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Abstract 

Model based Pol-InSAR data inversion allows the estimation of forest height using, for example, the RVoG model from 

single- and multi-baseline Pol-InSAR acquisitions. This conventional approach relies on the approximation of a volumet-

ric reflectivity described by a single parameter, e.g. a constant attenuation coefficient, and assumes in the case of a single 

baseline that one polarization has almost zero ground response. However, the experimental data imply that for many 

forest conditions the ground response can be significant in all polarizations, especially at lower frequency bands, e.g. L- 

and P-band. In addition, the parameterization of RVoG reflectivity by an exponential function might be insufficient. In 

this paper we propose the parameterization of the forest reflectivity using  tomographic reconstructed reflectivity profiles. 

The separation of ground and volume component in the tomographic data is performed using the (sum of) Kronecker 

products (SKP) decomposition. The ground contribution is then modeled by a Dirac delta function and the ground to 

volume ratio is addressed as an unknown parameter together with the forest height. First experimental results demonstrate 

the improvement in the accuracy and consistency of forest height estimation using the volume separated profiles. 

 

1 Introduction 

Polarimetric SAR Interferometry (Pol-InSAR) allows the 

estimation of forest height by exploiting the correlation be-

tween the vertical extent of the 3D reflectivity and interfer-

ometric (volume) coherence [1].  

A set of interferometric measurements provides a polariza-

tion �⃗⃗�  dependent estimate of interferometric coherence 

�̃�𝑂𝑏𝑠(�⃗⃗� ), a complex number which is defined as a mul-

tilooked product of the two radar returns (images) 𝑠1(�⃗⃗� ) 

and 𝑠2(�⃗⃗� ) 

 

�̃�𝑂𝑏𝑠(�⃗⃗� ) =
<s1(w⃗⃗⃗ )s2

∗ (w⃗⃗⃗ )>

√<s1(w⃗⃗⃗ )s1
∗ (w⃗⃗⃗ )><s2(w⃗⃗⃗ )s2

∗ (w⃗⃗⃗ )>
. (1) 

   

The interferometric coherence may contain several inde-

pendent decorrelation contributions superimposed in a 

multiplicative way as 

 

�̃�𝑂𝑏𝑠(�⃗⃗� ) = �̃�𝑇𝑚𝑝(�⃗⃗� )�̃�𝑆𝑦𝑠(�⃗⃗� )�̃�𝑉𝑜𝑙(�⃗⃗� ) (2) 

 

where �̃�𝑇𝑚𝑝(w⃗⃗⃗ ) is a temporal decorrelation and γ̃Sys(w⃗⃗⃗ ) 

are various system induced decorrelations, such as additive 

noise decorrelation etc. 

Volumetric decorrelation is defined as the Fourier trans-

form of vertical reflectivity 𝐹(𝑧, �⃗⃗� ) within the reflectivity 

volume, i.e. from the ground to the top of the forested layer 

ℎ𝑣, adjusted to the ground phase  𝜙0 

 

�̃�𝑉𝑜𝑙(𝜅𝑧 , �⃗⃗� ) = 𝑒𝑖𝜙0
∫ 𝐹(𝑧,�⃗⃗� ) 𝑒𝑥𝑝(𝑖𝜅𝑍 𝑧)𝑑𝑧
ℎ𝑉
0

∫ 𝐹(𝑧) 𝑑𝑧
ℎ𝑉
0

. (3) 

 

The vertical wavenumber 𝜅𝑧 is proportional to the across 

track baseline, or look angle difference ∆𝜃 between the two 

acquisitions and inverse proportional to the incidence angle 

𝜃0 

𝜅𝑧 = 𝑚
2𝜋 

𝜆

 ∆𝜃

𝑠𝑖𝑛(𝜃0)
 (4) 

where 𝑚 = 2 for monostatic acquisitions and 𝑚 = 1 for 

bistatic acquisitions and 𝜆 is the radar wavelength. 

 

After normalization, by substituting 𝑧′ = 𝑧/ℎ𝑣 , equation 

(3) rewrites to  

�̃�𝑉𝑜𝑙(𝜅𝑧 , �⃗⃗� ) = 𝑒𝑖𝜙0
∫ 𝐹(𝑧′,�⃗⃗� )
1
0 𝑒𝑖𝑘𝑧ℎ𝑣𝑧′𝑑𝑧′

∫ 𝐹(𝑧′,�⃗⃗� )
1
0 𝑑𝑧′

. (5) 

Thus, if the vertical reflectivity (real) profile is known, for-

est height can be inverted using the absolute volumetric 

decorrelation, i.e.  using the absolute value on both sides of 

equation (5) [2] [3]. 

 

Polarimetric SAR Tomography (Pol-TomoSAR) allows 

the reconstruction of the vertical reflectivity 𝐹(𝑧, �⃗⃗� ) using 

a large(r) number of conventional or interferometric SAR 

acquisitions spread over a wide(r) angular range (associ-

ated to a certain vertical wavenumber distribution) [4].  

 

Model-free algorithms estimate the 3D reflectivity without 

making assumptions on the structure of the data or using 

models to describe them. The algorithms attempt to invert 

directly the Fourier relationship between data and reflec-

tivity profile. This allows to achieve less constrained re-

sults, but makes their interpretation less straightforward. 

Fourier (FB) [5] and Capon Beamforming (CB) [6] are 

probably the most used model-free tomographic algo-

rithms. The underlying reflectivity is reconstructed in form 

of its convolution with the vertical Point Spread Function 

(PSF) that makes the quality and the vertical resolution of 

the reconstructed profile strongly dependent on the number 

and distribution of the available vertical wavenumbers  [7]. 
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Accordingly, two parameters characterize the Tomo-

graphic reconstruction. The first one is the vertical Ray-

leigh resolution 𝛿𝑧 that is inversely proportional to the larg-

est vertical wavenumber 𝑘𝑧,𝑚𝑎𝑥 = max {𝑘𝑧𝑖} of the availa-

ble distribution of vertical wavenumbers 𝑘𝑧𝑖 [4]: 

𝛿𝑧 =
2𝜋

𝑘𝑧,𝑚𝑎𝑥

 (6) 

The finite sampling in the wavenumber domain causes the 

appearance of replicas of F(z, w⃗⃗⃗ )  in any of its reconstruc-

tions. The width of the non-ambiguous tomographic recon-

struction height interval, is given (for a uniform distribu-

tion of vertical wavenumbers) by [4]: 

ℎ𝑎𝑚𝑏 = 
2𝜋

𝑘𝑧,𝑚𝑖𝑛

 (7) 

where 𝑘𝑧,𝑚𝑖𝑛 = min {𝑘𝑧𝑖} .  

 

Since the tomographic reconstructed profiles represent a 

convolved profile rather than an actual vertical reflectivity 

profile, its direct usage for modelling 𝐹(𝑧, �⃗⃗� )  in the equa-

tion of volumetric decorrelation might be undermined.  

 

Limited resolution of the vertical profile might be espe-

cially critical at ground level where the real impulse re-

sponse might have a sharp peak. Depending on the inten-

sity of the ground peak, the resultant interferometric coher-

ence might vary significantly [8]. 

 

Therefore, in the next chapter we discuss an approach of 

modelling the ground response separately from the volu-

metric reflectivity and rewriting the equation (5) in terms 

of volume only coherence.  

2 Forest height estimation 

2.1 Single-baseline forest height and 

ground to volume ratio estimation 

model 

In the context of the random volume over ground (RVoG) 

model, the estimation the polarization independent volume 

coherence �̃�𝑉0(𝜅𝑧) is attempted under the assumption of a 

polarisation independent volumetric reflectivity profile ap-

proximation, 𝑓𝑉(𝑧) (not necessarily an exponential one). 

The vertical reflectivity can be then modelled as a two layer 

(volume only and ground) reflectivity as 

𝐹(𝑧, �⃗⃗� ) = 𝑓𝑉(𝑧) + 𝑚(�⃗⃗� )𝛿(𝑧 − 𝑧0). (8) 

where 𝑚(w⃗⃗⃗ ) is the ground to volume ratio. We propose to 

use the volume contribution of the tomographic profile 

𝑓𝑉𝑇𝑜𝑚𝑜
(𝑧) as an approximation of volume only vertical re-

flectivity 𝑓𝑉(𝑧). The volume only coherence γ̃V(κz) can 

then be estimated by combining equations (5) and (8)  

   

�̃�𝑉𝑜𝑙(𝜅𝑧, �⃗⃗� ) = exp(𝑖 𝜑0)
𝛾𝑉(𝜅𝑧) + 𝑚(�⃗⃗� )

1 + 𝑚(�⃗⃗� )
 (9) 

with  

�̃�𝑉(𝜅𝑧 , �⃗⃗� ) =
∫ 𝑓𝑉𝑇𝑜𝑚𝑜

(𝑧)𝑒𝑥𝑝(𝑖𝜅𝑍ℎ𝑣 𝑧)𝑑𝑧
1
0

∫ 𝑓𝑉(𝑧) 𝑑𝑧
1
0

 (10) 

It is important to note here that, since we do not directly 

estimate the forest height from equation (10), but rather the 

unitless product κZℎ𝑣, the vertical wavenumber modulates 

the performance of the forest height estimation, i.e. larger 

κz values give more accurate estimates of lower forest 

heights while smaller κzn are required for an accurate esti-

mation of taller forest heights  [9] [10]. 

2.2 Volume/ground reflectivity decomposi-

tion  

In order to extract the volume only part of the tomographic 

reconstructed profile, the (sum of) Kronecker products 

(SKP) decomposition is applied. 

 

Assuming 𝐾 tomographic tracks, the overall multi-baseline 

signal 𝑠(w⃗⃗⃗ ) can be written as the sum of the ground and 

volume components 𝑠𝐺(w⃗⃗⃗ ) and 𝑠𝑉(w⃗⃗⃗ ) : 

 

𝑠(�⃗⃗� ) = 𝑠𝐺(�⃗⃗� ) + 𝑠𝑉(�⃗⃗� ) 

 
(11) 

Supposing the ground and volume components statistically 

independent, the covariance matrix 𝑅(w⃗⃗⃗ ) of 𝑠(w⃗⃗⃗ ) is given 

by [11] [12] [13]: 

 

𝑅(�⃗⃗� ) = 𝑚𝐺(�⃗⃗� )𝛤𝐺 + 𝑚𝑉(�⃗⃗� )𝛤𝑉 (12) 

where 𝑚𝐺(w⃗⃗⃗ ) and 𝑚𝑉(w⃗⃗⃗ ) are the ground and volume 

backscattering powers, and 𝛤𝐺  and 𝛤𝑉 contain the associ-

ated interferometric coherences. If 𝑁𝑃 polarisations are 

available, the related data vectors can be stacked one on top 

of the other in a single 𝑁𝑃𝐾-dimensional data vector 𝑦𝑃 . 

The covariance matrix of 𝑦𝑃  is then [9]: 

 

𝑅𝑃 = 𝐶𝐺⨂𝛤𝐺 + 𝐶𝑉⨂𝛤𝑉 (13) 

 

where “⨂” denotes the Kronecker matrix product and 𝐶𝐺 

and 𝐶𝑉 are the polarimetric covariance matrices of the 

ground and volume, respectively. Model (9) is intrinsically 

ambiguous: an ensemble of 𝛤𝐺, 𝛤𝑉, 𝐶𝐺 and CV can be com-

bined to provide the same 𝑅𝑃. A least squares optimization 

can only provide candidate estimates of 𝛤𝐺 and 𝛤𝑉 [9]: 

 

𝛤𝐺 = 𝑎𝑅1 + (1 − 𝑎)𝑅2 ,   𝛤𝑉 = 𝑏𝑅1 + (1 − 𝑏)𝑅2 (14) 

 

where 𝑅1 and 𝑅2 are two (𝐾 × 𝐾) −dimensional matrices 

obtained from the singular value decomposition of a per-

mutated version of 𝑅𝑃 [9]. The scalars 𝑎 and 𝑏 vary in in-

tervals that make the four matrices positive semi-definite 

and define the ambiguity of the reconstruction. 



2.3 Application on experimental data 

The Pol-TomoSAR data were collected in Lopé National 

Park in Gabon during the AfriSAR campaign by the DLR’s 

F-SAR airborne platform on Feb. 10, 2016 [14]. 

 

 

 
Fig. 1 P-band tomographic FB profiles in Lope forest. 

The z-direction corresponds to the vertical axis with z=0 

corresponding to the reference DEM (TanDEM-X 

DEM) posistion. From top to bottom: HH-pol FB 

profile, polarization independent SKP desomposed 

volume only and ground profiles. 

 

Fig. 1 illustrates the FB reconstructed tomographic profiles 

using a tomographic stack of eleven baselines, with an al-

most uniform κZ distribution resulting in the Rayleigh res-

olution of around 15 m. The Lope tropical forest is charac-

terised by dense vegetation and therefore projects high in-

tensity reflection from the top forest layer, even at P-band. 

The SKP-decomposed profiles are shown in the middle and 

bottom of Fig. 1. 

 

The ground separated profile is used to estimate ground 

phase by searching the position of the lowest peak in the 

tomogram [15] 

 

The volume only separated profile is used as an approxi-

mation of the vertical reflectivity shape in equation (10). 

For the profile normalization the upper boundary was de-

termined from volume only tomographic profile by 

searching the position of the highest relevant peak in the 

profile. 

 

 
Fig. 2.: Interferometric coherence for different values 

of parameter 𝜅𝑧ℎ. Left plot: interferometric coherence 

from interferometric measurements, right plot: interfer-

ometric coherence modeled using individual tomo-

graphic profiles. 

 

Once the ground position and the normalized profile are 

determined for each sample within the region of interest, 

the forest height and ground to volume  ratio estimation is 

performed using the equation (9). The performance plots 

are provided in Fig. 3, with an implication that using vol-

ume separated profiles result in a more accurate forest 

height estimation. 

 

 
Fig. 3 Forest height inversion using TomoSAR FB 

profiles and Volume sepated TomoSAR FB profiles in 

Lope forest at HH-pol 𝜅𝑍 ≈ 0.07 − 0.11. Forest-non-

forest mask was applied. Top row from left to right: 

LiDAR RH100 reference CHM map,  radar estimated 

height using volume separated TomoSAR FB profiles 

and radar estimated height using TomoSAR FB profile. 

Bottom row: validation histograms. 

 

 

Fig. 2 demonstrates why using the tomographic recon-

structed profiles directly does not always lead to the accu-

rate forest height estimation. It provides the interferometric 

coherence value distribution at different values of unitless 

parameter  𝑘𝑧ℎ𝑣 , i.e. various vertical wavenumbers and 

forest heights (taken from Land, Vegetation, and Ice Sen-

sor (LVIS) lidar RH100 reference [16]). The inconsistency 

between the experimental interferometric coherence and 

the interferometric coherence modelled from the tomo-

graphic profiles becomes evident by comparing the two 

distributions in Fig. 2. 



3 Outlook 

The proposed forest height estimation approach can be ex-

tended to the case multibaseline forest height estimation. 

In this case one would also be able to account for temporal 

decoration effects and/or change in the structure of volu-

metric reflectivity profile. 

 

In the full paper we will address the performance of the 

forest height estimation at different baselines and polariza-

tions. Forest height inversion within certain range should 

ideally be independent of  κz and polarization, though the 

inverted ground to volume ratio can be different for differ-

ent polarizations. The proposed forest height estimation 

method has a high relevance, especially in the light of up-

coming space-borne SAR missions (as ESA’s BIOMASS 

or ROSE-L Plus) able to acquire polarimetric, interfero-

metric and tomographic data.   
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