System Analysis of a shared Water-Hydrogen-Oxygen Infrastructure for future Space Habitats

rieke.freer@dlr.de

1. Introduction

An essential resource to enable long-duration Lunar or Martian missions is water by building the basis of life for astronauts. The decomposition of water (H_2O) into hydrogen (H_2) and oxygen (O_2) provides breathable oxygen for the Environmental Control and Life Support System (ECLSS) as well as fuel for space vehicles by combining liquid hydrogen and liquid oxygen. Two practices are considered to meet the water demand in space habitats: Water recycling within the ECLSS and water extraction by space resource utilization (SRU). Thus, the key technology to exploit synergies between the ECLSS and SRU is the water treatment system. As a result, a shared $H_2O-H_2-O_2$ infrastructure minimizes the mass brought from Earth and contributes to a sustainable exploration of the solar system.

The following block diagram represents the elements of the shared infrastructure for future space habitats.

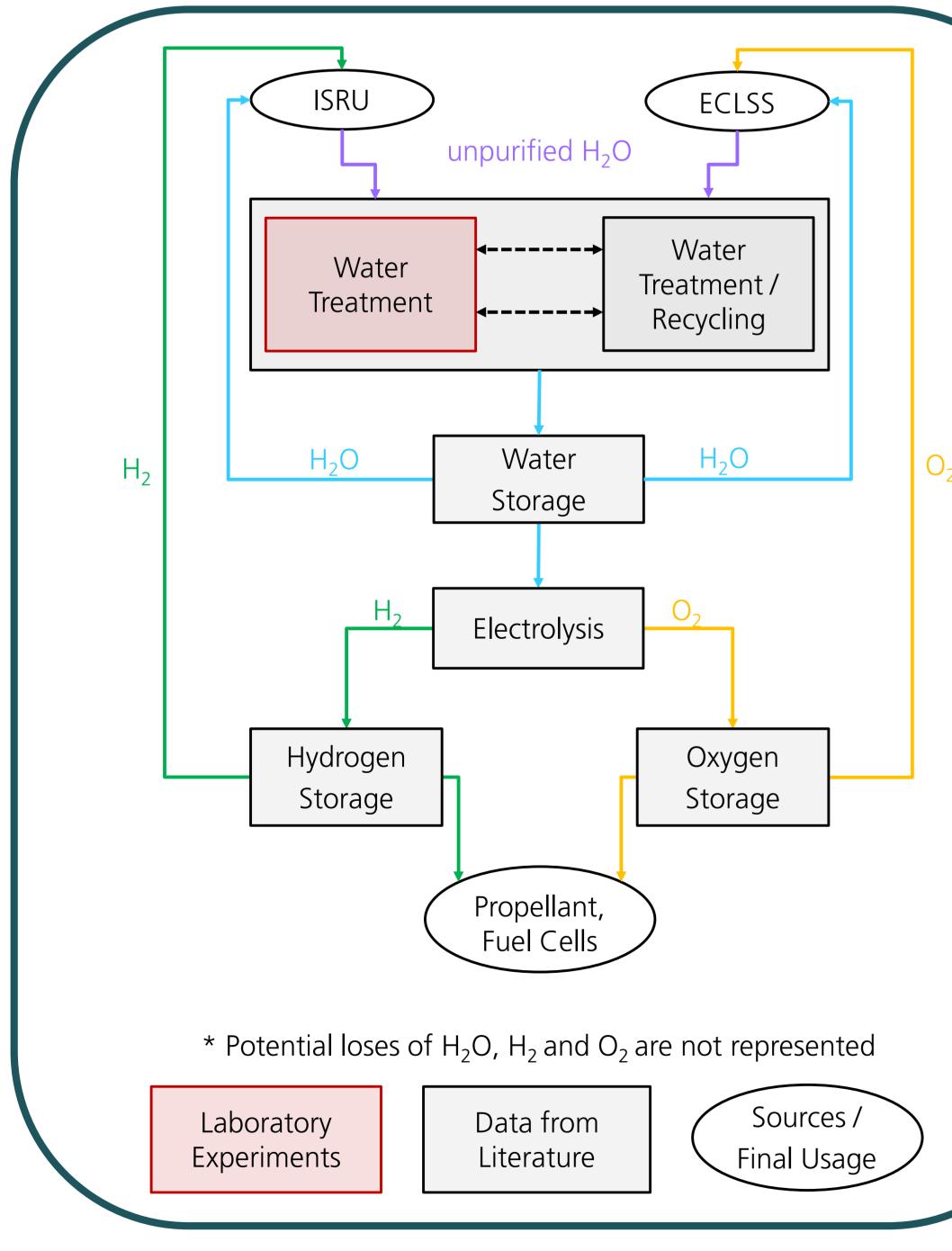
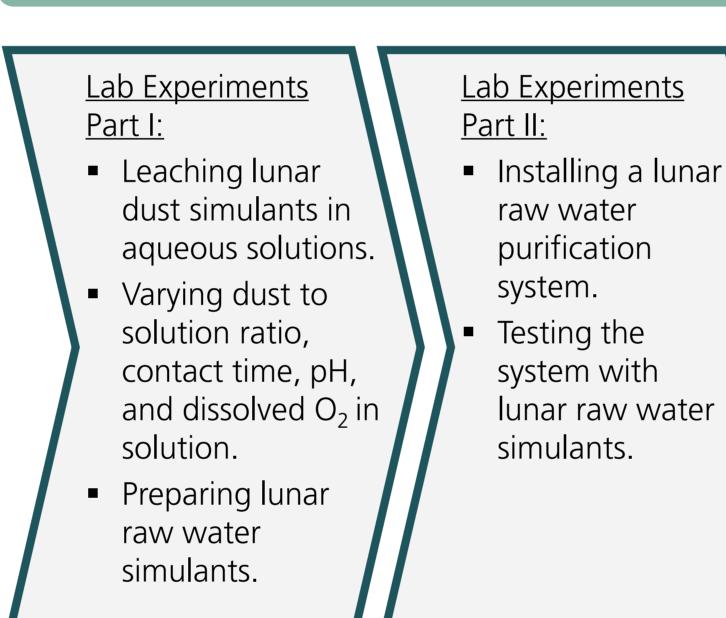


Figure 1: Shared H₂O-H₂-O₂ Infrastructure Block Diagramm.


Deutsches Zentrum für Luft- und Raumfahrt

Rieke Freer, Luca Kiewiet, and Dr. Paul Zabel, German Aerospace Center (DLR), Institute of Space Systems

2. Objectives

- Developing a lunar raw water simulant which con the Moon.
- Exploiting the synergies between ECLSS and SRU technologies.
- Simulating the shared H₂O-H₂-O₂ infrastructure.
- Analyzing internal and external influences on the

. Methodol

4. Ongoing Research

Currently, the lab experiments partI are running, and thereof the first leaching experiments are completed. The experimental procedure is based on the guidelines of Kerschmann et al. [2020] and Stewart et al. [2013].

Ultrapure water + lunar LHS-1D dust simulant from Exolith Lab

Taking ~10 mL sample at specific time points, centrifuge at 6000 RPM for 10 min

> Filtering through a PTFE 0.45µm syringe filter

Analyzing ion concentrations in solution with ICP-OES

itains impurities expected on							
water treatment							
shared infrastructure.							
y							
<u>Modeling:</u>							
<u>ivioaciirig.</u>							
 Developing the 							
infrastructure by using results from							
the experiments							
and literature.							
 Including the infrastructure into 							
an existing ECLSS							
model.							

[carlroth.com]

Table 1 summarizes the parameters of the dissolution experiments of lunar dust simulants in water.

Test Batch	Ratio of dust simulant in g to solution in mL		Dust Simulant Mass in g	pH initial	Use of pH Buffer		
1	1:20		12.5	5.6	no		
2	1:100		2.5	5.6	no		
3	1:50	00	0.5	5.6	no		
Aqueous solution Ultrapure water, resistivity $18 \text{ m}\Omega \cdot \text{cm}$							
Volume	of solution	250 mL	250 mL				
Stirring	rate	20 RPM	20 RPM				
Contact	time	2 min, 15 mi	2 min, 15 min, 30 min, 1 h, 12 h, 1 d, 3 d				
Analyzed ions Al, Ca, Fe,			, Mg, Mn, S, Si, Ti	İ			
Temperature		20°C	20°C				
		5. First	Results				

- After 2 min of contact time, the pH and the concentrations of Al, Ca, K, Mg, S, and Si increased.
- Dissolution of Fe, Mn, and Ti is not observable.
- recommended drinking water standard of 0.2 mg L⁻¹.

The aqueous solution will be adapted by using a buffer solution to resist the change in pH. Afterward, experiments with an O₂ outgassed solution in a nitrogen glove box will be conducted to mimic the lack of atmosphere on the Moon. These results feed into the laboratory set-up of a water treatment system considering the removal of aluminum. Throughout the entire project, the exploitation of synergies between ECLSS and SRU is the main objective.

Technical Report, 2013.

World Health Organization (WHO). A global overview of national regulations and standards for drinking-water quality. 2018.

Table 1: Test Batch Parameters of Dissolution Experiments.

• After 1 h, the increase of the pH and the concentrations is less significant.

• A contact time of 1 week shows no difference from a contact time of 3 days. Aluminum concentrations exceed the World Health Organization [2018]

6. Outlook

7. References

Kerschmann, R. L., Loftus, D. J., Damby, D., Scheiderich, K. and Winterhalte, D. Testing of Lunar Dust dissolution in aqueous environments, NASA Engineering and Safety Center Lunar Dust Workshop Part II, 2020.

Stewart, C., Horwell, C., Plumlee, G., Cronin, S., Delmelle, P., Baxter, P., Calkins, J., Damby, D., Morman, S., and Oppenheimer, C. Protocol for analysis of volcanic ash samples for assessment of hazards from leachable elements.