 5×5 ) performed slightly 
better, leading to 72.6%. We also performed experiments 
where we used two images for a single decision and were 
able to improve recognition accuracies significantly. With 
two images, a top-1 accuracy of 74.2% is achieved with 
features from the activation40 layer and maximum 
pooling with a region size of 6×6 . Furthermore, the correct 
individual is among the top-5 suggestions of the system in 1 https:// www. flickr. com/.

https://www.flickr.com/
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85.2% of the cases, which would already narrow down the final 
decision from 276 possible individuals to support the ecolo-
gists. Hence, our experimental results show that if it is possible 
within the application, incorporating more than one image for 
the identification is beneficial and more robust because more 
visual information due to different viewpoints can be exploited.

Note that the identification of individual elephants based 
on whole bodies compared to considering only head regions 
has led to worse performance, and the same holds for taking 
the last activation layer of the ResNet50 to extract meaning-
ful features (Körschens and Denzler 2019), which is typi-
cally done when using a deep neural network as a feature 
extractor. Hence, in our experiments we have shown that 
earlier layers within the ResNet50 carry more semantically 
meaningful information for identifying individual elephants.

The intended application for this specific approach assumes 
a closed set of individuals. Furthermore, the predictions are 
only used as suggestions to assist human annotators, who still 
manually assess each image, but can do so faster with the help 
of our system. Because of the small number of images and the 
high variance in quality, a fully automated approach is not fea-
sible and human interaction is required. Hence, false predictions 
or out-of-dataset individuals are not particularly harmful in this 
application and only impact efficiency.

Identifying Asian elephants

In this section, we demonstrate the application of our EIS 
from “The elephant identification system (EIS)” for identify-
ing Asian elephants (Elephas maximus) in short video clips. 
First, the dataset for our experiment is described.

Asian elephant video dataset

The dataset has been provided by a research group from 
the comparative cognition for conservation laboratory (CCC 

lab2) at Hunter College, City University of New York. It 
contains annotated camera trap footage of Asian elephants 
recorded automatically in forest areas in Thailand. There are 
108 individuals spread over 683 short videos, each having a 
length of roughly 20 s. Note that there is often more than one 
individual present in a video and ideally all of them should 
be identified in each frame. Interestingly, 274 videos are 
recorded during nighttime, posing an additional challenge 
for the identification of individuals. A further challenge is 
imposed by younger elephants, since 26 of the 108 individu-
als are offsprings, which often have less distinctive features 
compared to adult elephants. For evaluation, the dataset is 
split into 508 videos for training and 175 videos for testing.

Pipeline for processing video data

To exploit the opportunity of having video data for identifi-
cation, we want to use as many frames within a video as pos-
sible that contain a single individual to integrate more visual 
information and to make the decisions more robust. Hence, 
we extend our EIS with an elephant tracking approach such 
that detections of the same individual within consecutive 
images in a video are linked together to a so-called tracklet 
and all images of the individual within a tracklet can be used 
to perform the identification.

This time, we use the MegaDetector (Beery et al. 2019) 
for animal detection in the images, which has been pre-
trained on millions of camera trap images containing dif-
ferent animal species and which is built to detect animals in 
general without inferring the corresponding species. This 
general detector worked surprisingly well for both daytime 
and nighttime footage in our elephant dataset such that we 
did not need to carry out any additional training step with 
annotated elephant images.

Table 1  Individual 
identification results for 
African forest elephants on the 
ELPephants dataset (Körschens 
and Denzler 2019)

Best results indicated in bold

Activation layer Max pooling filter size Results for one image per 
individual

Results for two images per 
individual

Top-1  
accuracy  
(%)

Top-5  
accuracy  
(%)

Top-1  
accuracy  
(%)

Top-5  
accuracy  
(%)

activation40 4×4 50.8 70.6 69.8 81.8
activation40 5×5 54.4 72.6 71.4 83.2
activation40 6×6 56.0 71.6 74.2 85.2
activation43 4×4 52.2 71.6 70.0 83.0
activation43 5×5 54.6 70.8 72.2 83.2
activation43 6×6 52.4 70.0 70.8 82.8
activation43 No pooling 51.8 65.9 68.6 80.4

2 https:// cccon serva tion. org/.

https://ccconservation.org/
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To connect detections to tracklets, we follow the track-
ing-by-detection approach and apply either the IOU/V-IOU 
tracker (Bochinski et al. 2017, 2018) or the graph-based 
multi-object tracking  (GBMOT) approach  (Mothes and 
Denzler 2017). For the identification, we then use every n-
th image (for this experiment, we set n = 15 ) of each tracklet 
to reduce redundancy such that different images are distinct, 
and apply feature extraction and classification following our 
EIS from “The elephant identification system (EIS)”. The 
choice of n is a trade-off between the amount of informa-
tion or training data (lower n), and the distinctiveness of the 
individual examples (higher n). We also include the elephant 
head detector of our EIS, applied to the bounding boxes 
of each tracklet, and compare our EIS with the CurvRank 
approach of (Weideman et al. 2020) that uses features from 
the ear contours of the elephants for identification.

Results for identifying Asian elephants in videos

In preliminary experiments, we compared the different track-
ing approaches on ten annotated daytime videos and ten 
annotated nighttime videos of our elephant dataset. While 
the IOU/V-IOU tracker achieved higher precision (90.3% for 
daytime videos and 89.5% for nighttime videos) compared 
to GBMOT (85.8% for daytime videos and 88.8% for night-
time videos), the latter obtained a higher recall (79.5% for 
daytime and 83.2% for nighttime vs. 72.7% for daytime and 
74.6% for nighttime). Hence, to not miss any individual, we 
decided to select the GBMOT approach for tracking due to 
its higher recall.

The results for identifying individual elephants are shown 
in Table 2. Across all videos, our EIS achieves a top-1 accu-
racy of 44.8% and a top-5 accuracy of 69.8% when consider-
ing the full bounding boxes of the elephants for identifica-
tion. An additional elephant head detection did not change 
the results much, neither only for nighttime videos nor only 
for daytime videos. This can be attributed to the fact that the 

head detector has been trained on the other elephant dataset, 
which is of much higher quality compared to the images of 
the videos from the camera traps.

The low image quality is also the reason why CurvRank 
performed poorly in our experiments, because often no ear 
contour of the elephant could be found, or another contour 
not belonging to the ear was found that was then classified 
incorrectly. Note that the CurvRank algorithm was proposed 
for high quality photographs and in our experiments we have 
observed the limitations of this identification approach. 
However, as it is to the best of our knowledge the state-of-the 
art elephant-specific identification method, and our videos 
are of reasonably high resolution, CurvRank is nevertheless 
a sensible baseline.

This also highlights the difficulty of the dataset and 
emphasizes the good results of the EIS even more. Inter-
estingly, the identification was consistently more successful 
on nighttime videos compared to daytime videos for both 
approaches.

In “Elephant identification results”, we discuss the 
intended human-in-the-loop application of the EIS, which 
also applies to this video task. Consequently, the same limi-
tation of a closed set applies here as well.

Identifying gorillas

In this section, we showcase an application (Brust et al. 
2017) where our decoupled approach is a particularly good 
fit. The goal is to identify 147 individuals of the Western 
lowland gorilla species (Gorilla gorilla gorilla) using facial 
features.

Gorilla dataset

Instead of automated camera traps, the images are gener-
ated during manual field photography in the Nouabalé-
Ndoki National Park, Republic of Congo. The photographers 

Table 2  Our experimental 
results for identifying Asian 
elephants in video clips

Full elephant bounding boxes With detected elephant heads

Top-1 accuracy (%) Top-5 accuracy (%) Top-1 accuracy (%) Top-5 accuracy (%)

All videos (175)
 CurvRank 4.5 17.2 4.9 12.4
 EIS 44.8 69.8 44.3 69.6

Only nighttime videos (73)
 CurvRank 5.3 18.4 8.3 8.3
 EIS 45.2 74.0 46.2 73.1

Only daytime videos (102)
 CurvRank 4.2 16.7 4.4 13.0
 EIS 44.4 66.7 43.8 68.5
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attempt to film individuals separately and each of the 12,765 
images is labeled with the one individual in focus. However, 
there are no bounding box annotations for the respective 
faces. While the photographs are of high quality, there are 
numerous challenges as exemplified in Fig. 4.

Face detection

We randomly select 2500 images and manually annotate 
bounding boxes for each of the faces. The resulting small 
dataset is used to train a YOLO detector (Redmon et al. 
2016) with a setup identical to the chimpanzee detector pro-
posed by Freytag et al. (2016). We split the dataset into up 
to 2000 images for training and 500 for validation. Using all 
2000 images for training, the detector achieves an average 
precision of 90.8%. With only 500 training images, we still 
reach a usable average precision of 86.6%.

As a sanity check, we run the detector on the whole data-
set of 12,765 images and count the number of detections, 
assuming that each photograph contains exactly one indi-
vidual. The detector trained on 2000 images detects exactly 
one face in 95.4% of images, no face in 0.4% and more than 
one face in 4.1%. Qualitative samples indicate that a large 
fraction of the false positives are in fact faces of infants that 
are sitting on an adult individual’s shoulders.

Individual gorilla identification

We crop each face in the whole dataset using the detector 
and associate it with the respective labeled individual. This 
assumes that the face is detected correctly. When we detect 
more than one face, we select the face with the largest area 
because annotators tend to label the adult gorilla if an infant 
is present. We then extract features from the resulting dataset 
using the pool5 layer of the BVLC AlexNet (Krizhevsky 
et al. 2012) implementation.3

The features are classified using an SVM similar to 
Freytag et al. (2016). Using the best detector trained on 2000 
images, we achieve a top-1 identification accuracy of 62.4% 
and a top-5 accuracy of 80.3% over all 147 individuals.

The training process on the largest dataset completes in 
less than a second on modern x86 hardware. Hence, we do 
not have to rely on incremental learning in this task, but 
can afford to completely re-train the classifier whenever new 
training data becomes available. Including new individuals 
is trivial in this setup. For a proper evaluation of incremental 
learning techniques especially over a longer time period, 
large annotated image datasets from long-term monitoring 

Fig. 4  Examples from the dataset of Brust et al. (2017) illustrating challenges such as occlusion, motion blur, lighting difficulties, and high vari-
ance in object scale

3 http:// dl. caffe. berke leyvi sion. org/ bvlc_ alexn et. caffe model.

http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel
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studies are required, which are so far not available for many 
species including gorillas.

Identifying chimpanzees

In our final set of experiments, we focus on chimpanzees 
(Pan troglodytes) and start with the identification task in 
this section following Freytag et al. (2016). Afterwards, 
we consider attribute predictions in “Attribute predictions” 
and “Lifelong learning of age predictors”. The dataset used 
in our experiments is described in the following.

C‑Tai chimpanzee dataset

We use the C-Tai dataset described by Freytag et al. (2016), 
who also published the images as well as training and test 
splits for their experiments. The C-Tai dataset is derived 
from previously published datasets of Loos and Ernst 
(2013), who specifically focused on attribute predictions 
for chimpanzee faces. Hence, we also use it to evaluate our 
algorithms for the task of estimating attribute values of 
individuals.

The images of the C-Tai dataset have been recorded in 
the Tai National Park in Côte d’Ivoire, with strongly vary-
ing image qualities due to heavy illumination changes and 
individuals that are captured in large distances. There are 
5078 chimpanzee faces from 78 individuals in this dataset in 
total, but only 4377 of them have complete annotations with 
respect to identity and further attributes (age, age group, 
gender), resulting in 62 different individuals from five age 
groups. For more details and statistics about this dataset, we 
refer to the work of Freytag et al. (2016) and the correspond-
ing supplementary material.

Setup for identifying chimpanzees

To evaluate our identification approach, we use five ran-
dom splits of the dataset following stratified sampling with 
80% of the images for training and hold-out 20% for test-
ing. The performance is measured using averaged class-
wise recognition rates (ARR). Feature extraction is either 
done using the VGGFaces network of Parkhi et al. (2015) 
trained on the Labeled Faces in the Wild dataset (Huang 
et al. 2007) for human face recognition, or using the BVLC 
AlexNet (Krizhevsky et al. 2012) pre-trained on object cat-
egories of ImageNet (Russakovsky et al. 2015). For both 
networks, activation outputs of the pool5 layer (last layer 
before fully-connected layers) and of the fc7 layer (last 
layer before class scores) are tested. An SVM is used for 
classification (see “Classification and regression for indi-
vidual identification and attribute prediction”). Furthermore, 
we compare our approach with the baseline of Loos and 
Ernst (2013) for chimpanzee identification.

Results for identifying chimpanzees

Our experimental results for identifying chimpanzees in 
the C-Tai dataset are shown in Table 3. It can be observed 
that the quality of the identification heavily depends on the 
selected method for feature extraction. Hence, choosing 
an appropriate network architecture and a suitable activa-
tion layer is crucial for obtaining the best performance, 
which has been achieved by the pool5 layer of the BVLC 
AlexNet with an average recognition rate of 76.6%. Note 
that three out of the four configurations shown in Table 3 
outperform the baseline approach of Loos and Ernst 
(2013), which achieved 64.4% on the same experimental 
setup (Freytag et al. 2016).

Attribute predictions

Since the C-Tai dataset of chimpanzee faces described 
in “C-Tai chimpanzee dataset” contains attribute anno-
tations, we have used this dataset for estimating attrib-
ute values of individuals using our general approach. In 
the following experiments, we consider the gender, the 
age group, and the age of the chimpanzees according to 
Freytag et al. (2016). We use the same experimental setup 
and feature representations that have been described in 
“Setup for identifying chimpanzees” for the identification 
task. Furthermore, we compare the results of our attribute 
prediction approach with a baseline method that performs 
the identification task as in the previous section and sim-
ply takes the attribute values of the predicted individual 
from the training set. Since the age sometimes changes 
for the same individual because images are recorded over 
multiple years, the baseline method takes the average age 
of the predicted individual calculated for the correspond-
ing training set. This is done to obtain numerical results 
for the regression error when no meta data like the time 
stamps of the photos are used for the age prediction, thus 
only exploiting the pixel information of the images. Note 
that when using the time the photos were taken, one gets 
the age for free in case of correct identifications but when 

Table 3  Our experimental results for identifying chimpanzees in the 
C-Tai dataset (Freytag et al. 2016)

Best results indicated in bold

Approach (features from) ARR (%)

VGGFaces, pool5 68.0
VGGFaces, fc7 53.0
BVLC AlexNet, pool5 76.6
BVLC AlexNet, fc7 67.0
Baseline of Loos and Ernst (2013) 64.4
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assigning the wrong ID, the age prediction error might 
even be larger compared to the averaging baseline. The 
results from our attribute prediction experiments are 
summarized in Table 4, and it can be observed that direct 
attribute prediction always leads to better results compared 
to the baseline of retrieving attributes via the identifica-
tion. In the following, we go into the details for each con-
sidered attribute separately.

Gender prediction via binary classification

Gender prediction is a binary classification problem with 
two classes only, hence we train a linear binary SVM model 
for the different CNN features that we have extracted for 
the chimpanzee faces. We evaluate the performance of the 
binary classifiers using the area under the receiver operat-
ing characteristic (ROC) curve, in short area under the ROC 
curve (AUC), as a quantitative metric (Hanley and McNeil 
1982; Fawcett 2006).

From the results in Table 4, we see that the baseline 
approach of retrieving the gender from the predicted indi-
vidual already achieves a very good performance of 89.6% 
AUC. Hence, even if the wrong individual has been pre-
dicted for the identification task as indicated by the results 
in “Identifying chimpanzees”, it has at least the same gender 
as the true individual. This suggests that if the individual 
classifier makes a mistake, it more likely confuses male 
chimpanzees with male chimpanzees and female chimpan-
zees with female chimpanzees. Nevertheless, slightly better 
performance for the gender prediction can be achieved by 
directly estimating the attribute value based on features from 
the pool5 layer of the BVLC AlexNet, achieving the high-
est accuracy of 90.5% AUC.

Age group prediction via multi‑class classification

As a second discrete attribute, we consider the age group of 
the chimpanzees as a rough estimate of age. For the C-Tai 

dataset, there are annotations for five age groups (classes) 
available: Infant, Juvenile, SubAdult, Adult, and Elderly. 
We refer to the original work of Freytag et al. (2016) for 
details about the distribution of individuals among these 
age groups. In our experiments, we split the examples of 
each age group into 90% training data and 10% hold-out test 
data, which is repeated five times to obtain reliable results. 
For classification into the five age groups, we train a linear 
multi-class SVM. The performance is measured by the aver-
age recognition rate (ARR) across the five age groups.

We compare the same feature extraction approaches as 
for gender prediction in the previous section and the results 
in Table 4 show that direct age group prediction leads to 
substantially better results with three out of the four used 
feature representations compared to the baseline approach 
of retrieving the attribute via identification. While the lat-
ter achieved an ARR of 77.9%, the best result has again 
been achieved by the BVLC AlexNet with features from the 
pool5 layer (85.3%). For the age group prediction, fea-
tures from the pool5 layers were better suited compared 
to features from the fc7 layers with both network architec-
tures, indicating the importance of features from earlier lay-
ers within the network. When comparing architectures, the 
BVLC AlexNet trained for general object categories outper-
formed the VGGFaces trained for human face identification 
with respect to both feature representations from the chosen 
activation layers.

Age prediction via regression

The last attribute we consider for our general prediction 
approach is the age of the individuals. This is treated as 
a continuous variable for which we require a regression 
method to estimate suitable attribute values. We use GP 
regression (see “Classification and regression for individual 
identification and attribute prediction”) for estimating the 
age, equipped with an RBF kernel as a covariance func-
tion and optimized hyperparameters as outlined by Freytag 

Table 4  Experimental results for predicting attributes of individual 
chimpanzees in the C-Tai dataset  (Freytag et  al. 2016). The gender 
prediction is evaluated with the area under the ROC curve (AUC, 
higher is better), age group prediction is evaluated with average rec-

ognition rates (ARR, higher is better), and age prediction is evaluated 
with L2-error (lower is better). For reference, we provide identifica-
tion results as well

Best result for each task indicated in bold

Approach (features from) Gender prediction (AUC) 
(%)

Age group prediction (ARR) 
(%)

Age prediction ( L2-error) Identification (ARR) 
(%)

VGGFaces, pool5 79.8 84.0 8.41 68.0
VGGFaces, fc7 88.0 76.4 8.35 53.0
BVLC AlexNet, pool5 90.5 85.3 6.79 76.6
BVLC AlexNet, fc7 87.0 83.8 6.61 67.0
Baseline (by identification) 89.6 77.9 8.30 76.6
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et al. (2016). For training an age predictor, 100 images of 
individuals have been randomly selected, and the remaining 
images are used for hold-out testing. Random selection and 
model learning are repeated five times as in the previous 
experiments to obtain meaningful results. The performance 
of the age regression is measured by the L2-error, which is 
the L2-norm of the vector of residuals that contains the dif-
ferences between the true values and the predicted values.

In the last column of Table 4, the averaged L2-errors 
are shown for the different feature representations used in 
our general prediction approach. While features from the 
VGGFaces network perform similar to the baseline approach 
of retrieving attributes via identification ( L2 errors between 
8.41 and 8.30), the features from the BVLC AlexNet are 
better suited for direct age prediction and using the fc7 
layer outputs results in the lowest L2-error (6.61) achieved 
in our experiments. This highlights again the usefulness of 
features obtained from a deep neural network architecture 
that has been trained on images of common object categories 
(BVLC AlexNet pre-trained on ImageNet). Interestingly, in 
contrast to the two classification approaches used for the 
other two attributes in the previous sections, features of the 
fc7 perform slightly better compared to the pool5 layer 
outputs for the regression task.

Lifelong learning of age predictors

In our final experiment, we consider attribute prediction 
in a lifelong learning scenario and pick the regression task 
to look at continuous learning of age predictors (Käding 
et al. 2018). We use the EMOC criterion for active learning 
(see “Active learning strategies and incremental learning”) 
to improve the model and its estimations over time by incor-
porating additional images automatically selected for anno-
tation and model parameter update. Note that we simulate 
the data annotation process using the labels provided with 
the dataset in lieu of actual human annotations. The lifelong 
learning experiment is designed as follows.

Experimental setup for lifelong learning experiment

From 4414 images with age annotations of the C-Tai dataset 
(“C-Tai chimpanzee dataset”), only four are used for learn-
ing an initial GP regression model with RBF kernel as in 
“Age prediction via regression”. The remaining 4410 images 
are split into 2205 instances for hold-out testing and 2205 
instances that serve as the unlabeled pool for querying addi-
tional training data. We repeat the dataset splits three times 
and query 1000 samples sequentially in each experiment. 
After each query, the performance of the updated model 
is validated on the held-out test set and measured with the 
root-mean-square error (RMSE). As feature representations, 
we use L2-normalized activation outputs from the fc7 layer 

of the BVLC AlexNet, since these features performed best 
in our experiments for predicting the age of chimpanzees in 
“Age prediction via regression”.

Active learning methods used for comparison

Besides our proposed EMOC strategy described in “Active 
learning strategies and incremental learning” for selecting 
query images in active learning, several competing meth-
ods are tested as well. A purely random selection of sam-
ples also known as passive learning (Yu and Kim 2010) is 
used as a baseline (Random). Furthermore, we consider 
selecting samples that either have the largest predictive 
variance (Kapoor et al. 2010) inferred from the GP regres-
sion model (Variance) or maximize the data entropy 
(Entropy). Exploration guided active learning (EGAL) 
of Hu et al. (2010) has been employed as well as several 
combinations of their introduced measurements for diver-
sity (Di) and density (Di), denoted by Di�/De(1 − �) with 
� ∈ {0.0, 0.5, 1.0} . Related to these measures is the baseline 
of querying samples with the largest Mahalanobis distance 
in feature space to already labeled samples (Mahalano-
bis). Finally, we compare EMOC with the expected model 
change (EMC) proposed by Cai et al. (2013).

Lifelong learning results

The results of the lifelong learning experiments for improv-
ing the age predictors on the C-Tai dataset are summarized 
in Fig. 5. We observe that the EMOC strategy reduces the 
prediction error (RMSE) the most, leading to the smallest 
area under the error curve. In fact, the GP regression model 
updated with samples selected by EMOC achieves the low-
est errors after each number of added samples. Note that all 
competing methods are also outperformed by the Random 
baseline for passive learning, which indicates that appropri-
ate sample selection for age prediction on the C-Tai data-
set is a hard task. Nevertheless, EMOC leads to the highest 
model accuracies throughout the whole time span of the 
simulated lifelong learning scenario.

The average runtime of a single iteration including selec-
tion, model update, and predictions, is 497 ms for random 
selection (Käding 2020) on modern x86 hardware, averaged 
over the whole experiment as the runtime increases with the 
number of samples added to the underlying GP model. Using 
EMOC, it is 2040 ms. Still, the consistently strong reduction 
in annotation time when using EMOC should be considered 
as well, and strongly outweighs the small computational 
overhead. While other selection criteria, e.g. variance or 
entropy, have a negligible overhead, they do not perform as 
well as EMOC. Furthermore, EMOC can be approximated, 
e.g., following the strategy outlined in Käding et al. (2016a), 
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or combined with random pre-selection (Brust et al. 2019) 
to reduce overhead.

We can conclude that our general approach for attribute 
prediction in combination with a suitable active learning 
strategy like EMOC is a good choice for lifelong learning, 
and clear model improvements can be achieved over time 
when adding additional data that become available during 
an application.

Conclusions

In this paper, we have shown that a general approach of 
using image features from pre-trained deep neural networks 
and decoupled decision models works well for identify-
ing individuals in images and videos. This has been veri-
fied in experiments for identifying individuals of four dif-
ferent mammalian species, two elephant species (African 
and Asian) and two great apes (gorillas and chimpanzees). 
Although the achieved results are already remarkable when 
considering the varying challenges of the used datasets and 
the rather small amount of training data, there is still a lot 
of room for improvements to make the recognition systems 
even more valuable for practitioners.

We believe that the described concept of lifelong learning 
together with active learning and human-in-the-loop is able 
to achieve these improvements when it is applied during 
long-term monitoring studies with a continuous stream of 
new image data recorded over time. The targeted selection 
of the most relevant examples by active learning and the 
exploitation of expert knowledge through annotations via 
human-in-the-loop allows for continuous enhancements of 
the recognition models within the lifelong learning cycle, 
while at the same time reducing the human efforts for labe-
ling additional data.

We have presented a way for integrating our general 
approach in a lifelong learning setup, highlighting the 
importance to exploit new incoming data during an appli-
cation to improve the predictions of the models over time. 
In long-term monitoring applications, where additional data 

become available continuously, a conscious effort must be 
made to distribute human and computing resources evenly 
over time and maximize efficiency. Lifelong learning pro-
vides this distribution in two ways. First, active learning 
selects only important new data for annotation by human 
experts, whose time is often constrained. Second, incremen-
tal learning performs efficient and frequent model updates 
to cope with a potentially infinitely growing set of training 
data and provide a tight feedback loop together with active 
learning. Without lifelong learning, i.e., in a waterfall set-
ting, a continuous data stream without intelligent selection 
by active learning will eventually overwhelm both the anno-
tators and the available computing power. Hence, we believe 
that there is no alternative to a lifelong learning setup in 
long-term monitoring applications.

Besides its applicability for lifelong learning, the decou-
pling of image feature extraction from the final prediction 
task has further advantages. On the one hand, pre-trained 
deep neural networks can still be used to compute appro-
priate features for identification, and it is not necessary to 
learn network parameters solely based on data from the 
identification task. This is beneficial because initial labeled 
datasets for animal re-identification are often rather small at 
the beginning of a monitoring study, which makes optimiz-
ing large neural networks difficult. However, large networks 
are required for good performance because they allow for 
extracting semantically meaningful features, and exploiting 
pre-trained networks leverages the existing large-scale data-
sets of common object categories. Due to the decoupling 
of image feature extraction from the prediction task in our 
approach, these rich feature representations can be utilized 
and only the final decision model needs to be updated via 
efficient incremental learning algorithms within lifelong 
learning.

On the other hand, our approach allows for exchanging 
the final part of the processing pipeline, which is the deci-
sion model used to make the prediction. This can either 
be a classifier for assigning animal IDs, or a regression 
method for estimating continuous outputs such as the age 
of an individual. Thus, we are flexible in using the rich 

Fig. 5  Experimental results for 
lifelong learning with differ-
ent active learning strategies. 
Error curves are shown, which 
indicate the RMSE evaluated 
after adding each of the 1000 
samples to the training set and 
updating the prediction model. 
Numbers in the legend denote 
the area under the correspond-
ing error curve (lower is better) 
relative to the worst performing 
method
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feature representations from the deep neural networks for 
various prediction tasks and can select an appropriate deci-
sion model. By going beyond the standard task of identify-
ing individuals, we have demonstrated the benefits of our 
approach to directly predict attributes of individuals. For 
the tasks of gender prediction, age group prediction, and 
age prediction, we have achieved superior results compared 
to the baseline approach of retrieving the corresponding 
attribute value from the identified individual after perform-
ing the identification. The binary classification problem 
of gender prediction as well as assigning one of five age 
groups has been tackled with support vector machine clas-
sifiers, whereas the age prediction has been performed with 
Gaussian process regression. Both classifiers and regression 
models can be continuously updated by efficient incremental 
learning techniques to further enhance the recognition sys-
tem during its application via lifelong learning.

To summarize, we have provided a lifelong learning con-
cept that is applicable for various monitoring tasks including 
individual identification and attribute prediction, and which 
exploits additional image data that becomes available over 
time. While pre-trained neural networks can also be lever-
aged for feature extraction in lifelong learning through our 
decoupled approach, the steady improvements of the deci-
sion models by incorporating expert feedback via active 
learning with human-in-the-loop lead to clear advantages 
compared to fixed recognition models that are trained only 
once on standard datasets before the application and are later 
kept unchanged. Hence, long-term monitoring of mammals 
based on image data can be further enhanced by implement-
ing a lifelong learning cycle with a tight feedback loop that 
continuously incorporates expert knowledge during the 
whole application.
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