
1530-437X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2022.3169659, IEEE Sensors
Journal

IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2022 1

Recent Advances in Sensor Integrity Monitoring
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Abstract— In face of the high complexity of modern systems and the increasing reliance on technology, the strategies
and methods to evaluate the integrity of systems and the information they provide are of great importance. The use of
sensors to provide important information in various applications has become ubiquitous, which puts more pressure on the
accuracy of sensor measurements. In the navigation field, in particular, the integrity of positioning information provided by
sensors can be critical, as failures can lead to fatalities and catastrophic damages. Extensive research has been done
into methods to assess and improve the integrity of positioning information provided by GNSS receivers, led by the high
safety requirements in the aviation field. More recently, a shift into the research of integrity solutions suitable for the
challenging positioning requirements of autonomous vehicles in urban environment has been a trend. There have been
extensive advancements in developing integrity monitoring algorithms for GNSS and navigation in general. However, these
methods have not been sufficiently extended into other types of sensors, and the development of integrity methods outside
the navigation field have been scarce and scattered. This work aims to provide an overview of recent advances in the
integrity monitoring field, including research outside the navigation domain. The goal is to give an introduction to the
integrity monitoring concept to a broader audience, as these techniques have been highly specialized by GNSS experts
and navigation related research, fostering multi-disciplinary approaches and creative use of existing methods in different
areas and applications.

Index Terms— Integrity, integrity monitoring, navigation, review, sensor integrity, statistical methods.

I. INTRODUCTION

THE past few decades have seen an unprecedented rise
in technological development, driven by the advances

in microelectronics, that led to exponentially increasing com-
putational capabilities and miniaturized sensors, which are
nowadays, cheaply and widely available. Although these
advances have given enormous advantages, they are also
responsible for an increased reliance on technology, raising the
importance of assessing and improving the integrity of these
complex systems, and of the information used and provided
by them. However, due to the specific requirements of the
immense multitude of systems, information types and sources,
there is no standard approach for that integrity challenge.

The concept of integrity is used in various fields among the
engineering and computer science disciplines, often having a
different meaning depending on the context and application.
The diagram in figure 1 gives an overview of selected areas
and applications that interact with the integrity concept,
showing how there are many different approaches to the
integrity challenge arising from multiple fields. Despite having
different context-dependent meanings, the integrity concept is
fundamentally associated with trust. Whether is representing
the correctness and accuracy of a information, or the integral
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functioning state of a system, or process, where expected
performance and operation requirements are met, the underlying
meaning of integrity can always be traced to trust. There are
different definitions of integrity among these various fields, but
it possible to distinguish two main categories and adapt those
definitions accordingly, in a more generic way:

• System integrity: the assessment that a given system is
performing according to expectation, with all operational
and technical parameters used to evaluate the system
falling within prescribed limits, and without any unautho-
rized access or spurious manipulation of its functionalities;

• Information integrity: the assessment of the correctness,
veracity, and accuracy within prescribed or expected
limits of a given information, often meaning that are
no significant errors, faults or spurious manipulation of
that data source.

The integrity aspects in the various fields and applications
represented in figure 1 can be mainly associated with either one
of these definitions, but there can be some overlap depending
on the context and application. For instance, an information
integrity aspect could be considered in a field that mainly focus
on system integrity, and vice versa.

In the context of this review, the integrity concept is related
to the integrity of the information provided by sensors. Since
there are different approaches for the integrity concept, the
methods used to o evaluate the integrity of measurements
provided by sensors can differ from the strategies used for
assessing the integrity of systems. The typical approach for
sensor measurements is to derive a statistical model that relies
on the estimated accuracy evaluation to determine if there
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Fig. 1. Different fields in engineering and computer science where the concept of integrity is used.

is an integrity problem. The challenge of assessing system
integrity might not have a standard approach, as there are a
wide variety of systems with specific characteristics that would
require different solutions.

The purpose of this work is to review the specific range
of applications of the integrity concept that are relevant for
assessing and assuring the integrity of sensor measurements.
However, due to the vast multi-disciplinary aspect of the
integrity challenge, it is necessary to give some perspective
regarding depth of research involving these various areas. The
identification and distinction of different fields that interact
with the integrity concept should help guiding further research
into the topic.

There is a wide variety of applications in which guaranteeing
the correct behavior of a system and the accuracy of information
is important. In particular, safety critical systems, as the
ones described in [1], might require or benefit from an
effective integrity monitoring strategy. As our reliance in
technology increases, so the usage and accuracy requirements
of several types of sensors that supports those various safety
critical systems. One particular case in which the integrity of
information provided by sensors is of critical importance is in
transportation systems, such as aviation, autonomous vehicles
and maritime navigation. Although extensive research has been
done into improving and assessing the integrity in navigation
systems [2], the development of similar strategies and standards
for sensor integrity monitoring in other applications has not
seen the same interest.

There have been recent reviews of the Global Navigation
Satellite System (GNSS) integrity monitoring methods, such as
[2], [3] and [4]. However, these works are highly specialized

for GNSS users, and in [3] and [4], given the recent trend
for autonomous vehicles, they focus on the specific GNSS
integrity methods and challenges for ground vehicles in urban
scenarios. The scope of this work is more general, and it is
intended for a broader audience, in and outside the navigation
field. The purpose is to incentivise the use and adaptation of
these positional integrity monitoring techniques for other types
of sensors and areas. Moreover, this review aims to provide
insights regarding alternative methods in different applications,
fostering new developments towards higher safety standards
and information integrity.

The content of this work is divided into two main sections:
• Theoretical Background, containing an overview of

navigation systems, which are the main application for
the integrity monitoring methods; an outline of sensor
integration techniques used for the navigation systems; an
introduction to the two main estimation techniques that are
used for integrity monitoring, the Least Squares method,
and the Kalman Filter, which constitutes, respectively, the
basis for the snapshot and sequential integrity monitoring
schemes; a discussion of fault detection methods, with a
focus on popular hypothesis testing approaches, such as
the chi-squared and likelihood ratio tests; and an overview
of important parameters for defining integrity specifica-
tions and evaluating the integrity solution performance.

• Integrity Monitoring Methods, divided into snapshot,
sequential, hybrid and multi-strategy, and alternative
methods, containing a review of recent works that features
methods in each of these categories and summary tables
to facilitate the consultation.

In the conclusion, a summary of the content is given, along
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with insights for future developments and trends for the research
on the sensor integrity monitoring field. Additionally, a list of
acronyms is provided in the nomenclature section, at the end
of this work.

II. THEORETICAL BACKGROUND

Most integrity monitoring applications rely on two main
steps: an estimation step, that can minimize the noise, provide
a more accurate value for the states (the quantities of interest)
along with a calculation of the error associated with that
estimate; and a fault detection step, that evaluates the estimation
error, with a test to decide if the estimated states are trustworthy
or not. This section will provide an overview of a selection
of topics that are necessary for understanding these two steps
in the context of integrity monitoring. It also provides an
introduction to navigation systems, as these are currently the
most notorious application for integrity monitoring schemes,
and an overview of sensor integration techniques that are used
for navigation solutions.

A. Navigation Systems
The navigation systems are responsible for tracking the

position and velocity of a vehicle, aircraft, ship, person or
object, and, sometimes, they also include planning and main-
taining a course between locations while avoiding obstacles
and collisions. The term integrity monitoring is often associated
with navigation systems, as it has been traditionally applied to
GNSS positional integrity for the aviation sector. Therefore, a
short overview of the inherit concepts in the field, the most
common types of navigation systems, and its components will
be given in this section.

There are basically two categories of techniques to provide a
navigation solution: position fixing, that requires matching the
current location to the known position of external references,
such way-points; and dead-reckoning, that computes the new
position based on the previous one, by calculating the change
in position using distance, velocity, altitude and trajectory
projection. The issue with the position fixing technique is
that those external references might not be available at every
time, and the main problem with the dead reckoning is
that the position error tends to grow over time, since each
measurement contains some degree of error and the new ones
depends on the previous measurements. For that reason, in
several modern navigation systems, since the two approaches
are often complementary, they are used together.

1) Inertial Navigation System (INS): The INS, sometimes
referred as INU (inertial navigation unit), is comprised of
multiple sensors, usually a combination of orthogonal aligned
accelerometers, gyroscopes and magnetometers, which is the
typical constitution of a Inertial Measurement Unit (IMU)
sensor, and a processing unit that calculates the relative
position, velocity and altitude from the sensor measurements
using a dead reckoning approach. Since the calculation of
the position is derived from the acceleration and velocity
integration, the navigation solution error grows over time.
Therefore, its performance is highly dependent on the quality

of the inertial sensors. Despite that issue, the INS can provide
continuous measurements and are widely used as a part of the
navigation system in ships, submarines, air-crafts and ground
vehicles.

2) Range-based Navigation: There are various types of
range based sensors, with particularities of functionality and
operation that would make one type more suitable for spe-
cific applications. However, they all based on the principle
of emitting a signal and extracting information about the
environment from that signal echo (the reflected wave), by
evaluating the time-of-flight, signal intensity, angle, frequency
and phase change. An important type of ranging sensor is
the Radio Detecting and Ranging, Radar, that uses Radio
Frequency (RF) signals in the microwave spectrum to detect
objects. Although there is a wide variety of Radar sensors with
different performance characteristics, these devices are usually
characterized by having a low spatial resolution, meaning they
can not detect small objects or differentiate fine shape and
format characteristics of the objects in view. However, they
are very robust against challenging weather conditions and
can offer a high detection range, with distances of up to
dozens of kilometers. These devices are widely used in various
applications, such as maritime surveillance, aerial traffic control,
and measuring the speed of ground vehicles in urban scenarios.

The Light Detection and Ranging (LIDAR) sensors has
a similar operation, but it uses a light source, typically a
LASER, instead of the microwave signal. They can offer
a much higher spatial resolution than Radar, being able to
provide a 3D characterization of the scene and to accurately
distinguish near-by objects. However, they operate on a
much lower distance range, typically below 100 meters, and
can be affected by weather and ambient light conditions.
These sensors are gaining notoriety in autonomous driving
applications, but they are usually used in combination with
other sensors, such as a short-range Radar and cameras.

3) Satellite Navigation: The Global Satellite Navigation
System (GNSS) has become one of the most popular navigation
solutions, as the number of available satellites increases and the
GNSS receivers becomes cheaper, smaller, and more widely
available. The system is able to provide the position of the
receiver in a global-referenced coordinate frame, and can be
combined with map visualizations to enable tracking the user
position anywhere on the planet, as long as sufficient satellite
signal is available.

There are four main arrays of satellite navigation systems
operating today, all using the same principle of broadcasting
precise synchronized time information in the frequency range
between 1000 and 2000 MHz. These systems operate with
a constellation of up to dozens of satellites, most of which
are orbiting the Earth in between the 20000 and 30000 km
radius. The main satellite systems are: Global Position System
(GPS); GLONASS; Galileu; and BeiDou Navigation Satellite
System (BDS), and they were developed and are maintained,
respectively, by the USA, Russia, European Union and China.

The GNSS data can contain a variety of signals in multiple
frequency. Some of these signals are available for general use,
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and others are restricted to military application and commercial
subscription. Despite various applications and specific purpose
usage, the GNSS signal always contains the ranging codes,
used for determining the time that the signal was transmitted
from the satellite, and the data message, with information
about the satellite orbits and timing parameters. The main
goal of the GNSS is to provide the absolute global position
of the receiver, by doing geometrical calculations from the
synchronized time signal provided by multiple satellite sources.
Since the GNSS signal propagates at a known speed (the speed
of light), through time calculations, the pseudorange is able
to provide the distance between the satellite and the receiver.
Using that information from multiple satellites, it is possible to
find the three-dimensional position of the receiver, considering
a geo-referenced coordinate frame. Detailed information about
these calculations can be found in [5] and [6].

Usually, the GNSS receivers are inexpensive and are able
to provide the position with a radial and vertical accuracy
around 5 meters. Although, there are several techniques and
augmentation methods that can improve that accuracy to
the centimeter scale. The drawbacks with the technology
are the lack of signal continuity, interference vulnerability,
and signal blockage and reflection. There are various error
sources that can degrade the GNSS signal, such as: ephemeris
(satellite orbit information) and clock errors, ionosphere and
troposphere delays, radio frequency interference, multipath
and no-line-of-sight (NLOS) errors. To ensure the usability
of the position solution provided by the GNSS equipment an
appropriate integrity monitoring strategy, that is able to detect,
and ideally, correct, these errors, is necessary. Extensive
research has been done into that topic, and a review of several
works that deals with this challenge will be given in section III.

4) Sensor Integration in Navigation Systems: In some sit-
uations, combining measurements from different sensors is
advantageous, with the possibility to mitigate or eliminate
the issues of specific sensor types. In the context of integrity
monitoring the most significant example is possibly for the
position measurement in navigation systems, in which the
integration of GNSS with INS is a popular approach. That
integration can provide a more accurate and robust positioning
and tracking solution, as the benefits and drawbacks of these
two types of sensor are complementary. The GNSS receiver
is able to provide a very accurate position, but it has a
relatively low update frequency and since it depends on satellite
signal, it can have continuity issues in bad weather and urban
environments, where interference, NLOS and multipath errors
can occur. The INS, conversely, does not suffer from any of
these issues, as it is a standalone sensor system that calculates
the position based on the inboard inertial measurement unit,
which contains accelerometers and gyroscopes, integrating the
acceleration and angle variations provided by those sensors.
That strategy can output position measurements at a much
higher rate than GNSS receiver can deliver, but it suffers from
accuracy drift, as the integration process introduces errors
that accumulates over time. For that reason, the integration
of GNSS and INS is advantageous, as the INS can track the
position during the events where GNSS signal is unavailable

or is unreliable, and it is possible to periodically use the GNSS
measurements to correct the INS position drift errors.

The differences between GNSS/INS integration schemes
are mainly in three aspects: the way the INS corrections are
applied; the types of GNSS measurements that are used; and
how the integration algorithm interacts withe GNSS equipment.
The three most common strategies for performing that sensor
integration are:

• Loosely coupled integration: relies on the GNSS posi-
tion and velocity solutions as inputs to the integration
algorithm, providing the INS correction without regarding
the INS measurements. It is a relatively simple solution,
in which a navigation filter is incorporated in the GNSS
equipment, with the advantage of being applicable to any
type of GNSS and INS sensors.

• Tightly coupled integration: uses the GNSS pseudorange,
pseudorange rate and accumulated delta range (ADR)
measurements as the inputs for integration algorithm. In
this case, a single navigation filter (such as the Kalman
Filter) can be used to provide the GNSS solution and
perform the integration. That approach mitigate time-
correlation issues with the filter error output, but suffers
from the fact that there might not be stand-alone GNSS
solution, as the raw GNSS measurements are being directly
processed by the integration algorithm.

• Ultra-tightly coupled integration: also referred to as deep-
integration, it performs GNSS signal tracking inside the
integration algorithm, using information from the GNSS
correlation channels as inputs, controlling the code and
carrier measurements within the GNSS receiver.

The information provided in this section is only meant to
provide a brief overview of these techniques. The reader is
advised to consult chapters 7 and 12 of [5], and refer to [7]
for a comprehensive up-to-date review of these techniques.

B. Estimation Techniques

In statistical inference, an estimator can be considered as a
rule (or set of rules) that specifies a way to use relevant data to
calculate a plausible value for the variable of interest that the
data is representing [8]. There are many different estimation
techniques with specific characteristics to tailor different
applications and requirements. However, all these techniques
are meant to extract a suitable estimation for the unknown true
value of a quantity of interest, that is represented by a set of
measurements or data inputs. In the context of sensor accuracy
evaluation, the assumption is that all measurements are
imperfect and contain some noise. By applying an estimation
algorithm it would be possible to reduce the measurement
noise, get a better value for the quantity of interest, and, more
importantly for integrity monitoring, have an assessment of
the error associated with each measurement. In the context of
integrity monitoring, there are two types of estimators and
their variations that stand out in popularity and effectiveness,
the Least Squares method and the Kalman Filter. An overview
of these techniques will be given next.
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1) Least Squares: The method is used to estimate the fitting
parameters of a model that aims to represent a set of data
(observations or measurements) by minimizing the sum, S, of
the squared residuals, as shown in eq. 1. The residuals are
the difference between the observed values of the dependent
variable, yi, and the ones calculated through the estimation
using the model, ŷi. As stated by the Gauss-Markov theorem,
the ordinary least squares method is an optimal1 estimator for
the fitting parameters, as long as the residuals are unbiased
(mean value of zero), with the same variance, and uncorrelated.
For a generic problem, consider the estimation function defined
in eq. 2, [9].

S =
n∑

i=1

(yi − ŷi)
2 (1)

ŷi = f(xi, β) =
m∑
j=1

βjϕj(xi) (2)

In this case, there are n observations (pairs of x, y), the
model has m parameters in the vector β, and ϕj(xi) is a
function of the independent variable xi according to the
specific application. Expanding to the matrix form where all
the observations, from i = 1 to i = n, are contained in the
rows, the least squares solution for the β parameters is given
by eq. 3, [10].

β = (XTX)−1XTY (3)

Where the matrix X is n × m, with the elements xij =
ϕj(xi), and the matrix Y is n × 1, containing the yi obser-
vations. Note that this representation highlights one of the
limitations of the method, that the coefficients being estimated
are assumed to be linear in respect to the independent variable.
There are non-linear variations to the LS method, but depending
on the model used, a closed form solution does not exist and the
estimation would be derived from numerical approximations.

An important variation of the LS method is the Weighted LS
(WLS), in which the information about the variance of each
measurement is incorporated into the solution. In the WLS, the
sum of the weighted squared residues is minimized, as shown
in eq. 4. In that case, the solution given by eq. 5 considers a
n× n weighting diagonal matrix, W, with its elements being
the inverse of the variance of each measurement, 1/σ2

i , as
shown in eq. 6.

S =
n∑

i=1

(yi − ŷi)
2

σ2
i

(4)

β = (XTWX)−1XTWY (5){
Wij = 1/σ2

i , if i = j

Wij = 0, if i ̸= j
(6)

A particularly relevant application case of the LS and
WLS estimator for integrity monitoring is in the estimation
of the GNSS coordinates and clock offset from pseudorange

1The best linear unbiased estimator.

observations, [11] and [12]. In that application, the same
equations 3 and 5 are used, but the unknown parameter, β,
is the correction vector for the GNSS user coordinates and
receiver clock offset, δX; the measurement vector, Y, is the
difference between the raw measured pseudoranges and a
predicted noiseless one calculated based on an approximated
receiver position, δρ; the model matrix, X, contains the
information about the satellite to receiver relative positions,
usually denoted by H, A or G, and referred as observation, or
geometry, or design matrix. Note that in this case, the number
of rows, n, represents the number of satellites available to the
GNSS receiver, and the number of columns, for the matrix H,
represents the number of unknown parameters, which in this
case are the receiver coordinates, xr, yr, zr, and the clock
offset. This calculation is the basis of one of the most popular
integrity monitoring techniques, the Receiver Autonomous
Integrity Monitoring (RAIM), which is widely used for GNSS
positioning solutions and will be discussed in III.

2) Kalman Filter: The Kalman Filter (KF) is a recursive
Bayesian estimator algorithm, initially proposed in 1960 [13],
that has been used in a wide range of applications such as
computer vision, signal processing, trajectory optimization,
econometrics, integrity monitoring for navigation systems,
among others. The method aims to provide an optimal
estimation for the state vector, which contains the parameters or
quantities of interest, generally combining the information from
a prediction, made using the process or system model, with
measurements of parameters that have a known relationship
with the state vector. The filter operates recursively, taking
the previous estimate to generate a new prediction, that gets
updated with the new measurement results at each step. For
that reason, the KF is memory efficient, being suitable for
real time applications as it does not need to store all the
measured values. When set up correctly, the KF is able to
quickly reduce the uncertainty level of its estimations, getting
close to the real value of quantities that are being monitored.
The technique is widely used in integrity monitoring strategies
due to its relatively low computational burden, being suitable
for implementation in hardware level in real time applications,
and its ability to provide optimal estimation under the right
conditions, with an error output that can be used as a base for
detecting faulty measurements.

There are several variations to the original algorithm that
were derived to mitigate or overcome some of its limitations,
to better target specific applications, or to improve the per-
formance from a certain metric. For instance, the Extended
Kalman Filter (EKF) is a popular variation used for non-linear
systems. Despite the numerous KF variations, all of them share
the underlying core elements and the base methodology of the
original algorithm. An overview of the base algorithm will be
given next.

The main elements of the Kalman filter are the following
variables:

• State vector: the set of parameters being estimated by the
KF. The true value for the parameters of interest, known as
states, is typically represented by x and the KF estimation
by x̂.
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• Process covariance matrix: the errors associated with the
state vector estimation and the level of correlation between
them. It is typically represented as P.

• System model: a deterministic model for the states and
the associated errors, describing how those quantities
vary over time. It is based on previous knowledge about
the system and the interaction between parameters. It is
partially implemented on the transition matrix, F, which
is used to generate the state vector prediction.

• Measurement vector: the set of ongoing measurements
for the system parameters, from which the updated state
vector is derived.

• Innovation: the main estimation error variable, usually
denoted by δz, representing the difference between the
measurement vector and the predicted states. Several
integrity monitoring methods use this variable as the basis
for detecting faulty measurements.

The KF uses the information about the system and the
measurements to update the state vector, following a simple
algorithm that can be implemented with a few linear algebra
equations. Although the calculations can be easily conducted
by a computer, setting up the filter parameters and matrices
for a generic application can be a challenging task. The need
for a good analytical model that can predict the current state
based on the previous state, and having a good estimate for
the expected variance of the model and measurements are the
main difficulties for applying this technique. Additionally, the
errors are assumed to follow a normal distribution. Although
for many systems, a Gaussian distribution would not be an
accurate representation of the real errors, in several cases, that
assumption can provide a good approximation.

It is important to distinguish the state vector and the process
covariance matrix in different phases of the calculation. Those
variables before the update stage are called time propagated,
a-priori, or predicted variables and can be represented with
various notations in the literature. In this review, the notation
convention used is with the superscript ”−”, x̂−

k and P−
k , for

the predicted, a-priori, variables, and with the superscript ”+”,
x̂+
k and P+

k , for the updated, a-posteriori, variables at the end
of each estimation step. Note that the subscript ”k” represents
the iteration number, and that one full iteration is commonly
referred as an epoch.

The standard KF has basically three phases: initialization,
which only occurs once when the process starts; prediction,
in which the prediction for the state vector and the process
covariance matrix is calculated; and update, that uses the
combined information from the prediction and measurement to
calculate a better estimate for the parameters of interest. The
steps and equations to implement a standard KF are summarized
in the following items and on the flowchart in fig. 2:

• Initialization phase: definition of the transition matrix,
F, which models how the state vector changes over
time as a function of the inherent system dynamics;
the control matrix, B, in case there is a control input
vector, uk, affecting the state vector; the process noise
covariance matrix, Q, containing the variance associated
with the model; the measurement noise covariance matrix,

R, with the expected variance in the measurements; the
measurement matrix, H, which defines the relationship
between the state vector and the measurement vector,
according to eq. 7, where wm is an additive measurement
noise; and the initial guesses for the state vector and
process covariance matrix to be fed in the first prediction
step.

zk = Hx−
k +wm (7)

• Prediction phase: calculation of the predicted state vector
and process covariance matrix using the updated estima-
tions from the previous step, as shown in eq. 8 and 9.

x̂−
k = Fx̂+

k−1 +Buk (8)

P−
k = FP+

k−1F
T +Q (9)

• Update phase: calculation of the innovation, eq. 10, using
the predicted state and the new measurement; the system
uncertainty, eq. 11, which encompasses both the system
modeling and measurement errors; the Kalman gain matrix,
eq. 12, representing the relative weights between the
predicted state vector and the measurement vector; and
finally, the calculation of the updated state vector and
process covariance matrix, eq. 13 and 14, that will be
propagated to the prediction phase in the next iteration.
In some cases, the residual is also calculated, using the
updated state and the measurement vector as shown in
eq. 15.

δz−k = zk −Hx̂−
k (10)

Sk = HP−
kH

T +R (11)

Kk = P−
kH

TS−1
k (12)

x̂+
k = x̂−

k +Kkδz
−
k (13)

P+
k = (Id −KkH)P−

k (14)

δz+k = zk −Hx̂+
k (15)

The method is computationally efficient and relatively easy
to implement in navigation systems, with well known model
equations to track objects or vehicle position. The KF is able to
provide an optimal estimation of the measured quantities, given
that the linearity and Gaussian error modeling requirements
are met. Consequently, the use of Kalman Filter in integrity
monitoring schemes provides reduced noise and possibly higher
accuracy values for the measured quantities, and through either
residual or innovation monitoring, a fault detection strategy
can be implemented.

C. Fault Detection
There are many systems and applications in which detecting

faults is necessary to ensure safety and performance. In an
industrial process, a undetected fault could lead to damaging
goods and expensive equipment, and even to fatal accidents. In
transportation systems, such as an airplane, where human lives
are at risk, a critical component failure or a substantial error in
the position estimate could have catastrophic results. Faults can
occur as a result of malfunction in the system components and
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Fig. 2. Summary of the steps, phases and equations of a standard Kalman Filter algorithm.

sensors, or in case of a abnormal situation that the system can
not deal with, such as human attacks. Specifically for sensor
integrity monitoring, faults associated with sensor malfunction
and hazardously inaccurate measurements will be the scope of
interest.

The typical fault detection (FD) scheme for sensor integrity
monitoring relies on a hypothesis test using a test statistic
derived from the measurement errors, that are usually evaluated
using an estimation method. Then, that test statistic com-
pared with an appropriate threshold considering the integrity
requirements. That approach can be referred as a model based
fault detection, because it requires analytical models for the
hypothesis testing, the error distribution and the construction
of the test statistic. A different strategy, called data based fault
detection, relies only on classified or fault free historical data.
The data is then used to train an empirical model that would
enable detecting faults and abnormal behavior. Sometimes
both strategies can be used in combination, with data based
techniques used as a framework to derive a model from the data,
that is then applied to a model based method. A discussion of
that hybrid approach can be found in [14], with a combination
of Partial Least Squares (PLS) and Generalized Likelihood
Ratio Test (GLRT).

In the following sections, an overview of the typical fault
detection methods will be given, with a focus on model based
approaches that are most commonly used for sensor integrity
monitoring. The provision of comprehensive explanations of
each method is outside the scope of this work. The goal of
this overview is to present these techniques and give relevant
references for the reader.

1) Hypothesis Testing for Fault Detection: Statistical hypothe-
sis testing has been proved a reliable tool for model based fault
detection. The objective is to determine if a fault is present (the
rejection of the null hypothesis, H0, in favor of the alternative
hypothesis, H1) while minimizing incorrect decisions such as
false alarms and undetected faults. In cases where there is only
one type of fault with a specific value being considered, a
simple hypothesis test is used. However, in situations where
different faults with different magnitude levels might occur, a

Fig. 3. Plot showing the performance compromise between type I and
type II errors in a hypothesis test. For aesthetic purposes, the values in
the vertical axis were normalized so that the the mean of both distributions
would have the same height.

composite hypothesis test is necessary. In another perspective,
a simple hypothesis test is defined when the probability density
function for the parameters being tested is fully known. On
the other hand, a composite hypothesis test is used when the
distribution of the parameters is unknown.

The quality of a specific hypothesis test can be quantified
by measuring the probability of false alarms (type I error), α,
and the test sensitivity, β, which represents the probability of
rejecting the null hypothesis when the alternative is true. Note
that the probability of missing a fault, a type II error, is defined
by 1− β. A very low α, close to zero, and high β, close to 1,
is the indication of a high quality hypothesis test. However,
a trade-off must be made between those two quantities.
Generally, a false alarm probability is specified, which defines
the corresponding test sensitivity. That compromise in the test
performance is outlined in figure 3. Here, the selection of the
detection threshold, the parameter that is compared to the test
statistic to decide if the null hypothesis will be rejected (fault
detected), involves a decision between a higher probability of
either type I or type II errors. In practice, the exact distribution

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on May 05,2022 at 11:36:30 UTC from IEEE Xplore.  Restrictions apply. 



1530-437X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2022.3169659, IEEE Sensors
Journal

8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2022

of the test statistic under the normal scenario (null hypothesis)
and in faulty conditions is unknown. However, there are
various strategies to design a test statistic that would minimize
the overlap between those distributions, enabling an effective
test that mitigates the missed detection and false alarm issues.
The next section will provide an overview of two important
tests that have been successfully used for sensor integrity
monitoring and for various other applications, the chi-squared
test and the likelihood ratio test.

2) Chi-squared Test: The chi-squared test is based on
assessing how well a sample of a random variable, representing
the quantity of interest, fits a chi-squared distribution of
which that variable is hypothesised to have. It is a very
popular fault detection method used in combination with an
estimation algorithm such as the Kalman Filter. The innovation
produced at each KF step, which is the difference between
the measurements and the predicted state, is used to form a
test statistic that follows a chi-squared distribution, indicating
a fault when that parameter is higher than a given threshold.
That test statistic is often called normalized innovation squared,
and it is defined by eq. 16. The detection threshold is usually
defined in terms of the false alarm probability, as there is a
compromise between test sensitivity and false alarms. To avoid
false alarms due to outliers, an average test statistic comprised
of innovations sampled over a specified time-window can be
used, as shown in eq. 17 [15]. The choice of the size of the
time window would take into account a trade off between low
false alarm rates and undetected true failures.

s2k = δz−k
T
Sk

−1δz−k (16)

s2k =
k∑

i=k−N+1

δz−i
T
Si

−1δz−i (17)

In this way, the fault is detected by comparing the s2k test
statistic with threshold T :{

H0 if s2k ≤ T

H1 if s2k > T
(18)

The value of T can be computed using a look-up-table (see
appendix D in [16]) for the chi-squared distribution, with
the confidence level (p-value) determined by the false alarm
probability and the degrees of freedom associated with the
number of independent variables in the innovation or residual
vector.

3) Likelihood Ratio Test: The likelihood ratio test (LRT)
is able to give optimal results for a simple hypothesis test,
maximizing the power function, or the detection ratio, for
a given false alarm ratio. The Generalized likelihood ratio
test (GLRT) is the similar approach for composite hypothesis
testing, when there are multiple hypothesis to consider. In
that situation, finding an optimal testing solution is oftentimes
impossible, but the GLRT is able to provide a result which is
close to the optimal test.

The GLRT is formulated by assuming that the measured
quantity of interest can follow either one of two Gaussian
distributions of known variance, one centered in zero,
corresponding to the null hypothesis, and the other centered
in θ, corresponding to the alternative hypothesis where a
fault occurred. The test is based on the evaluation of the
log-likelihood ratio between different hypothesis scenarios,
detecting a fault in case that difference is above a set threshold
level. A comprehensive explanation about the GLRT is outside
the scope of this review. For more information, the reader is
advised to refer to [17], and to [18] for an exemplary case in
the context of integrity monitoring.

4) Data Based Fault Detection: There are many fault detec-
tion strategies that do not necessarily use a hypothesis testing
scheme. These methods do not require a statistical model and
rely on classified or fault free historical data to derive an
empirical model that would assist the fault detection scheme.
Several machine learning algorithms have been used for this
purpose and these strategies are becoming more popular for
industrial process monitoring. Some application cases found
in the literature are given next.

The use of Principal Component Analysis (PCA) for fault
detection has been reported in [19], [20] and [21]. In [22] and
[23] methods based on Partial Least Squares (PLS) regression
have been used. The authors in [24], [25] and [26] propose a
Support Vector Machine (SVM) based fault detection. Examples
of using Artificial Neural Networks (ANN) for that purpose
have been found in [27], [28] and [29].

The advantage of this data based approach is that it
supports the fault detection in highly complex scenarios,
where developing an error model is not possible or feasible.
The drawback is that it requires reliable historical data to train
the algorithm, and since most faults are low probability events,
the amount of faulty data to support that training might not be
sufficient for a robust detection.

D. Fault Exclusion

Fault exclusion can be an effective strategy for improving or
restoring the integrity of a set of measurements. It is necessary
to have enough redundancy of sensors or measurements
providing similar information to identify and exclude the faulty
source. There are several methods for fault exclusion, but
they are usually based on the same concept of conducting a
global test to detect a fault, and then a local test to find the
faulty measurement or sensor. Since it is necessary to detect a
fault first, these methods are usually called fault detection and
exclusion (FDE). The global test can be any kind of FD strategy,
such as the chi-squared test, as previously discussed. The local
test usually iterate through all measurements, calculating a
local test statistic for each one and comparing them among
each other to find the one that has the largest deviation, or the
largest residual. In some cases, the local test statistic is simply
the standardized residuals from the estimation process, defined
as:
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si =

∥∥∥∥∥ ri√
Pi,i

∥∥∥∥∥ (19)

Where ri is the residual for the ith measurement and Pi,i

is the diagonal element i, i from the residual’s covariance
matrix [30]. In this way, the local test is performed in each
measurement, checking if the test statistic si is greater than
a threshold specified by a quantile of the normal distribution
associated to the confidence level, α, which is related to the
pre-defined false alarm probability. Then, if the test statistic
is greater than the threshold, the associated measurement
is selected to be excluded if the residual associated to that
measurement is the maximum residual in all measurements.
In other words, the specific measurement k is excluded if the
following two conditions are met:{

rk ≥ ri,∀i
rk > Tα

(20)

The implementation of this strategy to a batch of measure-
ments, used, for instance, in the least squares estimation is
straightforward. The method can also be applied to a recursive
estimation, such as the Kalman Filter innovation, by performing
the local test on a time-window of measurements, stored in a
buffer, until no fault is left in that set of measurements.

E. Integrity Performance Evaluation and Related
Parameters

The parameters used to define and evaluate the performance
of an integrity solution are closely linked to the requirements
for navigation systems, and were traditionally defined in
standards for the aviation sector. However, these concepts
can be extrapolated for sensor integrity monitoring in other
scenarios. The following concepts and attributes can be used to
specify the integrity requirements for a particular application,
and, they can provide performance evaluation metrics for a
given integrity monitoring solution:

• Accuracy: represents how close the measured or estimated
value for the quantity of interest is to its true value. The
true accuracy of a measurement is unknown, but it can be
determined in terms of statistical confidence levels and in
respect to the error distribution.

• Continuity: is related to the frequency of measurements
and the sensor system capability of providing continuous
data during operation within a certain accuracy level.

• Availability: a measure of the time ratio where the
measurements are reliable, maintaining accuracy and
continuity requirements.

• Estimation error: the difference between the estimation
of the parameter of interest and its measured value.

• Protection Level (PL): represents statistical error bounds
in which the true value of the quantity of interest is.
It can be used to detect an integrity issue in case the
bound is higher than an acceptable alert limit (AL) value.
The PL is a common metric provided by the integrity
monitoring algorithm in navigation systems, and it is
usually divided into horizontal and vertical protection

level, HPL and VPL, respectively, of the position solution.
Note that, since the PL is an error bound, the higher its
value, the more uncertainty there is regarding the value of
the quantity of interest. There are several ways to calculate
the PL, depending on the integrity monitoring method
used and the application. The classic approach used in
GNSS integrity monitoring algorithms is based on a slope
parameter derived from the chi-squared test statistic [31].

• Time to Alert: it is the time between a sensor, or
measurement, fault occurring, and the fault being detected
and alerted to the user. Some applications, such as
autonomous driving, might have very strict requirements
in terms of this parameter.

• Integrity Risk: the probability of occurring a critical
undetected fault in the quantity of interest, also represented
by the probability of hazardous misleading information
(HMI). Some applications have a user defined integrity
risk requirement, Prisk, typically a very low value in the
range of 10−5 to 10−7, for which the actual integrity
risk must not exceed. However, the direct calculation of
the integrity risk is usually not possible, being instead
represented by a statistical bound defined by the eq. 21,
where r is the estimation error, s the test statistic, and T
the detection threshold.

P (r > AL and s < T ) ≤ Prisk (21)

In the case where the error variable is independent from
the test statistic, typically in snapshot integrity monitoring
methods, that integrity risk compound probability can be
calculated as the product of the two probabilities. However,
if those variables are dependent, as in sequential methods,
the calculation is not straightforward and the obtained
integrity risk bound could be loose.

III. INTEGRITY MONITORING METHODS

As discussed in the theoretical background section, most
sensor integrity monitoring schemes rely on applying an
estimation technique to one or multiple sensors measurements,
typically using a suitable model to make predictions with the
estimator and to characterize the error distribution. Next, a
fault detection scheme based on the results from the estimation
is used, flagging erroneous measurements. In same cases, there
can be a fault exclusion algorithm that would try to correct
the estimation in case a fault is detected. The integrity is
usually evaluated in terms of a protection level and the state
estimation errors. A graphical representation of a generic sensor
integrity monitoring scheme is presented in figure 4. Note that
specific integrity monitoring strategies can differ from this
generic approach, containing additional steps or omitting some
of the parts. However, the presented diagram covers the typical
approach and can be used as a guideline for deriving a specific
sensor integrity monitoring strategy.

Despite the fact that there are innumerable different integrity
monitoring methods, as recently observed in [2] and [11], there
are basically two categories of integrity monitoring algorithms
in the literature:
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Fig. 4. Generic integrity monitoring scheme.

• Snapshot methods, with an error metric that only uses
information about the present epoch or state, typically
based on a test statistic derived from the residuals of the
least-square estimator;

• Sequential methods, also referred as recursive methods,
where the error variable is derived from present and
previous state information, generally implemented with
a test statistic based on the innovation from a Kalman
Filter.

Usually, in the snapshot schemes, the error is derived
either from the estimation using redundant information that is
provided by different sources or sensors, from a single time-
step (epoch), or from a fixed batch of measurements taken by
the same sensor. In contrast, the sequential methods commonly
use the estimation from the previous state to update the present
error. In this way, the test statistic normally used along with
KF, based on the innovation, is time-correlated to the previous
measurement, as it was shown in eq. 10, while the batch-like
residual based test statistic used in LS is only based on the
variables from the current time epoch.

Some authors have presented a comparison of these two
strategies or used them in combination, as will be discussed
in section III-C. Therefore, for the purpose of organizing the
different integrity monitoring literature, a multi-method or
hybrid category will also be considered in this review. The
snapshot and sequential methods assesses the integrity in terms
of statistical evaluation of the measurement errors. They usually
rely on a model for the distribution of values under faulty and
fault-free condition. However, there are various other methods

that evaluate the integrity from different perspectives, not
necessarily checking if the measurements are faulty under
rigorous statistical analysis. For that reason, works featuring
those strategies will be grouped under the alternative methods
category.

This section will provide a review of selected recent works
(from 2016 to the present date, with only a few exceptions) in
these four different categories of integrity monitoring methods.
The development of these various integrity algorithms relies on
formal mathematical representations that, for the purpose of this
review, will be omitted. Most of these specific strategies can
be interpreted as variations and extensions of the concepts that
were presented in the Theoretical Background section of this
work. Therefore, the readers who are interested in understanding
the actual implementation of these methods should be able to
interpret the equations provided in the original works having
the background covered here as a reference.

A. Snapshot based IM

The snapshot methods rely on a test statistic that considers
current2 information about the monitoring quantity error.
Therefore, this approach can be computationally efficient,
and simplify the derived statistical analysis by disassociating
time-correlated variables. The snapshot methods typically rely
on monitoring the residual from a least-squares estimator, and
they have been the basis for Receiver Autonomous Integrity

2Present time, or the latest measurements. However, some methods might
consider a batch of measurements taken in a predefined time window.
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Monitoring (RAIM) algorithms, which are popularly used for
GNSS integrity monitoring. A summary of works that features
snapshot integrity methods is given in table I, and next, a
review of selected works will be given.

Snapshot RAIM Algorithms: The RAIM algorithm, first
introduced in [39], is used in GNSS receivers to identify
errors in the positional data. In essence, the method performs
a consistency check using redundant positioning information
from the multiple satellites that are in the view range of the
receiver. Since there are basically four unknown variables to
be checked, the receiver relative position in the 3-axis (x, y
and z) and the clock offset, the method requires at least 5
satellites in view to be able to detect a fault, and in case a fault
exclusion scheme is used, it needs a minimum of 6 satellites to
perform the exclusion. The ”autonomous” in the name means
that the technique can be applied to a standalone receiver
and does not require additional corrections from reference
stations or augmentation systems that are used for GNSS
accuracy improvement. Since the algorithm is implemented
on the receiver, it is able to monitor local errors, and due
to memory and processing speed restrictions, the method is
designed to be computationally efficient. There are different
implementations of the RAIM algorithm, but the LS residuals
method is possibly the standard approach. There have been
reports of sequential versions of the RAIM method, such in
[40], but the typical algorithm is snapshot based.

There are several limitations with the standard RAIM
implementation, such as:

• Restricted to a single satellite constellation;
• Only supports single frequency signals;
• Does not provide integrity monitoring for the vertical

position (only outputs a HPL, horizontal protection level);
• Can only detect single fault cases (if there are multiple

satellite failures the algorithm will fail to detect).
One way to deal with that last limitation is to consider

multiple epochs for the integrity solution, as proposed in [41],
but that could introduce a delay in the detection and the method
would not be in the snapshot category. Other variants have
been developed to improve the performance of the method:

• Advanced RAIM (ARAIM) [35], that addresses some
of the traditional RAIM shortcomings providing vertical
guidance, multiple-fault mode detection, dual frequency
and multi-constellation GNSS signal [36];

• Relative RAIM (RRAIM) [42] and [43], which uses time
differential carrier-phase measurements instead of ranging
signals, being able to provide higher service availability;

• Extended RAIM (ERAIM), [44], that enables INS inte-
gration.

The ERAIM uses the innovation sequence provided by a
Extended Kalman Filter, being, therefore in the sequential
methods category, but the typical ARAIM algorithm is still
based on the weighted least squares residuals of the current
time measurements, therefore, defined as a snapshot method.
Although, there have been proposals of sequential based
ARAIM, such as in [45], the standard approach is snapshot
based and it will be briefly discussed here.

The development of ARAIM is closely related to the
navigation integrity requirements for the aviation sector,
improving on the operational requirements specified by the
International Civil Aviation Organization (ICAO) Standards
and Recommended Practices (SARP), with a target of reaching
LPV-2003 [46]. Some of the important integrity performance
parameters for that standard are summarized in table II. To
reach those requirements, and to overcome the limitations
in the standard RAIM method, the ARAIM was designed
for dual-frequency, multi-constellation signals, with vertical
protection and multiple fault-modes detection capabilities
[35]. While those features are meant to improve the integrity
monitoring performance, they also increase the likelihood of
satellite fault detection, posing a higher risk for the continuity
of the navigation solution. For that reason, the use of methods
that can exclude the faulty measurements from the overall
solution have been investigated. In [47] the authors compares
two ARAIM methods with fault detection and exclusion
(FDE) capabilities, one based on the chi-squared test for the
worst-case fault, and another relying on solution separation
(SS). The chi-squared and SS are the two main approaches
for RAIM algorithms, and extensive works, such as in [46],
[35], [47], [37], [48] and [36], have been published with
performance evaluation and proposed variations from these
methods. Due to the mathematical complexity involved in the
formulations, a comprehensive explanation of these methods is
outside the scope of this review. The reader is advised to refer
to the recommended works on the field for additional details.

Snapshot Position Bonding using Non-Gaussian Error Distri-
bution and MCMC: The authors in [32] propose a new integrity
monitoring method that derives a tight position bond for
GNSS measurements, modeling the pseudoranges and carrier
phase observation errors as accurate non-Gaussian distributions.
Typical snapshot methods rely on Gaussian over-bounding, a
technique that is unable to accurately represent the tail of the
error distribution, which is particularly problematic for NLOS
and multipath errors that might be outside the protection bound.
Another popular approach is the use of sequential methods,
based on EKF, which has obvious accuracy advantages due to
the accumulation of measurement information. However, the
EKF methods suffers to provide a rigorous position bounding,
due to the time-correlated aspect of the errors, and they assume
Gaussian distributions for the errors and state noises, which
are not always true and can led inconsistent results depending
on the design of the filter. To address these problems, the
authors developed a patent pending alternative method based
on Bayesian inference, called Single Epoch Position Bond
(SEPB). The method extracts an accurate non-Gaussian error
distribution, using corrected GNSS measurements provided by
a nearby reference station, and derives a bond for the protection
level using Markov Chain Monte Carlo (MCMC) with parallel
interacting chains to enable multi-modal sampling from the
error posterior probability density function. The method targets
automotive applications, which requires very tight position

3LPV Stands for Localizer Performance with Vertical Guidance, and the
LPV-200 is a standard with high integrity requirements.
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Ref. Method Data Source Validation Comment

[32] Single epoch position bond
(SEPB)

GNSS Experimental Accurate non-Gaussian modeling of the pseu-
dorange and carrier-phase error distribution,
with the position bound calculation using a
Monte Carlo method to sample from that error
distribution.

[33] Kalman Filter based solu-
tion separation (KFSS) with
sensor exclusion upon fault
detection

GNSS, INS,
LIDAR
and camera
integration

Simulation
and
experimental

The comparison of the method, using both
tight and loosely coupled integration, with
baseline ARAIM approach, shows a better
performance in terms of PL.

[34] Multi-constellation WLS
residual-based RAIM

GNSS Simulation Considered the effect of the spatial distribution
of the navigation constellation, optimizing
the integrity solution to decrease the false
detection probability while meeting the LPV-
200 performance standards.

[35] Multiple hypothesis solution
separation (MHSS) ARAIM
with FDE capability and an
additional chi-squared test

GNSS None Step-by-step formal definition of a multi-
constellation, multiple-threat, SS-based RAIM
algorithm, with a discussion of possible im-
provements.

[36] ARAIM GNSS Simulation Modified the baseline ARAIM with an im-
proved fault mode determination scheme,
named Feedback Structure with Probability
Accumulation (FSPA).

[37] Constellation Weighted
ARAIM

GNSS Simulation Evaluation of single satellite outage scenario
in different constellations and proposal of
a constellation weighted non-least squares
position estimator, for using with the ARAIM
method to improve the integrity under those
scenarios.

[38] Satellite Based Augmenta-
tion Systems (SBAS) based
maritime vessel protection
area concept

GNSS
with SBAS
corrections

Simulation Use of GPS positional data, along with cor-
rection messages provided by the European
Geostationary Navigation Overlay Service
(EGNOS), and 2D contour model of a ship to
calculate protection boundary geometry that
realistically accounts for the ship’s dimensions.

TABLE I: Summary of Recent Snapshot Integrity Monitoring Works

Integrity Metric LPV-200 Value

Time to Alert 6.2 s

Horizontal Alert Limit 40 m

Vertical Alert Limit 35 m

Integrity Risk 2× 10−7 per approach

Horizontal Accuracy (95%) 16 m

Vertical Accuracy (95%) 4 m

TABLE II: Integrity requirements for the aviation LPV200
standard. Table adapted from [49].

bonds, using GNSS corrections from an augmentation system
or physical reference station.

There are two underlining assumptions for using the SEPB
method: that accurate measurement errors models are available;
and that the measurements from different satellites are statisti-
cally independent. The latter can not be satisfied for errors that
affect multiple satellites at the same time, which is the case for
NLOS errors. For that reason, a measurement selection process
that excludes invalid outliers is proposed. The process includes
the investigation of two distinct consistency checks, one based
on the Random Sample Consensus (RANSAC) technique and
another based on a nonlinear least squares fit over a window
of data.

The method was verified with experimental data, amounting
36.5 hours in a wide variety of environments, and the results
were compared to a EKF based algorithm, similar to the
one presented in [50]. The performance of the method was
summarized in terms of the percentage of position bounds
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that were below a given threshold, meaning, the percentage
of epochs in which the algorithm was able to output position
with a given accuracy level defined by the threshold. The
results showed that the proposed SEPB was able to provide
tighter bonds than the EKF based methods, having about 62%
of bonds below 0.5 m, while the EKF variant had no bounds
below that level.

Solution Separation with Sensor Exclusion KF based Integrity
Monitoring: The authors in [33] propose an integrity monitoring
strategy for all source navigation based on the least square form
of the EKF, and solution separation with sensor exclusion in
case of detected faults. Their Kalman Filter Solution Separation
(KFSS) approach has no limitation in type and quantity of
sensors, or in number of faults, and they improve on the
standard EKF to enable the integrity risk to be directly traceable
in time by establishing a direct mapping function between the
final state estimation and all input parameters. To accomplish
that, it is proposed a new measurement model in which the
measurement vector and the propagated state are combined. The
authors use the weighted least square form of the KF, instead
of using the Kalman Gain to update the state, and they show
the mathematical equivalence of that method. That strategy
enables the use of a KF based estimator without the drawback
of having time-correlated errors, which poses difficulties for
the integrity risk and protection bounding calculations. For that
reason, the proposed method is compliant with the snapshot
principle, even thought it uses a recursive estimator.

The integrity risk is defined in terms of the position
estimation error, the alert limit, defined by the user, and
the protection level. Note that the integrity risk might be an
integrity requirement for a certain application, but evaluating
if the integrity solution is able to satisfy that requirement
might be challenging. The authors proposed a methodology
to establish a bound for the integrity risk, with a solution
separation method that considers the sum of the individual
integrity risks in each fault hypothesis and calculates the state
estimation separately for each hypothesis. Then, a fault detector
based on the calculation of the minimal detectable bias (MDB)
is applied, and the associated protection level is calculated.
The authors presents a detailed algorithm to use the method
and provide all the necessary equations. A summary of the
procedure is given in the flowchart in figure 5, adapted from the
diagram in the original paper. Note how the specific integrity
monitoring scheme developed in that work is different from the
generic method presented in figure 4 at the beginning of this
section, but still have a similar structure, specially considering
that the matrices correction steps are a part of the estimation
block. The original diagram in [33] has a reference for the
necessary equations to perform each step.

The authors tested the performance of their methodology
using simulations and a field-experiment. The simulation was
conducted with two scenarios, one using a tightly coupled INS
and GNSS navigation system, and the other using a loosely
coupled INS, Real Time Kinematics (RTK), LIDAR and Visual
Inertial System (VINS). The sensor integration schemes were
conducted based on the demos provided in [51]. They compared
the results in terms of root mean square error (RMSE) and

Fig. 5. KFSS integrity monitoring scheme. Figure adapted from [33].

horizontal and vertical protection levels to a baseline ARAIM
method. The results showed the superiority of the KFSS method
proposed, as the faulty sensors are excluded upon fault detection
without loss of accuracy and the obtained protection levels
were better than with the ARAIM. The field-experiment was
conducted with a ground vehicle equipped with consumer
grade IMU, GNSS, LIDAR and a fish-eye camera. A VINS-
MONO algorithm was used to perform the integration of visual
odometry, provided by the camera, with the IMU estimation
to output an optimized localization result. In this way, the
experiment used three independent sources of position data.
The obtained results showed a very low position error, below
0.5 m, in each direction, and a HPL of less than 3.5 m and a
VPL of less than 2 m in most cases.

The authors argue that the solution separation with sensor
exclusion method proposed has two advantageous aspects: it
is possible to analyze the impact of sensor fault on positioning
result directly, without considering the measurement relevance
inside a single sensor; and for a multi-sensor system, due to
sensor exclusion the number of fault hypothesis considered is
reduced, in comparison with measurement exclusion schemes.
They propose using this method for safety-critical applica-
tions that uses multiple sources of navigation data, such as
autonomous driving and unmanned aerial vehicles.

B. Sequential Methods
The sequential, or recursive, methods rely on a sequence of

measurements to calculate the updated state vector and test
statistic. In this way, instead of using redundant measurements
to perform the estimation, these methods can use previous time
measurements to update the estimation. Batch-based methods
also rely on measurements from multiple time epochs, but
differs from most sequential based algorithms by processing
all these measurements together, or evaluating a number of
epochs given a specified time window, typically being in the
snapshot category. The use of Kalman Filter based innovation
sequences to derive the test statistic is a common approach for
sequential methods. Also, the integration of different sensor
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types, such as GNSS and INS, using a KF is possible with this
strategy. These methods can have performance advantages in
comparison to the snapshot approaches, being able to provide
a better protection level and overall higher accuracy estimation
of the quantity of interest. However, they are usually unable
to detect slowly building faults and due to time-correlation the
statistical analysis can be more complicated [33]. In particular,
deriving the integrity risk and a tight bond for the protection
levels can be difficult in sequential based methods.

The table III provides a summary of works featuring
sequential integrity monitoring methods. Some of these
references will be discussed in detail in this section.

Extended Kalman Filter with Interactive Multiple Model based
Method for AIS data Positioning Integrity Monitoring: In [18], the
authors propose an integrity monitoring scheme for the the
positional information provided by the Automatic Identification
System (AIS) data received from maritime vessels. The AIS
data, which is broadcasted by vessels from a certain tonnage,
gives important information for assessing the maritime traffic,
giving periodic updates about the ships position. However, it is
prone to faults, has a low update frequency and it is unreliable
for collision avoidance. The integrity monitoring method
proposed in the work is based on two different fault detection
methods that use a test statistic derived from the innovation4

of an Extended Kalman Filter (EKF), which is applied to the
AIS positional information. The authors showed, by simulation
and real-world results, that their suggested approach increases
the integrity level of AIS data based positioning.

The EFK uses the course over ground (COG) and speed
over ground (SOG) provided in the AIS data as inputs for
two deterministic models in the prediction stage, namely,
the constant velocity (CV) and constant turn ratio velocity
(CTRV) which are integrated using the Interactive Multiple
Model (IMM) framework [61]. The authors showed that by
incorporating two complementary models to describe the vessel
dynamics, one more suitable for straight line trajectory, CV,
and the other being superior for describing maneuvering events,
CTRV, the position error is minimized.

Moreover, the work compares the fault detection performance
of two methods, the chi-squared test and the Generalized
Likelihood Ratio Test (GLRT). The integrity monitoring
scheme is based on the hypothesis test using these two
methods, with test statistics derived from the IMM-EFK
innovations at each step. The authors conclude that both
chi-squared and GLRT methods are appropriate for failure
detection in AIS. However, the GLRT was proved to be
superior in isolating the time of failure, and therefore, worth
the increased complexity associated with its implementation.
Additionally, in the conclusion, the authors propose the idea
of extending this study by fusing AIS and radar data to create
a more reliable maritime surveillance system, improving safety
by reducing the probability of collisions.

4The authors used the name residuals instead of innovation, which is very
common on the literature. However, in this present work a distinction between
the innovation and residual error is being considered, as shown in eq. 10 and
15, and therefore, the appropriate parameter name must be used.

Loosely Coupled BDS/INS Integrity Monitoring for Aircraft
Applications, with multiple KF for the sensor integration and
fault isolation: The work in [52] presents an integrity monitor-
ing algorithm for a loosely coupled BDS (BeiDou Satellite
Navigation System) and INS, using multiple Kalman Filters
for integration and fault isolation of the measurements from
redundant BDS receivers and INS units. The navigation system
proposed is based on commercial aircrafts, that are normally
equipped with two GNSS receivers and three INS units, and the
goal is to develop a solution to enhance integrity monitoring
for said application.

The measurements from the BDS and INS sensors are
combined using a Kalman Filter in a loosely integrated scheme,
where the INS calculation error is updated in a feedback loop.
The fault detection is based on a chi-squared test using the KF
innovation to form the test statistic. By using multiple filters,
in the event of a fault, the faulty device can be isolated and
the filter states restored to prevent fault propagation to the
next states. The HPL and VPL are calculated at each step to
verify the integrity algorithm performance and also to check
its availability (if the HPL or VPL is above the alert limit, the
integrity algorithm is not available). A convenient flowchart
with the detailed fault detection processing and the schematic
of the multiple KF and sensors architecture can be found in
the original paper, in [52].

The authors verified their algorithm with a simulation, in
which they obtained test data using a trajectory generator, a
BDS, and a Strapdown Inertial Navigation System (SINS)
simulator, and added artificial errors in the form of step and
ramp disturbances, and their combination. The simulation
results confirmed the adequate functioning of the their
algorithm. A Monte Carlo simulation was conducted to verify
the integrity risk, by running 106 random scenarios of different
position information. The integrity monitoring scheme was
applied to those scenarios to estimate the integrity risk. The
results showed that only 2 exceptions where the alert limit
was exceeded without detection occurred, indicating a very
low integrity risk.

Landmark Reference Based Robot Positioning Integrity Mon-
itoring: In [58] the authors propose an integrity monitoring
method for robot localization in reference to established
landmarks. They use the robot relative position measurement
as input for an EKF, and then, evaluate the KF innovations
with a fault detection scheme adapted from the chi-squared
testing methodology presented in [62]. The landmark reference
positioning is a type of fixed positioning technique that relies
on feature mapping using objects that have a known position,
defined as landmarks, to calculate the user relative position
in regards to those. The technique requires sensors, such as
LIDAR or cameras, that can be used for detecting the landmarks.
The faults, modeled as deterministic shifts in the measurements
means, occur when wrongly extracted features are identified
as the mapped landmarks.

The authors present the integrity monitoring as an opti-
mization problem in which the goal is to find the worst-case
undetected fault that maximizes the estimation error. Since in a
KF the error in the current state can be correlated to previous
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Ref. Method Data Source Validation Comment

[44] Extended RAIM with EKF
based GNSS/INS integration

GNSS/INS Simulation Use of accumulated pseudo and delta range
measurements, INS driven dynamic model and
GNSS/INS tightly coupled integration. The
method works for detecting instantaneous bias
but it is unable to flag slow growing errors.

[18] Interactive Multiple Model
(IMM) with EFK and Chi-
squared and GLRT FD

AIS data Simulation
and
experimental

Positional integrity monitoring of maritime
vessels using AIS data. Two different dynamic
models for ship movement are used and
combined using the IMM framework and EKF.

[52] Multiple KF with Chi-
squared test

GNSS and
INS

Simulation Navigation solution for aircraft, with redun-
dant GNSS receivers and INS sensors. Pro-
posed a method for isolating faulty systems
and to reconstitute (feedback reconstitution)
the KF state after excluding the fault to main-
tain the availability of the integrity solution.
Use of Monte Carlo (MC) simulation to verify
the integrity risk.

[53] KF adaptation of a Batch-
based scheme, with residual
based cumulative test statis-
tic

GNSS Simulation The strategy enables the direct evaluation
of the integrity risk. Integrity performance
analysis for an aircraft approach and landing
case, comparing the availability maps of the
proposed method with standard techniques.

[54] ARAIM with FDE and EKF
based GNSS/INS tight inte-
gration

GNSS and
INS

Simulation Proposed method for meeting the high pre-
cision aircraft approach requirements in the
CAT-I standard.

[55]
and
[56]

Cooperative integrity moni-
toring with EKF innovation-
based Chi-squared testing
that uses a global and local
test statistic

GNSS and ul-
tra wide band
(UWB) inter-
vehicle rang-
ing sensor

Simulation Strategy that combines the GNSS data from
multiple vehicles and their respective distances
from each-other, separating the errors into
local and global components.

[57]
and
[58]

EKF with a sliding window
Chi-squared innovation se-
quence based FD

LIDAR and
IMU

Simulation
and
experimental

Robot localization safety based on landmark
feature matching for GNSS-denied environ-
ments. Experimentally generated feature map,
using trees as landmarks and data obtained
from a fusion of IMU, GPS and LIDAR.

[59] KF with chi-squared test and
FDE

Integrated
GNSS/INS

Simulation Development of a analytical recursive expres-
sion for the worst case failure mode, and a
computationally efficient integrity monitoring
solution that uses a single KF for fault exclu-
sion.

[60] Extended H-infinity filter
(EHF) for GNSS/INS inte-
gration, FD based on vehi-
cle dynamic model and PL
calculation using zonotopes

GNSS/INS Experimental The authors show, using data acquired from
a land vehicle, that the EHF solution is
more robust than the EKF for erroneous filter
parameter initialization. They propose a non-
probabilistic FD strategy to avoid statistical
sensitivity issues.

TABLE III: Summary of Recent Sequential Integrity Monitoring Works

estimations, the authors propose evaluating the integrity in a
user defined preceding horizon of size M , consisting of the
range between the current epoch, k, and the epoch k−M . The

integrity evaluation within a certain preceding horizon considers
all fault hypothesis associated with each combination of
landmark that could have been wrongly identified in that range.
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Therefore, even for small horizons, the number of hypothesis
could pose a significant computational burden. To solve that
problem, the authors propose a hypothesis reduction strategy,
monitoring only the faults that would have an occurrence
probability higher than a predefined threshold. In their method,
it is necessary to compute the probability of occurrence of each
fault hypothesis, meaning that the probability of failure of each
landmark association should be known. The authors assume
those probabilities can be obtained from experimentation and
that it is usually a low value, in the order of 10−3.

Lastly, the proposed model was evaluated both in a
simulated and real experimental environment. The simulation
was conducted with three different values for the preceding
horizon and the results confirmed that choosing a larger
horizon reduces the integrity risk. The experimental map was
generated using data fusion from IMU, Real Time Knematic
(RTK) Differential Global Positioning System (DGPS) and
LIDAR. The authors removed the DGPS data and artificially
reduced the LIDAR range to conduct the actual integrity
monitoring experiment. The test was conducted using tree
trunks as landmarks and the robot followed a closed loop
path between two sets of trees that were about 20 meters
away. It was demonstrated that the reduction of the LIDAR
range significantly increased the integrity risk, and the authors
presented the contrasting results for two LIDAR ranges, in
20 m and 25 m. As expected, the results showed that the
highest integrity risks were associated with the areas with
fewer landmarks. The work can have significant impact
for safety-critical applications, e.g. when mobile robots are
operating among humans.

Batch-based Integrity Monitoring Adapted for Kalman Filter
with Cumulative Test Statistic: The work in [53] proposes a
integrity monitoring method using cumulative batch based
Kalman filter that enables direct integrity risk evaluation,
contrasting with most published methods that cannot accurately
determine the integrity risk in real-time. The test statistic for
fault detection is based on current and past-time KF residuals,
which are defined as non-centrally chi-square distributed ran-
dom variables. Since the residuals are proven to be independent
from the state estimate error and that the current and past-time
residuals are mutually independent, the test statistic can be
recursively updated by adding the current residual contribution
to a previously calculated weighted norm of past-time residuals.
The approach is based on a batch Integrity Monitoring, in
which the error estimation and fault detection methods are
applied to a sequence of measurements over a finite window
of time. The fact that the state estimation and the test statistic
are independent and their probability distributions are known
facilitates the evaluation of a tight bond for the integrity risk.

The authors provide an overview of a general batch based
integrity monitoring method, first implemented in [63], includ-
ing the mathematical details required to implement it. In the
batch realization, all measurement and process equations are
stacked in a single measurement equation, containing all state
and measurement vectors within a specified time sequence. In
that way, the number of measurements and states are equal to
the size of these vectors multiplied by the size of the discrete

time interval in which the batch realization is defined. The fault
detection and the integrity risk evaluation is performed from
the batch residual vector, defined as the difference between
the batch measurement vector and the conditioned (by the
measurement matrix) state estimate batch vector. Another fault-
detection method, based on the forward-backward smoother
(FBS), [64] and [40], is considered. The batch residual is
partitioned into individual components at each sample time.
Moreover, it should be noted that the starting point for the
derivation of the cumulative KF-based integrity monitoring
method presented in the work was motivated by the observation
that the current-time component can be computed using a KF.

The cumulative KF-IM is based on the weighted norm of
the current-time batch residuals, which is computed similarly
as the innovation based test statistic used for chi-squared test
presented in eq. 16. However, the authors use the residuals
instead of the innovation because of the independence require-
ment, as the innovation is not independent from the state
estimate. Therefore, the test-statistic used is the weighted norm
of the current-time residuals, which is shown to enable a direct
integrity risk bound evaluation. Instead of processing batch
matrices, which is computationally expensive, the proposed
recursive method only requires the storage of the weights and
independent chi-square distributed random variables that are
associated with the residuals. To evaluate the integrity risk
bound, the authors propose a second KF, running in parallel,
that uses the worst-case fault vector as input.

The method was evaluated in a precision navigation example
for aircraft approach and landing, using simulated GNSS
signals over a 5 by 7.5 deg latitude-longitude grid. The
performance results were displayed as availability maps, which
represents the percentage of time in which the integrity risk is
below a predefined value associated with a certain location.
The cumulative KF integrity monitoring method was compared
to the batch-based approach, and also with a standard snapshot
based algorithm. The availability map for the batch-based
method was very similar to the KF approach, but the one
based on KF was considerably more efficient, as the simulation
running time for the higher sampling rates was several times
lower than the batch-based method. The simulation also
indicated a significant performance improvement of their
method when compared to the standard snapshot algorithm, as
in some locations the availability for the snapshot method was
below 50% but with the cumulative KF algorithm it was never
below 96%.

Collaborative Integrity Monitoring for Urban Transportation
with Inter-vehicle communication: The authors in [55] and
[56] propose a collaborative integrity monitoring strategy for
vehicular navigation in dense urban areas, where using data
outputs from multiple vehicles can effectively increase the
detection of faulty GNSS measurements due to issues such
as NLOS. The paper in [56] is an updated extended version
of the work presented in [55]. The cooperative positioning
method is based on decentralized Kalman Filter and innovation
monitoring, which is applied to the measurements of a GNSS
receiver, and a ultra wide band (UWB) transceiver, the inter-
vehicle ranging sensor which is also responsible for the
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cooperative vehicular communication.
The measurement model proposed considers a separation

between the common and specific types of errors, that are
associated with errors that are common for all sensors in
the area, or specific for one particular sensor. For the GNSS
receiver, the common errors could be associated to tropospheric
and ionospheric delays, ephemeris error and or satellite
failure. The specific errors would be mainly due to NLOS
or multipath issues, which are also issues that can affect the
UWB measurements. The GNSS and UWB data are fused using
an EKF and the chi-squared test is applied to the innovation,
which is decomposed into global and local parcels associated
with the common and specific errors.

Since different vehicles might track different satellite and
ranging data, the Cooperative Integrity Monitoring (CIM) uses
the concept of a all-in-view set, considering the group of
satellites and UWB that is communicating with at least one of
the collaborator vehicles. Therefore, the innovation for a given
vehicle is the sum of the global innovation, which considers
the errors in the all-in-view set, and the local innovation. That
error metric is represented by a multi-dimensional Gaussian
distribution with zero mean in the normal case, and non-zero
mean for the faulty scenario. A diagram with an overview of
the proposed integrity monitoring architecture is provided in
fig. 6.

Based on the common and local innovations and the
measurement error covariance matrices, the global and local test
statistics are defined, following a chi-squared distributions with
the number of degrees of freedom matching the corresponding
innovation vectors sizes. The detection threshold is conditioned
to a false alarm probability which should be a set requirement
for a given navigation application. When a test statistic,
associated either with the global or local errors, exceeds the
detection threshold, a fault is detected. However, for fault
exclusion, the authors rely on a greedy search method that is
explained in [65], where in each fault exclusion iteration the
measurement that has the largest effect on the test statistic is
excluded.

In [55] the authors conducted simulations with GNSS only
and GNSS plus UWB measurements under heavy GNSS
multipath scenario to evaluate the CIM performance. For the
GNSS only simulation, the results were compared with a
baseline RAIM method, showing that the proposed CIM is
more sensitive to faulty observations, having flagged 98.7 % of
the GNSS errors, while the RAIM only detected 86.4 %. For
the full simulation, with both GNSS and UWB measurements, a
comparison with a baseline RAIM is not possible. However, the
CIM was able to detect 98.5 % of the faulty measurements from
both GNSS and UWB. The results were compared with and
without the fault exclusion algorithm and the conclusion is that
fault exclusion is necessary for maintaining position accuracy.
The simulations conducted in [56] were more comprehensive,
adding a comparison with the Collaboration-enhanced Receiver
Integrity Monitoring (CERIM) presented in [66] and evaluating
the common and specific errors separately. The performance
under a more realistic dataset was evaluated, using a Navigation
Constellation Simulator for the GNSS and UWB measurements
containing real field trial noise. The simulation results showed

that the proposed CIM achieves higher detection performance
than the other methods in all investigated scenarios.

C. Hybrid and Multi-Method Integrity Monitoring

This section provides an overview of works that have used
multiple integrity monitoring techniques, either as part of
the same integrity solution, or as a means of performance
comparison of different approaches for a specific application.
Particularly for more complex sensor systems, it might be
advantageous to combine different snapshot and sequential
methods as a part of the overall integrity solution. A summary
selected works that fit in this category is provided in the table
IV.

Works Featuring Comparisons of Different Methods: In many
works, such as in [55], [48], [47], [18] and [53], there are
performance comparison of different approaches, which are
interesting to assess the differences between different methods
in a given scenario. It is important to point out that the
results from such comparisons are biased by the setting,
instrumentation or simulation strategy, choice of variables, etc.
Therefore, they are not suitable so state objectively that one
method is better than another. Nevertheless, these comparisons
are useful when considering specific applications and are
able to highlight strengths and weaknesses of the different
techniques being addressed. For that reason, an overview of
some interesting integrity performance comparisons found in
the literature will be given here.

In [48] a formal comparison between the residual-based
(RB) RAIM, which uses a single test-statistic, and the
solution-separation (SS) RAIM, that has a test-statistic for
each fault mode/satellite, was made. The authors showed that,
although the SS approach has a superior performance, the
RB is able to provide a tighter bond for the integrity risk. In
[18], the IMM-EKF approach is used with two different fault
detection strategies, namely the chi-squared test and the GLRT.
For the AIS localization based solution investigated in the
work, the two FD methods had comparable result. Although
the GLRT was able to provide a slightly more robust solution,
considering the much easier implementation, the chi-squared
test performed well. The work in [50] uses a KF adaptation of
the traditional snapshot RAIM with solution-separation and
with the sum of the squared residuals FD approaches. The
two strategies are compared using data from experiments with
ground vehicle in a sub-urban area and with dynamic flight.
The results showed that the solution-separation method is able
to provide considerably lower protection levels, but the cost of
running parallel filters for that approach has to be considered.
In [11], the authors compare the performance of different
snapshot, LS residual-based, and sequential, EKF innovation
based, methods for GNSS integrity monitoring in harsh urban
environments. They apply two different strategies for the
characterization of the measurement errors, one based on the
carrier-power to noise density ratio (C/N0) variance model
proposed in [73], and their own hybrid model, named urban
multipath model (UMM), described in a previous work [74].
Additionally, the authors compared the results evaluating the
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Fig. 6. Overview of the architecture of cooperative integrity monitoring solution. Diagram adapted from [56].

cumulative distribution function of the horizontal protection
level derived from the various approaches. The results showed
that the weighted version of the EKF with the UMM has
the best performance, followed by the WLS also with the
hybrid UMM. The classical EKF and LS methods had
almost identical worse performances. In [60], the authors
compared the standard GNSS/INS EKF integrated integrity
monitoring scheme with a novel approach based on the
Extended H-infinity Filter (EHF) and PL calculation using
zonotope. The comparison is made for the scenarios in which
the filters are initialized with bad parameters, in which the
EHF is clearly advantageous. Instead of using the standard
innovation based test statistic derived from the EKF, the
authors propose a FD strategy that considers a dynamical
model of the vehicle to avoid statistical sensitivity in the
FD threshold calculation. Unlike the KF, the H-infiniy filter
does not require Gaussian process and measurement noises,
as those variables can follow an unknown statistical distribution.

PNT Integrity Monitoring Scheme for Maritime Navigation:
The work in [72] presents a concept for an integrated Position,
Navigation and timing (PNT) unit to be used on-board of
vessels, relying on multiple sensors to provide accurate relevant
position, navigation and timing data for maritime applications.
To ensure the reliability of the information, the authors propose
an integrity monitoring scheme on an architectural level, with
different methods being applied to different sensors. Although
the methods proposed are not a novelty, the use of multiple
integrity monitoring techniques in a system level perspective
is an interesting approach that can provide useful insights
for designing integrity monitoring schemes in multi-sensor
applications.

The PNT unit can be comprised of different sensors, but

should be able to provide the following data: the vessel position,
containing the latitude and longitude values, typically measured
by a GNSS receiver but also tracked by a IMU in small time
windows; the Under Keel Clearance, which is the distance
between the lowest point of the ship and the ground of the
sea, measured with a sonar sensor; the velocity vector, with
the magnitude given by the Speed over Ground (SOG), and
the direction by the Course over Ground (COG), which can
be given by GNSS data and the IMU; the attitude, giving the
orientation of the vessel relative to the true north, which can
be measured by a gyrocompass and IMU; and timing, in UTC
format, also given by the GNSS signal. The proposed PNT unit
would have an integrity solution that monitors the information
from each sensor, giving timely integrity messages to the user.
A warning would be issued in case the accuracy of any given
information is below an alert limit threshold, and therefore,
the system would require a real time error estimation of all
sensor relevant data.

The generic integrity monitoring steps for an Integrated
Navigation System uses plausibility, validity and compatibility
checks, respectively, if the data is within an acceptable range,
with appropriate format, and with no discrepancies with
redundant measurements of different sensors. For the PNT,
the authors suggest a more comprehensive three steps integrity
monitoring scheme, comprised of individual sensor data tests,
compatibility checks for similar data of different sensors, and
a fault detection after an integration algorithm that fuses the
available data. The proposed strategy uses RAIM in the GNSS
data to check for satellite faults, performs plausibility checks to
the gyrocompass, speed log and IMU data, and also compares
the similar variables with compatibility checks. A KF is used
for integration, and multiple fault detection approaches that
uses the KF output are suggested, including:
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Ref. Method Data Source Validation Comment

[47] Chi-squared and SS based
RAIM with FDE

GNSS Simulation Model development for both chi-squared and
solution separation test statistics, with deriva-
tions for faulty measurement detection and
exclusion. Performance comparison between
the two approaches indicated that the chi-
squared method is able to provide a tighter
protection bound, but at the cost of almost five
times higher computational burden.

[67] Fixed Lag Smoothing pose
estimator with solution sep-
aration based FD

Ranging and
odometer sen-
sors

Simulation Robot localization safety based on landmark
feature matching. Comparison of the integrity
risk bound using solution separation and a chi-
squared integrity monitoring methods.

[11] Comparison of snapshot
Weighted Least-Squares
residuals and sequential
weighted EKF innovation

GNSS Real Data
Simulation

Error characterization for improved accuracy
in urban environments, and use of the Danish
Reweighting method, [68], for FDE.

[69] EKF based sensor integra-
tion with a comparison of
three different methods to
compute the PL

GNSS, IMU
and Odometry

Experimental Evaluation of different integrity concepts for
autonomous driving, under four different sce-
narios (airfield track, highway, country road
and urban streets). Comparison of ARAIM,
Kalman Integrated Protection Level (KIPL,
based on the patent [70]), and the PL derived
directly from the KF standard deviation.

[71] Vector Delay Frequency
Lock Loop (VDFLL) and
comparison of RAIM and
Isotropy-Based Protection
Level (IBPL) techniques

Integrated
GNSS/INS
with camera
aid

None Fisheye camera based GNSS masking detec-
tion, with satellite exclusion based on sky
visibility. The VDFLL tracks multipath errors
and incoherent GNSS pseudo-range values.

[72] Multi strategy, including
plausibility and compatibil-
ity checks, RAIM and KF
based FD approaches

Multi-sensors
from a PNT
system

None,
architectural
concept

Proposes using the classic snapshot RAIM for
GNSS and KF bias, innovation and residual
based FD for the integrated data from multiple
sensors.

TABLE IV: Summary of Recent Multi-method Integrity Monitoring Works

• bias check, that monitors the errors in the navigation
parameters against the maximum error specified by the
sensor manufacturer;

• innovation filtering, that is sensitive to sudden large value
discrepancies;

• innovation sequence monitoring, that detects smaller
deviations over time;

• and residual based approaches, similar to innovation
filtering and sequence monitoring.

It is important to note that the PNT unit was not implemented
and the authors state that the work was a starting point towards
the realization of such unit. The integrity monitoring strategy
presented, although specific for that PNT unit, can be adapted
for other multi-sensor systems in other applications and was,
therefore, worth reviewing in this work.

D. Alternative methods and Integrity Aspects in other
fields

As previously discussed, the research in the integrity mon-
itoring field is closely related to navigation systems and the
developed techniques are almost solely applied to improve
and assess the integrity of positioning solutions. However, the
integrity assessment goal is not exclusive of navigation systems
and different strategies are used in other areas. Some examples
of these strategies are:

• Data integrity checks based on logic formalism, and/or
heuristic-rules, [75], [76] and [77];

• Data integrity verification based cyber-security techniques,
[78] and [79];

• System integrity evaluation of infrastructures using the
Analytical Hierarchy Process (AHP) and Key Performance
Indicators (KPIs) [80];

• Data driven FD and fault diagnosis for industrial process
monitoring, [81] and [82];
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• Authentication protocols, cryptography methods, and
software security tests for database and computer systems
integrity assessment [83], [84] and [85].

The line between sensor integrity monitoring and data
integrity might not be clear when the data of interest is being
provided by sensors. For instance, a data integrity evaluation
method for a Internet of Things (IoT) device, from which the
information is being provided by one or multiple sensors, can be
considered as a sensor integrity monitoring technique. However,
there is typically a distinction between these two approaches.
Integrity monitoring is concerned about the accuracy of sensor
measurements, and data integrity simply checks for the validity
of the sensor data itself, often disregarding any accuracy issues
that may arise due to various sources of failures. Nevertheless,
both strategies are important for guaranteeing the integrity
of the sensor information, and therefore, selected works that
presents data integrity solutions will be reviewed here.

With these considerations, this section aims to provide an
overview of integrity evaluation techniques that are outside the
typical navigation-based integrity monitoring approach. The
idea of this overview is to foster the flow of multi-disciplinary
insights for the development of new integrity monitoring
strategies, aiming for higher safety and and resilience in the
sensor systems operating in various areas. A summary of
the reviewed works in this category, along with additional
references that will not be discussed in detail, is provided in
the table V.

Sensor Data Integrity Monitoring based on Heuristic Rules: In
[76], a methodology for data integrity monitoring, applicable
to IoT sensors, is presented. The strategy is based on a set
of heuristic rules in combination with a variable-length data
monitoring window (VLDMW) control mechanism that is able
to recover from faulty data. The heuristic rules for sensor data
integrity check are the following:

• Non-overflow: valid range check for the data fluctuation,
according to the intrinsic characteristics of the sensor and
monitored quantity;

• Inertia: assuming a high sampling rate, the variations
between consecutive measurements should be small;

• Inequality: assuming a high enough accuracy level, it is
unlikely that consecutive measures would be equal, as
there should be a persistent random noise that would make
the observations slightly different.

A failure model comprised of three types of failures, namely
format, timing and value failure, and their superposition,
is considered. Each data point, corresponding to a sensor
measurement, is checked for format and timing failures and in
case those faults are detected the faulty data is flagged. Next,
a recovery strategy, using either interpolation or the proposed
VLDMW method depending on the number of consecutive
faulty points, is used. In summary, the VLDMW method is a
adjustable length median filter that is applied to the flagged
data points recursively until the faulty data is recovered. The
authors provide a flowchart and a practical example that fully
explains the method, but for the purpose of this review, a
comprehensive explanation of the method will not be given.

The data integrity monitoring strategy was verified with
both simulation and experimental results. The tests were
made using a IMU unit, containing 3-axis magnetometers,
gyroscope and accelerometers, in both static and dynamic
scenarios. Different types of data failures and abnormalities,
such as abrupt environmental changes, magnetic interference
and loose data transmission connectivity, were introduced. The
results showed that the proposed method has good robustness
for detecting failures and recovering the data. Additionally,
the performance of the strategy was strictly evaluated with
turntable experiments, in which precise centripetal forces were
introduced in a controlled manner. The root mean squared
error (RMSE) of each sensor was calculated and compared
with and without the data integrity method. The results showed
that the RMSE with the data integrity method was, overall,
orders of magnitude lower than without the use of the technique.

AIS Data Integrity Assessment for Maritime Anomaly De-
tection: The authors in [75] developed a AIS data integrity
assessment method that uses logic rules, built from the case
study specifications in conjunction with expert knowledge. The
strategy relies on verifications that would trigger situation-
specific alerts in case issues are found. The verification rules,
divided into four layers of complexity, were established to
assess the correctness of information, considering 935 integrity
items were identified in AIS data. The integrity assessment
was conducted in a sequential manner according to the layers,
and considering the 27 different types of AIS messages, each
containing several data fields. The summary of the four-order
assessment is as follows:

1) Independent individual data field verification;
2) Independent individual message verification;
3) Grouped comparison of one or several fields of all

messages of the same type;
4) Grouped comparison of several fields of all messages of

all types.
The authors proposed the use of predicate logic to determine

the integrity status of each item associated to the AIS messages.
The logic relies on the corresponding data field values, the
syntax and expert knowledge inference, and is able to assign a
Boolean value for the integrity of each item in a rigorous and
unambiguous manner. These integrity checks are constructed
from logic statements about each data field or a combination
of fields, being grouped into families of items which have
been presented in detail in the original paper. A summary of
these categories of integrity items, linked to the four-order
assessment, is given in table VI, adapted from [75]. Then,
a flag system, related to the integrity items, is proposed to
highlight anomalies in the AIS data.

The authors have implemented and tested their data integrity
monitoring system using about 24 million AIS messages,
collected over a period of 6 months, and with added con-
trolled degradation to evaluate rare occurring behaviours. The
verification system was implemented in a web-based interface
that displays the vessel traffic along with AIS messages that
have been flagged with some integrity issues.
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Ref. Method Data Source Validation Comment

[75] Data integrity assessment
based on predicate logic
and rules defined by expert
knowledge

AIS Data Simulation
with Real
Data

Development of a GUI containing the vessels
position in a map, with a flag system to
indicate integrity issues in the respective AIS
messages.

[76] Data integrity assessment
and recovery based on
heuristic rules and a control
strategy called variable-
length data monitoring
window

IMU Simulation
and
Experimental

The method enables the detection and recovery
from format, timing and value failure and
can be, theoretically, applied to any digital
sensor. Experiments with a IMU unit under
static and controlled dynamic conditions are
used to validate the strategy.

[86] Continuity, plausibility and
consistency checks based on
sequential likelihood ratio

Multi-sensor,
with AIS data,
RADAR and
camera

Simulation Proposal of a multi-sensor verification archi-
tecture for sensor fusion with an example in
maritime surveillance.

[87]
and
[88]

Multi-modal cross consis-
tency integrity assessment

Spatial data
sources (maps,
camera and
GNSS)

Simulation
with real data

Alternative method for vehicle localization in
highway and urban (extended the work in [88])
scenarios. Based on the comparison of the
consistency fit between various data sources
and the assignment of integrity markers to
each source based on the consistency results.

TABLE V: Summary of Recent Alternative Integrity Monitoring Works

Integrity Item Family Assessment Level(s) Description

Conformity issues 1 and 2 Non compliance to the specifications

Inconsistent field values 2, 3 and 4 Inconsistency between two or more values, from the
same or different messages

Data field evolution 3 and 4 Incoherent evolution of the value of a data field in several
messages

Unusual values 3 and 4 The value of one given field is not in accordance with the
usual values of the field when sent by the same vessel
in other messages

Overabundant communication 4 Two stations communicate too often between themselves

Unexpected data field change 2, 3 and 4 The value of one given field has changed unexpectedly
in comparison to the former message sent by the vessel

TABLE VI: Families of integrity items and their respective assessment levels. Table adapted from [75]. The original table
contains more items.

IV. CONCLUSION

The rapid technological development in the past few decades
increased the range of application for human and machine
interactions. Through the use of advanced computation and
various sensors, these interactions are becoming automated,
requiring less or no human supervision. In order to enforce
safety, this technological trend requires strict requirements re-
garding the trustworthiness of the sensor information, enforcing
the relevance of the research in sensor integrity monitoring.
The integrity monitoring methods, that have been traditionally
developed for GNSS positional integrity in the aviation
sector, are now evolving and being adapted to autonomous
vehicles in urban environments, combining the information

from various sensors to provide a high integrity positional
solution under challenging scenarios. However, the adaptation
of these methods for applications outside the navigation field
has not seen the same interest.

As our reliance in technology increases, assessing and
improving the integrity of information, in particular the one
provided by various sensors, is of great importance. With
this motivation, this work has provided an overview of the
recent advances in the sensor integrity monitoring methods. A
theoretical background section, with the fundamental topics
for understanding these methods, was given with the intent of
introducing this topic for a broader audience, as the discussions
on the integrity monitoring field have been highly specialized
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by GNSS experts and users. In order to provide insights for
the development of sensor integrity assessment methods for a
wider range of applications, a review of alternative methods
outside the navigation field was given, including selected works
featuring strategies that assesses the correctness and veracity
of the data. While sensor integrity monitoring techniques focus
on accuracy of the measurements through statistical analysis
and error distribution, a strategy that combines a data integrity
verification could be beneficial for improving the integrity of
the sensor information. As the complexity of systems relying
on sensor information increases, and the human interactions
with these systems becomes more frequent, the development of
new integrity monitoring solutions is becoming more important.
The vast research that was made into the navigation field can
serve as a basis for expanding the integrity monitoring field for
other areas. The overview provided in this work will hopefully
serve as a foundation to facilitate that expansion.

V. NOMENCLATURE

ADR Acumulated Delta Range
AHP Analytical Hierarchy Process
AIS Automatic Identification System
AL Alert Limit
ANN Artificial Neural Networks
ARAIM Advanced Receiver Autonomous Integrity

Monitoring
BDS BeiDou Navigation Satellite System
CERIM Collaboration-enhanced Receiver Integrity

Monitoring
CIM Cooperative Integrity Monitoring
COG Course over Ground
CV Constant Velocity
CTRV Constant Turn Ratio Velocity
DGPS Differential Global Positioning System
EGNOS European Geostationary Navigation Overlay Service
EHF Extended H-infinity Filter
EKF Extended Kalman Filter
ERAIM Extended Receiver Autonomous Integrity

Monitoring
FBS Forward-backward Smoother
FD Fault Detection
FDE Fault Detection and Exclusion
FSPA Feedback Structure with Probability Accumulation
GLRT Generalized Likelihood Ratio Test
GNSS Global Navigation Satellite System
HMI Hazardous Misleading Information
HPL Horizontal Protection Level
IBPL Isotropy-Based Protection Level
ICAO International Civil Aviation Organization
IMM Interactive Multiple Model
IMU Inertial Measurement Unit
INS Inertial Navigation System
INU Inertial Navigation Unit
IoT Internet of Things
KF Kalman Filter
KIPL Kalman Integrated Protection Level
KFSS Kalman Filter Solution Separation

KPI Key Performance Indicator
LRT Likelihood Ratio Test
LS Least Squares
MC Monte Carlo
MCMC Markov Chain Monte Carlo
MHSS Multiple Hypothesis Solution Separation
MDB Minimal Detectable Bias
NLOS No-line-of-sight
PCA Principal Component Analysis
PL Protection Level
PLS Partial Least Squares
PNT Position, Navigation and timing
RANSAC Random Sample Consensus
RAIM Receiver Autonomous Integrity Monitoring
RB Residual Based
RTK Real Time Kinematic
RMSE Root Mean Squared Error
SARP Standards and Recommended Practices
SBAS Satellite Based Augmentation Systems
SI System Integrity
SINS Strapdown Inertial Navigation System
SEPB Single Epoch Position Bond
SOG Speed over Ground
SoS System of Systems
SS Solution Separation
SVM Support Vector Machine
UMM Urban Multipath Model
UWB Ultra Wide Band
VDFLL Vector Delay Frequency Lock Loop
VINS Visual Inertial System
VLDMW Variable-length Data Monitoring Window
VPL Vertical Protection Level
WLS Weighted Least Squares
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