
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Coupling of Simulink Controller and Robot
Simulation for Simulating Compliant Contacts

with the Environment

Niklas Lohmann

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Coupling of Simulink Controller and Robot
Simulation for Simulating Compliant

Contacts with the Environment

Kopplung eines Simulink Reglers mit einer
Robotersimulation zur Simulation
nachgiebiger Umgebungskontakte

Author: Niklas Lohmann
Supervisor: Prof. Alin Albu-Schäffer
Advisor: Adrian Simon Bauer
Submission Date: 15.4.2022

I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, 15.4.2022 Niklas Lohmann

Acknowledgments

I wish to express my sincere thanks to my advisor, Adrian Bauer, for the continuous
support and constructive advice at every point of my work at DLR.
I am also grateful to Prof. Alin Albu-Schäffer, Director of the RM institute, for providing
a great scientific environment and pushing the Rollin’ Justin project, which was the
basis for my research.
I would also like to thank Dr. Daniel Leidner for the trust he placed in me for my
work at DLR and for the continuous support throughout the work on my thesis, and
Xuwei Wu for his support and his reliable answers to every single question regarding
Simulink and the robot controller.
I also place on record, my gratitude to all members of the Rollin’ Justin team and the
FUTURO group for their encouragement, their advice and the great work atmosphere
they provided even in times of social distancing.

Abstract

Humanoid robots often have a larger spectrum of abilities and requirements compared
to specialized industry robots and interact with their environment in different and
more complex ways. This comes with challenges when implementing and testing their
behavior. Digital representations of these robots are often used to plan or visualize
behavior but rarely to physically simulate movement as a way to develop a digital twin
that also behaves identically in any scenario given the same input.
This thesis addresses the coupling of the existing controller of DLR’s humanoid robot
Rollin’ Justin with a physics simulation, allowing for the reproduction, prediction and
measurement of the robot’s torque-controlled behavior and its contact forces to the
environment. The compliant controller reactions to these contacts are crucial to the
success of many robotic tasks.
The fully physics-driven simulation also makes it possible to test scenarios in advance
and to make behavior predictions of the real robot, even in cases of uncertainty re-
garding the surrounding. Shifting the testing of scenarios or controller changes to the
simulation can avoid the time and financial efforts of executions on the physical robot,
which possibly even damage parts of it.
We improved the robot model used in the simulation, defined communication inter-
faces between the controller and the simulation and implemented the actuation logic,
converting the pre-existing kinematic simulation behavior to a torque-driven one.
For the evaluation of the coupled system we measured the tracking accuracy of the
simulated model in regard to recorded data from the real robot and conducted an
experiment with environment contacts.
The digital twin shows good tracking accuracy, joint and end effector positions are
replicated well. Forces in contact with the environment are at similar magnitudes as
observed in reality. The experiment also demonstrates the usage of multiple simulated
environment states to predict outcomes in cases of uncertainty.

v

Contents

1 Introduction 1

2 Related Work 5
2.1 Rollin’ Justin . 5
2.2 Dynamic Robot Simulations . 6

2.2.1 Reality Gap . 6
2.2.2 Usages . 7

2.3 Digital Twin . 7

3 Coupling of Controller and Simulation 9
3.1 Systems Used . 9
3.2 General Concept . 10
3.3 Data Interfaces . 11
3.4 Synchronization . 13
3.5 Controllers . 16
3.6 Digital Twin . 17

3.6.1 Reference Frames . 18
3.6.2 Parallel Torso Construction . 19
3.6.3 Finger Controller . 21

4 System Evaluation 23
4.1 Metrics . 23

4.1.1 Joint Positions . 23
4.1.2 Torques . 24
4.1.3 End Effector Poses . 24
4.1.4 Finger Positions . 27

4.2 Experiment Setup . 27
4.2.1 Parameters . 28
4.2.2 Static Pose Accuracy . 29
4.2.3 Tracking Accuracy . 29
4.2.4 Finger Accuracy . 31

4.3 Experiment Results . 31
4.3.1 Torque Results . 34

vii

Contents

4.3.2 End Effector Pose Results . 36
4.3.3 Finger Position Results . 37

4.4 Environment Contact Experiment . 37
4.4.1 Setup . 39
4.4.2 Results . 41

4.5 Performance . 44

5 Discussion 49
5.1 Controller Accuracy . 49

5.1.1 Joint Positions . 49
5.1.2 Torques . 51
5.1.3 End Effector Pose . 54
5.1.4 General Assessment . 55

5.2 Finger Accuracy . 56
5.3 Environment Contacts . 57

6 Conclusion and Outlook 61
6.1 Conclusion . 61
6.2 Outlook . 62

List of Figures 65

List of Tables 67

Bibliography 69

viii

1 Introduction

Humanoid robots like DLR’s "Rollin’ Justin" can be used for a large variety of tasks,
especially ones normally executed by humans. They should integrate into more com-
plex environments than industrial production robots and fulfil more complex tasks.
Rollin’ Justin is mainly used to explore possibilities and challenges of humanoid robots
in extraterrestrial usage, e.g. in the previous Meteron Supvis-Justin experiment [1].
The accuracy and robustness requirements of Justin are significant for instance when
connecting to a charger socket, since any error can lead to damage to its environment or
the robot itself. Additionally, the environment is much more complex and susceptible
to errors or inaccuracies than for instance a production conveyor belt scenario.

A simulation of Rollin’ Justin and its environment was previously created to sup-
port the correct execution of these tasks. Justin is represented as a mechanical model
that follows certain trajectories with its joints, either calculated directly or recorded on
the real robot. This leads to multiple usages, visualized in yellow in Fig. 1.1:
The kinematic reproduction of a planned trajectory on the robot model can detect
undesired collisions with the environment on the path and discard that trajectory on
the real robot.
Additionally, the state of the world in the simulation can be evaluated and interpreted to
discrete conclusions - a process called symbolic inference - much easier than analyzing
those properties through image processing, for example determining whether a bottle
is upright or lying on a surface.
Another useful feature of the existing simulation is its prediction abilities - testing the
success of some operation by playing the behavior in the simulation and evaluating the
world state afterwards, even with non-kinematic objects that are influenced by gravity
and contact forces like dropping a ball into a container. This can prevent the robot from
taking unsuccessful paths or indicate good success chances, even in realtime scenarios
[2].

However, simulating a kinematic model of Justin that follows paths by directly setting
its joint angles leaves out the dynamic behavior of the real robot. Forces and torques can
not be measured in a simulation like this and the controller response is not simulated
at all.

1

1 Introduction

Figure 1.1: Previous (yellow) and new (light blue) capabilities of the simulated Justin

Predictions are only accurate if the movements do not contain contacts with the en-
vironment, because the compliant contacts that Justin’s controllers produce are not
replicated in the simulation.
In an application that involves contacts with a static environment like wiping the
surface of a solar panel, the existing simulation would only detect there was a collision
and move the tool into the panel leading to undefined behavior and unrealistic forces.
Since the simulation only follows the paths interpolated as the commanded positions,
it also doesn’t reproduce the delay with which the real joints follow these positions
through the controllers. This can only be countered by recording the joint position over
time on the real robot, increasing the effort significantly and negating the predictive
capabilities of a simulation.

This thesis is dedicated to the efforts to counter these problems by integrating the
existing robot controller into the simulation to build a fully functional digital twin that
represents its physical counterpart as accurately as possible.
Instead of setting joint positions directly which bypasses the physics simulation the
robot is a fully dynamic and physics-driven construction composed of links and ac-
tuated joints. ’Links’ refer to the physical bodies with inertial properties that are
connected by hinge joints (also referred to as revolute joints).

2

The simulation and controller communicate with each other and synchronize their
discrete time steps through blocking mechanisms. We implement all the different
controller modes and improve the robot model in the simulation to reproduce the real
behavior more closely.
By keeping the exact same controller and controlling the simulated model through
torques the simulation reproduces trajectories on its own. It can also replicate the acting
forces and torques realistically, including the controller reactions to the simulated forces
and torques. This allows for the simulation and evaluation of compliant contacts, a
core feature of Justin’s behavior. These new functionalities are displayed in light blue
in Fig. 1.1.
The digital twin can then ideally be used to simulate any scenario the real robot could
execute and allows for the prediction and analysis of their outcomes. The simulation
can also be used as a testing ground for changes to the controller.
Additionally, the symbolic inference functionality is extended to include forces and
torques. Predictions can also include contact forces which can be interesting for the
mentioned scenarios with desired forces, like Justin wiping the surface of a solar cell.
These capabilities save time, effort and costs since the preparation and execution of
simulated scenarios is much easier and faster. Any commanded or planned behavior
resulting in undesired outcomes can be avoided on the real robot, while failures in the
simulation do not have any negative consequences.
The estimations of the world state are produced through image processing and are
subject to uncertainties e.g. the position of a solar panel relative to Justin. The simu-
lation can deal with inaccurate world representations by running the same scenario
with small variations in the initial world state and comparing the results, an example
scenario with two varying parameters is evaluated in this thesis. Live predictive usage
of this functionality is quite conceivable by running simulations in parallel and deriving
optimal approaches for the real robot’s actions.

Chapter 2 will present a short overview over some related concepts and work to
give a larger picture of simulations of non-industry robots.
Chapter 3 will go into detail about the systems used for Rollin’ Justin and its simulation.
The general coupling concept and its realisation in the form of two synchronized
processes is explained in more depth together with an overview of the communication
between simulation and controller. The different controller types implemented for the
simulation and their respective use cases are presented. Some changes were made to
the previous model of the robot in order to resemble the real robot more closely and to
function in a torque-driven way.
Following that, in chapter 4 the tracking experiments on the digital twin are described
regarding their setup, their evaluation and their results. The replication of joint posi-

3

1 Introduction

tions and torques is crucial to the accuracy of compliant contacts.
We also evaluate a scenario of a wiping task with compliant environment contacts
including two objects under pose uncertainty.
In chapter 5 the results are discussed in more detail, the use cases and boundaries of
the created system are defined and further improvements to the model are explored.
Chapter 6 draws a conclusion on the achievements and expectations of the coupled
systems and a short outlook on further improvements and usages of the developments
is presented.

4

2 Related Work

In the following the humanoid robot Rollin’ Justin and its use cases are explained,
an overview of dynamic robot simulations is given and the term ’digital twin’ is
introduced.

2.1 Rollin’ Justin

The humanoid robot Rollin’ Justin at DLR is built for executing human tasks while
being controlled remotely, even from the international space station. A large number
of these tasks involves contacts to movable objects or the environment with quite
different implications, for instance whether a surface should be penetrated, or whether
a deformation takes place. This leads to a classification on a higher level to allow for
different modes of operation depending on the task [3]. The ability to interact with
objects in different ways reliably and with a significant error tolerance is crucial to the
use of the robot.
To accommodate for this multitude of use cases, different controllers are available for
the movements and actions, a state feedback controller for maximum accuracy - useful
for picking and placement of objects - and two impedance controllers for compliant
behavior in contacts. These allow for the exertion of controlled moderate forces on the
environment or unexpected obstacles, which is crucial for interactions with humans
and careful manipulation of objects like wiping dust from surfaces or cleaning the floor.
By setting the commanded end effector positions to a point where they would penetrate
a surface with a certain depth, a desired force will be applied by the controller once the
end effector reaches the surface.
The compliant contacts can also integrate more sophisticated approaches to environment
interactions. The inference of a surface contact can be realized through a combination of
the measured external force and the position of the hand or tool to enable purely haptic
feedback to drive movement corrections or success rating instead of visual feedback
that may not be available in the required quality e.g. for wiping particles from surfaces
[4].

5

2 Related Work

2.2 Dynamic Robot Simulations

Static models or simulations of robots are used for a variety of reasons, granting a 3D
representation of robot parts and their states, planning movements in an environment or
interpreting the world information. Dynamic robot simulations offer a fully physically
simulated world that extends beyond kinematic analysis by controlling the robot and
the environment through motor torques and forces. This concept also requires the
integration of a controller to command the required torques.

2.2.1 Reality Gap

The reality gap refers to the discrepancies between an observed behavior in reality
and a digitally simulated and expected one given an identical input and initial state.
This difficulty of transferring knowledge can frequently be observed in the context of
robot simulations and their physical counterparts, independent of the direction of the
transfer [5]–[7].
With the higher demands regarding robots’ abilities, reliability and compatibility with
humans, the importance of this reality gap grows. Making assumptions and inferences
about a robot’s environment is crucial to its locomotion and interactions but e.g.
preemptively checking for collisions along a movement path requires some digital
representation of the robot which is prone to the reality gap.
An approach gaining popularity for tackling complex robot structures and locomotion
problems is training the controller parameters inside of a simulation and then using
the same controller on the real robot [8]. This procedure is often called "Sim-To-Real
transfer" and is subject to the reality gap, leading to inaccurate or even unexpected
behavior once the controller is transferred to reality. Multiple approaches are available
to train behavior and to optimize the transferability of the trained parameters to the
real system and minimizing the reality gap, for instance domain randomization -
introducing noise to sensor data - or integrating analytical knowledge [9]. However a
generally optimal approach is not yet found [10].
The reality gap can occur for multiple reasons like the model being simplified or
inaccurate or making incorrect assumptions about the environment. The system
presented in this thesis does not use learning algorithms for its controllers, but it faces
the same difficulties of creating a simulation as robust and accurate as possible to
recreate real conditions. It still offers the possibility to implement learning algorithms
in the future or could be used to test changes to the controller in a safe and quick way.

6

2.3 Digital Twin

2.2.2 Usages

Advanced legged robots often require a large number of joints and therefore degrees of
freedom (DOF). They especially profit from simulations by testing controller behavior.
This is the case for the BigDog robot at Boston Dynamics [11] which can navigate steep
and difficult terrain.
The ANYmal robot at ETH Zürich is also a quadruped robot and successfully learned
its controller parameters through simulation [8]. Boston Dynamics’ humanoid Atlas
robot was even subject to a contest of simulation training with multiple challenges [12].
Other robot simulations focus on different challenges, like robot interactions with soft
bodies [13] or compliant contact behavior [14], which is also a focus of this thesis.

2.3 Digital Twin

The term ’digital twin’ is currently used in different contexts, a general definition of
the usage and meaning of the term is provided in [15, p. 15]:

A set of adaptive models that emulate the behaviour of a physical system in
a virtual system getting real time data to update itself along its life cycle.
The digital twin replicates the physical system to predict failures and oppor-
tunities for changing, to prescribe real time actions for optimizing and/or
mitigating unexpected events observing and evaluating the operating profile
system

Digital twins are commonly used in industrial domains as a representation of a produc-
tion process including products, parts, robots or other machines, fulfilling most or all of
the purposes of the given definition from live visualization to higher-level production
planning and prediction. The application areas are therefor quite broad ranging from
manufacturing [16] and construction [17] to aviation [18]–[21] and medical precision
applications [22].
The system developed in this thesis fulfils most of these requirements and could easily
be adapted to run with live input from the real robot.
Digital twins in general are usually subject to the reality gap and the efforts to improve
a DT are aimed at minimizing this gap. Depending on the application domain, the
reality gap can cause significant problems e.g. in aviation.
In the following the term digital twin will refer to a static or dynamic digital represen-
tation of a robotic system, which includes the previously existing kinematic simulation
of Rollin’ Justin and the simulations mentioned in section 2.2.2.

7

3 Coupling of Controller and Simulation

In order to simulate the dynamic robot behavior in the same way Rollin’ Justin behaves
in reality, the controller commands the joint ’motor’ torques in the simulation instead
of the real world. The simulation also contains the world around the robot to resemble
reality as closely as possible and allow for environment interactions and collisions.
There are two obvious solutions to couple the simulation with a controller: Implement-
ing a new controller that is mimicking the real controller as closely as possible directly
inside the simulation software or running the actual controller and replacing its input
and output interfaces with ones that allow for communication with the simulation
software.
The second approach comes with the downsides of increased effort for communication
and higher error susceptibility and the upsides of reaching extremely high replication
accuracy, reusage of existing software and much easier adaptation to changes in the
Rollin’ Justin controller.
We chose the second approach in order to provide a digital twin of the robot that
reproduces the behavior of the physical robot as accurately as possible given the same
input.

3.1 Systems Used

The existing controller is implemented in Matlab Simulink. We added blocks for the
exchange of data with the simulation. Furthermore, expected input from the robot
hardware was replaced by constants.
The simulation environment Gazebo is used with custom plugins responsible for the
specific communication requirements and for controlling the digital twin of Rollin’
Justin.
As a central structure, one process called "Links and Nodes" - in short LN - starts all the
required sub-processes. In our case, it mainly serves as the communication interface
between Simulink and Gazebo.
LN starts both processes, monitors them and provides named data buffers that can be
written to and read from. Both Simulink and Gazebo use a library to exchange data
with these buffers. LN also offers an integrated python scripting interface to interact

9

3 Coupling of Controller and Simulation

with the processes without the setup of custom processes. This is used to set the desired
paths or poses the robot should move to.
Apart from the communication blocks and constants the Simulink controller remains
unchanged from the one used on the real robot.
The simulation recreates the motors and sensors of the real robot with simulated joints
whose mechanical properties aim to replicate those of the real joints. Section 3.6 goes
into more detail on the improvements of the robot model to resemble real constructions
more closely.

3.2 General Concept

Movements are executed by the robot by applying the torques calculated by the con-
troller according to the current robot state. This sentence already indicates that a typical
closed control loop with a set point, controller, process variable and measurement
needs to be realized.
The Simulink controller takes over the obvious task, the simulated joints form both the
final control element and the process (since they are actuated directly without motors in
the simulation) and the simulation also offers exact measurements of the joint positions.
The terms of joint ’positions’ and ’angles’ are used interchangeably.
The data flow in a normal execution is shown as an overview in figure 3.1 and consists
of multiple steps:

• Through some user interaction one or more desired end positions are sent to
Simulink

• An interpolation from the current pose to the desired pose is calculated con-
tinuously over the following timesteps, which updates the set point - desired
joint angles - inside the controller and therefore produces a continuous change in
torques.

• Repeatedly, the Simulink controller receives the current robot pose from the
simulation and calculates the errors of the joint angles and from this the torques
that should be applied to the joints.

• Simulink sends the torques to Gazebo, where they are applied, the robot pose
updates, gets measured and sent back to Simulink for the next timestep.

This alternating execution is looped at 1kHz in simulation time to approximate a
continuous behavior just like on the real robot. Notably, the simulation does not need to

10

3.3 Data Interfaces

Figure 3.1: Control loop communicating between user, simulation and controller
Simulation - Controller interfaces marked in red

run in realtime and keeps simulating every step with a time difference of 1ms without
regard to the real time passed between two steps.

3.3 Data Interfaces

Table 3.1: Data from Gazebo to Simulink

Parameter Description Data type / Unit
have_command Only used in the physical robot for

synchronization.
uint8

telemetry_counter Counts the exchanged packets and
guarantees a difference between
two following packets.

uint8

state Only used in the physical robot for
status information about every joint
(power, emergency break)

double[]

motor_pos+poti_pos Joint angles measured by separate
sensors on the real Justin, treated
the same in the DT.

double[], in Radians

torque Measured torques on the joints.
Can be used by Simulink for col-
lision detection.

double[], in Nm

datacontainer Only used in the physical robot for
logging.

double[]

11

3 Coupling of Controller and Simulation

Table 3.2: Data from Simulink to Gazebo

Parameter Description Data type / Unit
request_command Only used in the physical robot for

synchronization.
uint8

command_counter Counts the exchanged packets and
guarantees a difference between
two following packets.

uint8

control Indicates whether a joint is con-
trolled by torque or by its own low-
level position control. 1 for force
control, 0 and 4 for position control.

uint8[]

desired_pos The current desired angle for each
joint.

double[], in Radians

torque_in Required torques on the joints. double[], in Nm
speed Unused parameter, always zero. double[]
zr_kp P gain of the motor position feed-

back (used in simulation for state
space control).

double[]

zr_kd, zr_c2 Unused: D and I gain of the motor
position feedback

2x double[]

zr_kt, zr_ks, zr_c1 Unused: P and D gain of the mo-
tor torque feedback and cutoff fre-
quency of the low-pass filter for the
motor torque feedback

3x double[]

The main task of system coupling in general lies in the correct definition and use
of interfaces, i.e. the internal functioning of the programs should remain unchanged
where possible.
The main components of the control loop are already implemented: The Simulink
interpolator and controller as well as the Gazebo physics simulation and API. The main
data interfaces used to couple Gazebo and Simulink are also visible in the control loop
in red (Fig. 3.1): The segment between the controller and Gazebo actuators transports
the torques (along with other data) and the joint position measurements from Gazebo
return to the controller to determine the error term.
The data buffers in LN are also referred to as topics and are classified by the contained
set of data types. Topics offer a publish-subscribe pattern to provide asynchronous
communication capabilities. Data exchange therefore consists of two parts: The data

12

3.4 Synchronization

publisher writes its data into a topic of the LN process, the subscriber read call gets
unblocked and copies the data into a local buffer for further usage.
The specific data exchange required between Simulink and Gazebo is listed in table
3.1 and 3.2. Specific focus lies on the exchange of torques and joint positions. The
controller send required torques and the current desired pose, the simulation in turn
sends the simulated pose and measured torques back to Simulink, including effects of
contact forces with other objects.
Notably the last 5 parameters sent by Simulink are not used for simulation purposes,
they are used for the fourth and fifth order state feedback controllers realized on the real
robot on each joint [23], this controller will be referred to as the state space controller.
It is realized on the simulated robot by a PD controller with an empirically determined
D gain and the transmitted zr_kp as the P gain.
Simulink additionally has a data interface for receiving the desired poses from the user.
These poses go through a quadratic spline interpolator and get transferred into the
controller as desired angles of the joints. For the user, this interface is encapsulated in a
python script which is responsible for the formatting and transmission of the poses the
user enters by providing desired angles for each joint.

3.4 Synchronization

A big difference between using the controller in the digital twin and the real robot is
that the Gazebo simulation also processes in discrete timesteps while the motors and
sensors work continuously in reality.
This means that while running the controller and looking up the sensor values every
millisecond does work for the real robot, in the digital twin this leads to synchronisation
issues: If the controller or the simulation don’t run in realtime for performance reasons
or due to uneven OS scheduling, one of the processes will use the same input data
twice or skip data from the other process, leading to incorrect behavior that wouldn’t
occur on the real robot.
Instead, every timestep of the simulation is calculated as one millisecond and must
be followed by one timestep of the controller also calculated as one millisecond, then
another timestep of the simulation and so on. ’Calculating as one millisecond’ does not
imply a requirement on how long the calculation actually takes in reality. Since the two
processes need to wait for each other, a blocking mechanism was implemented.

Synchronization is achieved on the side of Simulink using a custom library block
that was implemented at DLR for Links and Nodes. The block is responsible for
subscribing to a topic of LN and feeding received data into the Simulink controller

13

3 Coupling of Controller and Simulation

as well as publishing data to the LN topic of the other direction every timestep. The
subscriber functionality also implements a blocking mechanism that blocks the whole
controller until a new message of that topic is received in LN.
Synchronization in Gazebo is implemented in the C++ plugin responsible for the control
of the robot. It utilizes a main loop to implement functionality called every timestep.
When this method gets blocked in execution, it also blocks any further timesteps, while
still rendering the 3D view.
The Gazebo subscriber mechanism is on a separate thread so Gazebo can run with-
out blocking when the controller is not used. This also allows Gazebo to initiate the
communication between Simulink and Gazebo by publishing the data required by the
controller every timestep regardless of whether Simulink is running. This is necessary
because Simulink’s blocking mechanism does not allow for the sending of an initial
message.
Multiple synchronization variables are introduced to implement the blocking mecha-
nisms in C++:

• int n_simulink_packets - Counts up for every received valid Simulink packet,
starting at zero.

• condition_variable simulinkSync - A C++ primitive that allows blocking until a
condition is fulfilled

• bool readyForStep - Checked by the condition variable, prevents the main thread
from executing before Simulink data is received

• mutex dataReadyMutex - Mutex for acquiring access to data

The blocking mechanism functions as follows in pseudocode:
Reader Timestep:

data = read()
lk = lock(dataReadyMutex)
if n_simulink_packets > 0:

// atomically unlocks lk, waits until readyForStep is false and
// acquires lk again
simulinkSync.wait(lk, readyForStep == false)

copy(data, globalData)
n_simulink_packets++
readyForStep = true
unlock(lk)
simulinkSync.notify()

14

3.4 Synchronization

Figure 3.2: Blocking scenarios between Gazebo and Simulink, red areas mark blocking
of execution

Gazebo Timestep:

lk = lock(dataReadyMutex)
if readyForStep == false:

// atomically unlocks lk, waits until readyForStep is true and
// acquires lk again
simulinkSync.wait(lk, readyForStep == true)

SendToSimulink(globalData)
if n_simulink_packets > 0:

readyForStep = false
unlock(lk)
simulinkSync.notify()

The mechanism for initiating communication is slightly hidden in both cases: As long
as the reader thread doesn’t find any messages, it stays blocked on the read() call.

15

3 Coupling of Controller and Simulation

Therefore n_simulink_packets remains 0, which prevents general Gazebo timestep from
setting readyForStep to false.
For the reader thread, it’s only useful to wait for readyForStep to become false if the
main thread has a way to set it to false. In the first successful read(), n_simulink_packets =
0 so the main thread won’t set it to false.
Since Simulink always waits for a packet before sending one, we can be certain that after
a correct start, the nth Simulink packet will be sent strictly after the nth Gazebo packet
(counting from the first packet that is answered). The only unknown and irregular
variable is the start of a Gazebo timestep, which leads to three scenarios visible in Fig.
3.2 that are all covered by the described synchronization mechanisms:
Either the timestep starts after the reader thread finished copying the received data
which obviously doesn’t require any blocking, or the new timestep starts before
the Simulink answer to the previous data arrived, in which case the thread will
wait for readyForStep or the timestep starts while the reader thread has the lock on
dataReadyMutex which makes the lock itself the blocking mechanism.

3.5 Controllers

The Simulink controller provides multiple different controller modes for different use
cases relevant to the Rollin’ Justin robot, these are all accessible in the digital twin as
well. This allows any operation on the real robot to be simulated regardless of the
mode required for it. Since Rollin’ Justin is a humanoid robot designed to interact with
humans and take over tasks for them, some of these modes contain mechanisms to
react softly to collisions with external objects rather than reaching the desired position
at any cost like industrial robots do.

• Zero Torque Control: No forces are applied to the joints apart from those necessary
for avoiding self-collision and for resisting gravity. This mode holds the position
of the robot and can’t be used to move it to desired poses by commanding an
interpolated movement. Instead, it is mainly used to easily move the joints by
hand without a force pushing the robot back into a previous position, it simply
follows the outside forces as long as they are not making parts of the robot collide
with each other and stays in position once the outside force stops.

• Joint Impedance Control: The joints are treated as mass-spring-damper systems,
resulting in a "soft" behavior when colliding with the environment or a person
applying some force to the robot, e.g. shaking its hand. In this mode, the
force against moving a joint angle by hand will grow the further it is from its
desired position according to the stiffness and damping parameters. This mode

16

3.6 Digital Twin

is particularly useful for calculated, careful contacts with the environment to
prevent damage to the robot itself or humans interacting with it.

• Cartesian Impedance Control: This mode exploits a hierarchical approach to reach
two goals at once: As the first priority, the commanded cartesian position of the
hands and the upper torso in relation to the platform should be reached and held.
Since the arms make up 7-DOF systems, there is one degree of freedom remaining
when holding the hands in position which is referred to as the nullspace of the
first part of the controller. As the secondary functionality the arm joints attempt
to reach and hold their commanded angles while keeping the hands in position,
this uses an impedance controller and prevents the last degree of freedom from
drifting in the nullspace. The Cartesian Impedance Control mode is useful for
scenarios with a focus on surface contacts, like cleaning a solar panel by applying
a moderate amount of force.

• State Space Control: The current pose is interpolated towards the desired pose, on
the real robot the result is sent to low-level joint controllers that control the torque
individually for each joint. On the simulated robot, this is implemented with
joint-level PD controllers directly in Gazebo. The State Space Controller is the only
controller that requires Simulink’s desired angle on the side of Gazebo instead of
the calculated torque. This mode does not have a soft reaction to environment
contacts, so forces acting on objects in the way of a movement might damage
them or the robot, however this also makes the controller the most accurate. It is
used for interacting with objects precisely, like picking up a cup or grabbing a
handle.

For simulation purposes, the zero torque control mode seems of rather little use, since
there is no human moving the joints there. The interesting usage of the simulation is
for the robot to reach some larger objective, like picking up an object, by moving to
given or calculated poses in one of the other three control modes. An overview over
the respective Simulink and Gazebo behavior for each controller is given in table 3.3.

3.6 Digital Twin

The digital twin of Rollin’ Justin is modelled in SDF (Simulation Description Format), a
more general alternative to the common format URDF (Unified Robotics Description
Format) since SDF is used by the Gazebo simulation system to describe mechanical
constructions made of joints and links.
The pre-existing model was created in accordance to the measurements of Rollin’
Justin’s hardware elements by using the same composition of joints and links and

17

3 Coupling of Controller and Simulation

Table 3.3: Controller behavior

Controller Simulink Output Gazebo Actions Observed Behavior
Zero
Torque
Control

Torques compensating
gravity

Apply torques Very slow drifting of
arms

State Space
Control

Desired position and
torques compensating
gravity

Set desired posi-
tion of low-level
joint controllers

Accurate replication of
poses and movements

Joint
Impedance
Control

Torques compensating
gravity and towards
goal

Apply torques Accurate replication of
poses and movements

Cartesian
Impedance
Control

Torques compensating
gravity and towards
goal

Apply torques Accurate replication of
poses and movement

calculating kinematic and inertial properties from the digital 3D representations of the
hardware elements.
We added static joint friction to all joints to prevent noise due to the discrete timesteps
of the simulation. It prevents and finishes the movement of a joint once the change in
position is small enough to consider it standing still and thus avoids joints oscillating
closely around their goal position.
The following sections describe the further improvements made to make the digital
twin suited for the usage with torques and explains the reasons behind them.

3.6.1 Reference Frames

As Rollin’ Justin is nearly symmetrical, the arms of the digital twin are modelled in a
mirrored way, with the left arm being a symmetrical opposite of the right arm mirrored
along the vertical middle axis of Justin. However, Simulink uses a different reference
frame regarding the angles of joints.
In the Gazebo reference system, when all joints are in their default position - 0 degrees -
the second joint from the shoulder lifts the arm up and down such that ’up’ is a positive
angle and the motors require positive torques to hold the arm up and ’down’ is the
opposite.
For the left arm, this reference frame is inverted at the input and output of Simulink,
because the real Justin requires this inverted reference frame due to its motor orienta-
tions. The controller internally calculates with the same reference frames as Gazebo

18

3.6 Digital Twin

and only inverts the left arm values at the input and output interfaces. ’Up’ is then
considered a negative angle and requires negative torques for holding.
To keep the controller as is, the inversions need to be handled on the side of Gazebo:
The measured angles of the left arm communicated to Simulink need to be inverted
to replicate Justin’s reference systems and the other way around the desired positions
and torques commanded by Simulink need to be inverted in the Gazebo plugin before
applying them to the joints.

3.6.2 Parallel Torso Construction

In order to isolate the torso from the arms such that their torques do not influence each
other, the fourth torso joint is not actuated on the real robot, but coupled to the second
and third torso joint by a tendon construction connecting it to the base of the robot.
This construction mechanically compensates the orientation of the second and third
torso joint to keep the uppermost fourth torso link parallel to the ground at all times.
Any torque along the axis of the fourth torso joint is redirected to the base, which also
gives the arm movements a stable base instead of transmitting some of the torques
into the torso, this construction is explained in more detail in [24] and shown in Fig.
3.3(a). Since Gazebo only works with joints and does not have a concept of tendons, a

(a) Justin’s physical ten-
don construction, im-
age from [24]

(b) Link-Joint construction visualized
in Gazebo

Figure 3.3: The two torso constructions fulfil the same purpose with different mechani-
cal concepts

construction fulfilling the same purpose with only joints and links is required. It has to

19

3 Coupling of Controller and Simulation

keep the fourth torso parallel to the ground without blocking or impairing the joints
below it.
The second, third and fourth torso joint combined have two degrees of freedom: Tilting
the second or third joint has to lead to an equal tilt of the fourth joint in the opposite
direction to keep the orientation of the fourth torso link.
This can be achieved with a parallelogram: Given a physical body that has some hori-
zontal extension, it can be constrained to translation in a circle (one degree of freedom)
by putting revolute joints on its horizontal ends and setting up parallel vertical links of
the same length connected to the joints, these links also get connected to the ground
with revolute joints of the same axis.
Rotating one of the ground joints forces the other one to follow at the same angle since
the attached links hold an element at the top which is constant in length. This results
in the joints attached to the horizontal object being at the same height at all times,
fulfilling the requirement of holding it parallel to the ground, see Fig. 3.4.
This construction also transmits any torques applied to the horizontal object into the
base the holding links are connected to.

Figure 3.4: The conceptual construction of the parallel torso pieces. The actuated joints
are marked with τ

Since both the second and third joint’s orientation should be compensated, the con-
struction is repeated downwards, where it is connected to the robot’s base rotating
around the vertical axis.

20

3.6 Digital Twin

For the digital twin, the horizontal piece at the top is the fourth torso link, shown in
Fig. 3.3(b).

3.6.3 Finger Controller

The control of Justin’s fingers is separated from the controller of its body, this controller
was not coupled to the simulation, but recreated as a PID controller inside Gazebo.
This is due to the separation in reality, the Simulink controller for the hand is separate
from the body controller and is a PID controller itself.
Interpolation of the finger positions is still done in the main controller and therefore
the desired positions can be taken from the communication interfaces that were set up
earlier. The fingers on the real robot do not have torque sensors but only actuators and
position sensors, however the torques required to move the light finger links are very
small.
Since the fingers have a very low weight, their behavior is not as consistent as that of
the body joints in reality. As such, the main focus in their simulation design was on
adjusting the mechanical parameters of the joints and links, such as their inertia tensors
and static joint friction values.
The fourth finger pieces at the front representing the fingertips are connected to their
predecessors through a passive hinge joint which follows the angle of the third finger
joint through a tendon construction. This mechanism is not replicated in the simulation
but replaced by another PD controller that actuates the fourth joint moving it towards
the position of the third finger joint which suffices for the purposes of the simulation.
Gripping and lifting objects is one of the challenges that fully fledged physics engines
such as ODE have difficulties with due to the large amount of contacts to be resolved
and the inaccuracies in collider geometry. This was not a focus of this thesis, an
approach to control gripping behavior is implementing a separate simulation that is
focused on the detection of finger-object contacts to determine whether the forces justify
viewing the object as gripped, as explained in [25].

21

4 System Evaluation

The accuracy of the behavior of the digital twin is of great interest. This does not refer to
accuracy in the sense of following some desired path as strictly as possible or designing
an ideal controller regarding some metric, but rather replicating the movement that the
real robot shows under the same circumstances as closely as possible. The term error
will in the following refer to the difference between the measurements of the real robot
and those of the simulation.
We examine the pose and tracking accuracy in movements without contacts first and
follow with an experiment with environment contacts. A short performance evaluation
is at the end of the chapter.

4.1 Metrics

Multiple metrics need to be taken into consideration to gain a full picture of the
simulation accuracy. The joint positions were held with complete accuracy before as
they were directly set through kinematic methods. Now that they are a result of torques,
both torque and position errors are analyzed as well as the end effector pose which is
the result of the forward kinematic calculations through the robot’s torso and arms to
the hands.

4.1.1 Joint Positions

The metric chosen for joint position inaccuracies is the root mean square of arm and
torso joint errors.
Let qP be the vector of joint angles of the physical robot and qS the vector of joint angles
of the simulated Justin, with all angles given in degrees. The error vector e is calculated:

ei = qPi − qSi (4.1)

Let N be the number of compared joints, using the error vector we calculate the root

23

4 System Evaluation

mean square error (RMSE):

RMSE =

√
∑N

i=1 (ei)2

N
(4.2)

The RMSE does not have a unit even though in this case its input are angles in degrees,
but it does have a property that can help with estimations regarding the significance of
a high RMSE: If every joint has the same absolute error size y◦, the RMSE will be y as
well.
Compared to the mean absolute error (MAE), which is calculated by

MAE =
∑N

i=1 |ei|
N

(4.3)

the root mean square penalizes outliers and variance in the data more which is desirable
since outliers - i.e. joints that have significantly larger errors - would be subject to
further investigation regarding their error cause [26].
A downside of this approach is that all joints are compressed into one metric, which
leaves no possibility to deduct the distribution of errors over the different joints. For
example, having a few joints with large errors and all other joints with almost no error
can result in the same RMSE as every joint having a moderate error.
Thus, as an additional metric, the absolute joint errors are calculated separately and
evaluated for a maximum error to grant some insight to the composition of the RMSE
and a ’worst case’ joint behavior.

4.1.2 Torques

Since a main advantage of the coupled controller is the integration of torques and forces
into the simulation, their accuracy is of great interest as well. The joint position errors
and torque errors are not necessarily proportional, it is even possible to have good
pose accuracy in a trajectory while applying significantly different torques than the real
robot, which would obviously lead to incorrect contact forces as well.
As the metric the RMSE (4.2) is used again, with the error defined as the difference
between recorded and simulated tau_act, i.e. measured acting torques given in Nm.
An absolute error of 1Nm on every joint results in an RMSE of 1.
A maximum absolute torque error among all joints is also calculated.

4.1.3 End Effector Poses

Another approach to determine the accuracy of the robot’s behavior is a comparison
of the poses of its end effectors - i.e. the robot hands - as these are in the focus of

24

4.1 Metrics

Figure 4.1: End effector cartesian position and rotation error visualized

many practical uses of Justin. More precisely, the position and rotation of its wrists are
analyzed with this metric, not its finger poses, visualized in Fig. 4.1. This measurement
is especially interesting in the case of the cartesian impedance controller, which utilizes
inverse kinematics to guarantee fine control over the end effector position, rotation and
therefore contact force.
Such a pose consists of two different components, its cartesian position in space and
its rotation, both given in the reference system of the robot base. These can not be
compared usefully in one metric because of their different units and are therefore
measured separately.
Since the pose of an end effector is given as a transformation matrix by the real robot in
the reference system of its base platform, we first filter out a position vector with three
elements - corresponding to X, Y, Z in the base reference system - and a unit quaternion
representing the rotation with four elements.
The Gazebo simulation environment offers an easier way to obtain this data by exposing
the world pose of objects - i.e. their position and rotation - in a unified structure. Calling
WorldPose() on a link returns a Pose3d that lets one get its world position through a
call to Pos() while Rot() returns the rotation as a unit quaternion.
Since the robot’s logged end effector pose is in the base platform’s reference system,
the simulation data also needs to be transformed in Gazebo to represent the position
and rotation in the reference system of the base.
Gazebo offers this with subtraction of poses, i.e. hand.WorldPose()− base.WorldPose()
returns the desired pose.

The position accuracy metric ∆v is calculated using the euclidean distance of sim-
ulated and real cartesian position for both end effectors:
with i ∈ {le f t, right} :

25

4 System Evaluation

vsim_i =

 xs

ys

zs

 ; vreal_i =

 xr

yr

zr

∆vi = |vsim_i − vreal_i| =

√
(xs − xr)2 + (ys − yr)2 + (zs − zr)2 (4.4)

The average of left and right distance is chosen as the metric, but since both hands
behave the same and are constructed symmetrically, their cartesian errors are very
similar.
This pose data can be taken directly from Gazebo as described above to get the math-
ematically accurate pose in the simulation using the Gazebo robot model. This end
effector position will be referred to as the ’Gazebo position’.
Another source of the end effector pose data in the base reference frame is the logged
data of the Simulink controller running with the simulation.
It utilizes the same forward kinematics calculations as the real robot and uses its own
robot model internally. Since this model is used identically on the real robot controller,
the cartesian position error is reduced to the accumulated offsets caused by joint posi-
tion errors. This end effector position will be referred to as the ’Forward kinematics
position’.
Both of these approaches will be analyzed in the results with a more in-depth explana-
tion in section 5.1.3.

We chose to only evaluate the end effector rotations from Gazebo as the two ap-
proaches give practically identical results for rotations.
A lot of different methods exist to obtain a metric for rotational distance in three dimen-
sions that are often functionally equivalent. The chosen method is the metric 5 from
[27], which is dimensionless, bi-invariant and a metric on the Special Orthogonal Group
SO(3) that 3D rotations form. It can be simplified for usage with unit quaternions to
use just 7 multiplications and one square root making it quite efficient and easy to
implement.
The rotational distance θ is calculated from the two unit quaternions q1 and q2 with:

θ = 2
√

2(1 − (q1 · q2)2) (4.5)

with the · being a dot product of the quaternion vectors with four elements.

26

4.2 Experiment Setup

4.1.4 Finger Positions

The hand controller is implemented only in Gazebo, meaning it is almost independent
of the Simulink model apart from the interpolation of desired joint positions. The
finger torques are not measured with sensors on the real robot and are dismissed for
the measurements, the finger positions are evaluated just like other joint positions.
Since the movements and poses are symmetrical for both hands the 24 actuated finger
joints are combined into the RMSE metric (4.2), the fourth finger joints are not actuated
on the real robot but follow the angle of the third ones through a tendon construction.
They are therefore ignored for these experiments.

4.2 Experiment Setup

All measurements are reproducible independently of hardware since timesteps are
calculated with a fixed length. On the software side, Gazebo 11.0.0 is used with the
ODE physics engine. The Simulink controller of Justin is compiled in Matlab 2018b for
OSL15.
Where not explicitly stated otherwise, measurements were conducted with the state
space and joint impedance controller.
We recorded poses and movements on the real robot and logged its telemetry data with
1000 samples per second. This data contains all the required fields such as positions,
torques and end effector poses.
In the simulation, the experiments were conducted under the same conditions, logging
similar telemetry data at 1000 samples per simulation second which can deviate from
real time, this relation is also analyzed in section 4.5.
For the following accuracy measurements we utilized a set of common poses of the
humanoid robot:

• A zero position where all arm joints have a position of zero degrees and are
forming straight lines upwards in a V-form (Fig. 4.2(a))

• A ready position with a straight torso and outstretched hands (Fig. 4.2(b))

• An idle position with the hands further back and the torso slightly bent (Fig.
4.2(c))

• A parking position with the torso bent far and the hands even further back,
minimizing the size and height of the robot (Fig. 4.2(d))

27

4 System Evaluation

(a) Zero position (b) Ready position

(c) Idle position (d) Park position

Figure 4.2: The main robot poses used for the experiments

4.2.1 Parameters

The state space controller is implemented in Gazebo as a PD controller and receives the
proportional gain directly from Simulink. To reduce noise and increase accuracy, the
derivative term was empirically evaluated to a value of 3 for the arm joints while the
torso joints work best with a derivative gain of 50. These values were used across all
following measurements.
Since the head of Justin is not at the focus of attention for most tasks and is always
position-controlled, it was also implemented as a PD controller, a reliable combination
of parameters was identified and used in the experiments. However the head’s accuracy
was not evaluated and it does not influence the behavior of other parts of the robot in a
significant way. P gain was set to 50, D gain was set to 1.

28

4.2 Experiment Setup

The finger joints used a PD controller with the same parameters for each finger with
the proportional term at 3.5 and the derivative term at 0.002.

4.2.2 Static Pose Accuracy

Static pose accuracy refers to the errors between Justin’s positions and torques and
the simulated ones while holding one of the poses since inaccuracies in e.g. inertial
properties of the model can lead to discrepancies. The torques and angles are practically
noise-free for holding static positions, the error metrics are still averaged over five
hundred samples to avoid any outliers.

4.2.3 Tracking Accuracy

For the tracking accuracy we defined multiple movements to draw meaningful conclu-
sions.
Six movements are defined between the neighboring poses of Fig. 4.2 in both directions,
e.g. from ’zero’ to ’ready’, ’ready’ to ’idle’ etc.
These provide large motions of the arms, for the torso accuracy evaluation two addi-
tional movements were used:
The first and lowest torso joint rotates the entire robot body around its vertical axis and
isn’t required in any of the previous trajectories. The movement rotate_torso1 rotates
the first torso joint from 0◦ to 45◦ while the rest of the robot holds the ’ready’ position.
Start and end pose are visible in Fig. 4.3(a) from the same perspective.
Because of the large torques required to hold the upper body against the gravity, it is
of great interest to analyze larger movements of the corresponding torso joints 2 and 3.
We define the movement torso_back to tilt the second torso joint backwards from 15◦ to
−15◦, seen in Fig. 4.3(b).
These two movements were not used for the measurements of arm joint accuracies.

The comparison of data points over time results in error graphs, which can be useful
for more detailed insight into the temporal distribution of the errors.
For easier comparability we calculate a mean, standard deviation and maximum of the
error metric over time for each movement. This reduces the temporal data to its most
representative attributes and serves as the basis for comparing controller accuracy. For
the metrics utilizing RMSE we additionally determine a maximum error of the single
joints over the whole time of the movement. An example for the extraction of a mean
RMSE and a maximum single joint error is seen in Fig. 4.4.
While this removes the temporal dimension of the data, this information reduction still
allows us to gain relevant insights into tracking accuracy. The maximum error can

29

4 System Evaluation

(a) rotate_torso1 movement (b) torso_back movement

Figure 4.3: The special torso movements

(a) RMSE of arm joint positions with
mean and standard deviation

(b) Separate joint errors of the right arm in degrees with
markers for the maximum error

Figure 4.4: Arm Joint Error Metrics over time for the zero_to_ready movement in state
space control

guarantee a minimum degree of accuracy throughout the whole movement.

A challenge that arises when comparing logged and simulated data over the timespan
of a movement is synchronization since the data logs are started manually some time
before the movement begins. Including these parts may skew results since the errors of
those poses may differ from the errors along the trajectory, the pose errors are already
evaluated in the pose accuracy measurements.
Synchronization is achieved through the commanded joint angles in the logged data.
These are identical for the physical and simulated movement which provides us with a

30

4.3 Experiment Results

Figure 4.5: Open and closed finger poses used for the experiments

shared movement phase of the same length. For the detection of movement start and
end points, a minimum deviation of q_cmd from the joint angle commanded at the start
and end of recording is demanded respectively. To account for this threshold we keep
two hundred samples before the threshold is reached and since the joints follow the
commanded angles with a varying delay, four hundred samples (i.e. less than half a
second of data) are kept after the calculated end.

4.2.4 Finger Accuracy

The fingers are not evaluated with the four robot poses but with their two poses of
interest, which is an open hand and a closed hand to enable gripping and dropping
of objects, see Fig. 4.5. The experiments are conducted for these two static poses and
tracking measurements are taken between them.

4.3 Experiment Results

The results of the experiments are presented for the different metrics with a focus on
the different controllers and their respective accuracy results. Depending on the metric,
the difference between static and dynamic behavior is also in the focus.
The results for each movement were already compressed over the time domain into
mean, standard deviation and maximum of the error metrics, the focus on controller
modes and differences between poses and movements is achieved by compressing these
results again:
For any controller there are six movements with a mean, standard deviation and maxi-
mum error term. The mean of the means is calculated, weighing every movement’s
mean error the same, no matter how long its source is in the time domain. The maxi-
mum mean refers to the maximum of those six mean values while the maximum error

31

4 System Evaluation

(a) RMSE of arm joint positions over all movements
and poses

(b) RMSE of torso joint positions over all move-
ments and poses

Figure 4.6: Mean and maximum RMSE of arm and torso joint positions in both analyzed
controllers

(or maximum RMSE) refers to the largest of the six maximum error terms, i.e. the
highest peak of the error term at any point in time in any movement.
Additionally the diagrams presented in the following section show standard deviation
markers which refer to the standard deviation among the six movements (or four poses)
without respect to the time domain of the error metric, see Fig. 4.6.
Regarding joint position and torque accuracy, the measurements were divided to ac-
commodate to the different underlying constructions: The arm joints are evaluated
separately from the torso joints to gain insight into the accuracy of the parallel con-
struction used for the torso described in section 3.6.2.
Additionally, most movements did not involve any changes of the first torso joint that
rotates the whole body around its vertical axis. In these cases averaging the torso
accuracy is slightly misleading as the first torso joint stays at a very low error. More
attention should be paid to the maximum torso error that would indicate large errors
of the two upper torso joints.

subsectionJoint Position Results We first take a look at the state space controller
results and the joint impedance controller results afterwards as their position accuracy
demands and results differ significantly.
The results presented in this section are listed in table 4.1, the mean and max RMSE
values are visualized in Fig. 4.6. The diagrams also show the standard deviation among
the mean RMSE values of poses and movements respectively.

32

4.3 Experiment Results

Table 4.1: Mean RMSE of joint positions for arms and torso

State Space
Poses

Joint Imp.
Poses

State Space
Movement

Joint Imp.
Movement

Arm Mean
RMSE

0.0568 0.252 0.0742 0.227

Arm Max
RMSE

0.0627 0.277 0.153 0.319

Arm Max Er-
ror

0.162◦ 0.673◦ 0.321◦ 0.797◦

Torso Mean
RMSE

0.0362 0.319 0.0469 0.330

Torso Max
RMSE

0.0622 0.468 0.155 0.836

Torso Max Er-
ror

0.107◦ 0.744◦ 0.267◦ 1.413◦

Starting with the poses, the arm joint errors result in a mean RMSE of 0.0568, no pose
has an RMSE larger than 0.0627 and the maximum arm joint error is at 0.162◦.
The mean RMSE of the torso joints is at 0.0362 for poses, the maximum RMSE of 0.0622
is reached in the parking position and any error of a single torso joint remained below
0.107◦.
In the movements, the arm joints reach a higher mean RMSE of 0.0742 and a higher
maximum RMSE of 0.153. No arm joint reaches an error larger than 0.321◦. Both
maximum values occur in the zero_to_ready movement, these measurements are also
visualized in Fig. 4.4.
The torso joints have a mean RMSE of 0.0469 for the movements, their maximum RMSE
lies at 0.155 and the maximum error reaches 0.267◦ in the rotate_torso1 movement.

For the joint impedance controller, we again start with results for the poses:
The arm joint errors result in a mean RMSE of 0.252 and a maximum RMSE of 0.277.
One of the arm joints reaches a position error of 0.673◦.
The torso joints are held with similar accuracy: A mean RMSE of 0.319, but a larger
maximum RMSE of 0.468 in the parking position and a maximum joint error of 0.744◦.
In movements, the joint impedance controller has a lower mean RMSE for the arms at
0.227 than for the four poses. The arm joints’ maximum RMSE lies at 0.319, the largest
position error observed on a joint is at 0.797◦.

33

4 System Evaluation

(a) RMSE of arm joint torques over all movements
and poses

(b) RMSE of torso joint torques over all move-
ments and poses

Figure 4.7: Mean and maximum RMSE of arm and torso joint torques in both analyzed
controllers

The torso joints have a mean RMSE of 0.330 for movements in joint impedance control,
however their maximum RMSE reaches 0.836 and the largest position error is observed
at 1.413◦ in the rotate_torso1 movement.
A closer analysis of the joint positions over time shows that the position noise is
negligibly small for both controllers, an example is seen in Fig. 4.4(b).

4.3.1 Torque Results

The results regarding torques are divided into pose and movement evaluation rather
than controller modes since the results of the two controllers are similar in large parts.
All results of this section are listed in table 4.2 and the mean and maximum RMSE
values are visualized in Fig. 4.7.

Starting with the poses, the arms show a mean RMSE of 1.223 in state space control
and 1.199 in joint impedance control with maximum RMSE values of 1.653 and 1.598
respectively. The maximum torque errors are also similar at 3.293 Nm in state space
and 3.210 Nm in joint impedance control.
The torques of the torso joints have larger mean RMSE for both control modes, in
state space control the mean is at 2.057, in joint impedance at 2.044. The maximum
RMSE is at 2.911 for state space control and 2.267 for joint impedance control. The state

34

4.3 Experiment Results

Table 4.2: Mean RMSE of joint torques for arms and torso

State Space
Poses

Joint Imp.
Poses

State Space
Movement

Joint Imp.
Movement

Arm Mean
RMSE

1.223 1.199 1.320 1.250

Arm Max
RMSE

1.653 1.598 2.441 2.065

Arm Max Er-
ror

3.293 Nm 3.210 Nm 6.245 Nm 5.091 Nm

Torso Mean
RMSE

2.057 2.044 2.257 2.454

Torso Max
RMSE

2.911 2.267 7.375 7.710

Torso Max Er-
ror

3.928 Nm 3.009 Nm 11.644 Nm 11.977 Nm

space controller also reaches a higher maximum single joint torque error at 3.928 Nm
compared to 3.009 Nm for the joint impedance controller.

In movements, the arms show similar mean RMSE values as in the poses at 1.320
and 1.250 for state space and joint impedance control respectively, but their maximum
RMSE values are significantly higher. State space reaches an RMSE of 2.441 and joint
impedance control reaches 2.065 at some point over the course of the movements. The
largest torque errors observed are 6.245 Nm in state space control and 5.091 Nm in
joint impedance control.
The mean RMSE of the torso joints is slightly larger than for the poses at 2.257 in state
space control and 2.454 in joint impedance control, the maximum RMSE is significantly
larger at 7.375 and 7.710 respectively. The largest torque errors are at 11.644 Nm and
11.977 Nm, both of these occur in the torso_back movement, the course over time is
visible for both controllers in Fig. 4.8.
Significant oscillations in the torques can be observed when moving torso joints in state
space control, which are stronger in simulation than reality, see Fig. 4.8(b).

35

4 System Evaluation

(a) Torso torques in joint impedance control (b) Torso torques in state space control

Figure 4.8: Torso torques per joint in the torso_back movement in both controllers,
recorded and simulated data in similar colors

4.3.2 End Effector Pose Results

Two different ways of determining the end effector positions in the simulation are eval-
uated in the following. The Gazebo measurements and Simulink forward kinematics
both offer access to the position relative to the base platform, but use different models
for the calculation.
The focus of these results lies on the end effector positions calculated by the forward
kinematics inside Simulink as they are calculated the same way for the real robot.
Simulated and real poses are therefore free from possible model discrepancies and
use the same representation of the robot, simply accumulating the errors caused by
different joint positions.

The state space controller produces significantly better results than the joint impedance
controller with smaller mean and maximum cartesian errors: Poses in state space
control result in a mean error of 0.171cm while joint impedance control reached 0.568cm
mean error. Fig. 4.9(a) shows the mean cartesian errors in meters, where the state
space controller also has smaller standard deviations compared to the joint impedance
controller.
The mean cartesian error does not grow significantly in movements: The mean error
stays at 0.171cm for state space control and rises slightly to 0.601cm for joint impedance
control. However, the maximum position error of the end effectors at any point in time
occurs in the zero_to_ready movement in joint impedance control with a cartesian error

36

4.4 Environment Contact Experiment

of 1.89cm. The maximum position error observed in state space control is at 1.01cm and
occurs in the same movement.
The cartesian errors determined through the Gazebo position measurements are signifi-
cantly higher, all mean errors are larger than 1cm. A detailed comparison is seen in Fig.
4.9.
The rotation errors of the end effectors are also crucial to correct interactions with the
environment. While the metric is dimensionless itself, it is useful for the estimation of
the occurring errors to compare them to a rotation about one degree on one axis: It
leads to a rotation error of 0.0247.
The measured rotation errors show a significant difference between state space and
joint impedance control, with the state space poses being held especially well with a
mean rotation error of 0.00597 while poses in joint impedance have a mean error of
0.0152. The maximum rotation error at any point of simulation occurs in the zero pose
with joint impedance control at 0.0229. It’s also clearly visible from Fig. 4.9(c) that
the controllers don’t produce significantly larger rotation errors in the hands when
movements of the robot are executed.

4.3.3 Finger Position Results

The finger joints reach an RMSE of 2.75 for the movement from open to closed fingers
with a large standard deviation of 0.563 over the time of the movement, while the
movement in the opposite direction only reaches 2.029 mean RMSE and a standard
deviation of 0.254. The RMSE results for the two poses were 2.357 for the open hand
and 2.0355 for the closed hand, see Fig. 4.10. The maximum error of any single joint
occurs in the movement from open to closed pose with 6.925◦, see Fig. 4.11.

4.4 Environment Contact Experiment

Practical usages of the coupled systems include the prediction of contact forces with
the environment, this was previously not possible when the robot wasn’t controlled
by torques. To get an estimation of the behavior of the robot when facing significant
external forces, an experiment is set up in reality and simulation where the robot
executes an action template. These templates define a sequence of atomic operations
like short movements, setting a control mode or changing parameters. The sequence as
a whole constitutes a robot action that represents some human task, like picking up an
object [28].

37

4 System Evaluation

(a) Cartesian error of end effectors from for-
ward kinematics

(b) Cartesian error of end effectors measured
in Gazebo

(c) End effector rotation error

Figure 4.9: Metrics for the end effector poses in state space and joint impedance control

Figure 4.10: Finger Mean RMSE values for the open and closed finger pose and move-
ments between the two

38

4.4 Environment Contact Experiment

Figure 4.11: Finger 17 with the maximum position error in the hand closing movement

Figure 4.12: The real and simulated Justin wiping the solar panel surface

4.4.1 Setup

The Rollin’ Justin lab is equipped with an environment that allows for different robot
interactions and tasks that would be useful for extraterrestrial robotic services like
connecting to a charging station, opening doors or adjusting the orientations of solar
panels. In order to test the compliant contacts, we chose a wiping application in which
Rollin’ Justin utilizes a wiper tool to clean the surface of a solar panel from dust with
three motions in full contact with the surface, see Fig. 4.12. This scenario is also
commonly executed remotely by astronauts in their trainings with Justin.
The world state is analyzed by the real Justin through image processing and grants
access to estimated positions and orientations of the solar panel and the robot. These

39

4 System Evaluation

are replicated in the simulation.
The wiper tool is gripped by Rollin’ Justin with all four fingers. This poses a challenge
to the simulation since multi-contact resolving often doesn’t suffice to hold an object
inside the hand. Instead, the wiper receives a fixed connection to the hand link with an
offset to approximate the position of the real wiper in Justin’s hand.
This offset is a product of uncertainty since the relative pose of the wiper is not known
and not entirely consistent in the real hand either. We approximated its pose manually
and run the experiment with varying values for one of the rotation angles to determine
an ideal approximation, in steps of 0.0, -0.075 and -0.15 in radians.
The position and orientation of the solar panel also introduce some inaccuracy. From
our knowledge about the real scenario we can determine that the robot and the panel
are only rotated about the vertical axis - even though small rotations about the other
two axes are suggested by the image processing.
We also vary the vertical position of the panel between 1.00, 1.02 and 1.04 meters in the
experiments. This way the desired end effector position is differently far behind the
panel surface, resulting in different contact forces.

The experiment is conducted in the cartesian impedance controller (with the torso also
in cartesian impedance control) because the compliant behavior should be applied in
cartesian space - as an offset from the desired 3D position of the end effector - and not
in joint space.
The concept of impedance control is suited very well for applications of this type: The
actuation of the robot follows an underlying spring-mass-damper model that reacts to
environment contacts impeding its position and velocity in a controlled way in contrast
to position controllers. With the cartesian impedance controller, the contact force with a
surface grows with the distance between the current and desired end effector position,
i.e. the desired position of the wiper head should be behind the panel surface. The
distance between the panel surface and the desired position can therefore be used as a
parameter for the contact force.
The wiping application requires moderate contact forces, enough to wipe away dust
without compressing the soft wiper head too harshly.
To replicate the desired movement in the simulation, the planned trajectories are reused
as the commanded input to the controller, not taking the real occurring movement into
account that is impaired by the environment contacts.

The following metrics are used to analyze the accuracy of the simulated scenario:

• A qualitative and quantitative approach to the external torques calculated by
the controller as the difference between measured and commanded torques - i.e.

40

4.4 Environment Contact Experiment

analyzing the shape and relative magnitude of torque peaks and comparing the
absolute torques occurring.

• The left hand’s cartesian position is analyzed to determine the accuracy of the sim-
ulated movements in a contact scenario. This metric uses the forward kinematics
end effector position, not the one measured in Gazebo.

4.4.2 Results

The recorded movement of the real robot includes three contacts with the panel surface
at different heights.
The different combinations of parameters do not all result in contacts between the
wiper and the panel surface, but for each evaluated x-angle a sufficient panel height
leads to three contacts. The parameter combinations and their respective contacts in
the simulation are listed in table 4.3.

Table 4.3: Simulated solar panel contacts for different parameters sets

1.00m 1.02m 1.04m
Wiper x-
Angle 0.0

2/3 con-
tacts

3/3 con-
tacts

3/3 con-
tacts

Wiper x-
Angle -0.075

no contacts 3/3 con-
tacts

3/3 con-
tacts

Wiper x-
Angle -0.15

no contacts no contacts 3/3 con-
tacts

The time discrepancies in the commanded joint angles were consistent among the
different parameter sets with one larger offset of four seconds - i.e. the simulation
continued a movement immediately while the real robot stayed at a position for four
seconds. For some steps, no offset was detected, some further minor offsets of 0.05s to
0.5s were found. In all cases, the simulation was ahead of the real robot’s commanded
angles.
These time discrepancies were compensated in the simulation data by artificially delay-
ing following data points by the measured offset. This was achieved by logging the
execution timestamps of the consecutive action steps in the simulation and finding the
same commanded joint positions in the recorded robot data at later points in time.

Looking at the external torques influencing the left arm joints qualitatively, there

41

4 System Evaluation

are some deviations outside of contact phases in the calculated external torques of
±2Nm.
The three torque peaks recorded on the real robot affect the first and fourth arm joint
the most.
The first joint experiences external torques of 14Nm for the first contact, 12Nm for the
second and 8Nm for the third one. The fourth joint experiences torques of 8Nm for
the first two contacts and 6Nm for the third. The third contact consistently results in
smaller torques across all joints.
In the simulations with parameter sets leading to contacts the torques occurred at the
same points in time relative to the action start and showed steeper curves with narrow
peaks while the recorded external torques roughly remained at their maximum for
about one second.
The qualitative analysis of the graphs also shows that for every simulated experiment,
the torques produced by the panel contact affect the fourth joint much more than the
first, the opposite is the case for the recorded torques. An example is visible in Fig.
4.13, where the simulated torque peaks are similar to the recorded ones for the first
arm joint and four times larger for the fourth one.
The main focus of the external torques lies on the peaks, a quantified evaluation for
each parameter set can be found in table 4.4.
It’s obvious from the results that for each wiper angle the lowest panel height necessary
to produce three contacts creates more accurate torques than larger panel heights. The
torques in the simulation were roughly at half the magnitude on the first joint and 50%
larger on the fourth joint in all three of these parameter combinations.
In cases like the one displayed in Fig. 4.13 where the panel is even higher, the larger
torques are mainly directed to the fourth joint and produce very large peaks. In the
example figure, almost -40Nm are reached at a joint that has a torque limit of 100Nm.
Examining other joint torques for that parameter set shows the same relationship of 2-4
times larger torques, which strongly suggests that the contact force in the simulation is
also significantly larger than in reality.
A direct measurement of the contact force is not possible in the real solar panel experi-
ment.

The desired cartesian end effector positions are fully synchronized except for the time
offset compensation areas.
It is obvious that the desired end effector position of the left hand can not be reached
with the panel in the way.
A closer look at the measured cartesian positions shows that there are small time offsets
during the movements where commanded positions are synchronized, an example
is shown in Fig. 4.14. These discrepancies produce peaks in the cartesian errors,

42

4.4 Environment Contact Experiment

Figure 4.13: Recorded and simulated torques from the panel contact on the zero-indexed
joints of the left arm, panel height 1.04m, wiper angle -0.075 rad

however the positions do reach very similar values at the end of their differently timed
movements.
Even with the peaks caused by the time offsets, the average cartesian error over the
contact phase of the task is less than 3cm for all parameter sets.

The z-position of the end effector is limited by the panel and stays nearly constant
during the contact. Comparing this simulated z-position to the recorded one shows
different discrepancies for the parameter sets. The commanded z-position is approxi-
mately 1cm lower than the one measured on the real robot. This is due to the panel
blocking further movement, the depth beyond the panel surface is necessary for the

43

4 System Evaluation

Table 4.4: Simulated contact torques for different parameters sets in relation to peaks
recorded on the real robot, joints are zero-indexed

Panel z-Pos 1.00m Panel z-Pos 1.02m Panel z-Pos 1.04m
Wiper x-
Angle 0.0

Joint 0: 50%
smaller torques,
Joint 3: 50%
larger on the
second contact

Joint 0: 50%
larger peak, but
similar curve
forms, Joint 3: 4
times as large

Joint 0: > 2 times
as large, Joint 3: 5
times as large

Wiper
x-Angle
-0.075

no contacts Joint 0: 50%
smaller torques,
Joint 3: 50%
larger on the
second contact

Joint 0: 2-4Nm
larger peaks,
Joint 3: up to 4
times as large

Wiper x-
Angle -0.15

no contacts no contacts Joint 0: 50%
smaller torques,
Joint 3: 50%
larger on the
second contact

controller to create a force.
The parameter sets that lead to overly large torques in the joints also result in 1cm
distance to the commanded z-position, while those with more realistic torques reach
the commanded z-position quite exactly. This is especially clear when varying the
panel height for the x-angle of 0, the highest panel position of 1.04m leads to the most
accurate z-position, but the torques occurring in the arm joints are far too large, see Fig.
4.15.

4.5 Performance

Achieving accurate results from the coupled systems does not depend on the perfor-
mance of the systems since they internally simulate constant time step lengths. It’s still
desirable when it comes to its usages: Not only should results generally be available
as soon as possible, in live-action scenarios the simulation shouldn’t run behind the
real events but rather predict future movements and events. In the case of probabilistic
predictions, multiple scenarios need to be run with small changes in the assumptions
about the real world state. These simulations are only useful if their real-time relation

44

4.5 Performance

Figure 4.14: Measured (upper diagram) and commanded (lower diagram) cartesian
position of the left hand end effector in simulation and reality, divided into
the three spatial axes

stays in acceptable boundaries.
The developed system was hardly optimized with regards to performance, however the
results of performance metrics show that the Gazebo plugin itself leaves little room for
improvements.

For robot movements without any collider contacts or objects controlled by physics,
the average real-time factor reaches about 0.86, i.e. the simulation time runs with 0.86
times the speed of reality averaged over 10 seconds.
Since surface contacts require solving the torques and positions with more constraints,

45

4 System Evaluation

(a) Panel height 1.00m (b) Panel height 1.02m

(c) Panel height 1.04m

Figure 4.15: Z-positions of the simulated end effector for a wiper angle of 0 and varying
panel heights in the simulation in comparison to commanded and mea-
sured Z-position of the real robot, the low section of the graph in orange
indicates the contact phase

the performance drops significantly once Justin’s hands interact with any objects in
the world. The data used for these measurements were taken from the experiment
described in 4.4 where Justin holds a wiper that exerts some force on the surface of
a solar panel. For such a singular surface contact, the average real-time factor drops
to 0.49, with massive further drops down to 0.14 when the wiper is moved across the
surface while in contact with it. This case did appear consistently for the second out
of three wiping motions, for the others the drop in performance wasn’t as significant,
compare Fig. 4.16(b).

46

4.5 Performance

(a) Average real-time factor for move-
ments with different contact scenarios

(b) Real-time factor over time for three wiping motions
over panel surface with one contact each

Figure 4.16: Real-time factor evaluations of the simulation

When the fingers of Justin also attempt to grip the wiper (which is attached statically
to the hand in this scenario) they come into further contact with it. These are multiple
contacts that lead to some oscillations in the finger joints, but since these forces are
exerted by and onto children of the hand base, they do not influence the arm joints or
the rest of the robot.
With the fingers and a panel contact, the real-time factor is at an average of 0.43, a
comparison of the cases is visualized in Fig. 4.16(a).
The Gazebo plugin that is responsible for communication with Simulink and for the
actuation of the simulated model does not contribute a large amount of runtime for
each time step: For any of the scenarios, its average runtime was below 200µs.
The caching of string-based calls to Gazebo’s physics interfaces provided good improve-
ments regarding the performance of the plugin. The performance drops in contacts
with the solar panel surface could likely be reduced by simplifying the collider mesh.

47

5 Discussion

The presented results provide an insight into the accuracy of different controller modes
and will be analyzed for possible causes or improvements here. The chapter starts
with the body and hand controller and will attempt to draw conclusions on the future
use cases of both, and ends with the analysis of the conducted wiping experiment
described in section 4.4.

5.1 Controller Accuracy

The body controller coupling to Simulink was the focus of this thesis and as such is at
the core of future use cases. Its accuracy will be put into relation and an assessment is
drawn which limitations and potentials could be found.

5.1.1 Joint Positions

The low maximum position errors in any control mode allow the conclusion that all
poses and movements are tracked qualitatively and are constrained to small quantitative
errors. The state space controller has significantly higher position accuracy than the
joint impedance controller.
Taking a closer look at the diagrams over the time domain also strongly indicates that
the state space control mode comes with little to no noise even though the real robot’s
state space controllers run with 3kHz instead of 1kHz used in simulation.
Obviously even small torso errors can have a strong influence on the position of arms
and end effectors since their leverage is quite large, so the very good results for the
state space control are very much desirable while the joint impedance control errors
should get some attention.
This appears to be an issue with the relative position of the upper body: The movement
torso_back produces much larger position errors than the park pose although the torso
joints deviate far from their default position in both cases. In the first case the upper
body starts at a relatively far forward point in relation to the robot base - the upper
torso joints experience torques in the same directions. The park position keeps the
upper body right above the base, resulting in opposite torques in the two upper torso
joints.

49

5 Discussion

(a) Mean RMSE values for the arm joints

(b) Mean RMSE values for the torso joints

Figure 5.1: Mean RMSE between recorded - simulated, commanded - recorded and
commanded - simulated positions

A possible conclusion would be that the parallel torso construction has some difficulties
holding the upper body when the required torques are large and divided among both
upper torso joints.

The joint position accuracy should also be put into perspective by comparing it to
the errors between commanded and measured positions on the real robot and in the
simulation. The following results are true for arm and torso joints.
A comparison of the simulated positions to the commanded ones shows the state space
controller following commanded positions more strictly, just as expected.
The measurements of the real robot show similar discrepancies to the commanded
positions except for state space poses.
For joint impedance movements the mean RMSE between simulation and reality is
significantly smaller than both discrepancies to commanded positions. This means that
the simulated motion tracks the real motion more closely than its own commanded
positions, see Fig. 5.1, which is desirable. Generally this shows that the commanded
positions are not followed perfectly in reality or simulation and the simulation follows

50

5.1 Controller Accuracy

them at a similar accuracy as the real robot, it just doesn’t always replicate these
discrepancies at the same time or on the same joints (except where the recorded -
simulated errors are much lower).
While state space poses are held extremely close to the commanded positions by the
real robot compared to the simulation, the simulation errors are still in very small
absolute boundaries.

5.1.2 Torques

The torques of the robot also play a role in the position accuracy of the robot, but since
they are the controller output used to achieve a certain joint position, the controllers
continuously change them according to the requirements, i.e. inaccuracies of kinematic
or inertial properties in the model will affect the simulated behavior and therefore the
torques required to reach the same joint positions.
This doesn’t make them any less important as one of the major goals of this thesis is
the achievement of realistic torques and forces in the simulation. The prediction of
environment contact forces relies heavily on the accuracy of torques, mainly those of
the arm joints for hand manipulation contacts.

We first discuss the torque results for the arm joints.
Generally, the torque errors in the arms are consistently low among both controllers,
poses and positions, the mean RMS values remain below 1.5.
The similar torque errors of State Space and Joint Impedance control are almost cer-
tainly caused by inaccuracies in the model and the limitations of discrete physics. Both
controllers counter the resulting position errors by adapting the torques to slightly
different values, creating the torque errors analyzed in this section.
The poses are especially interesting in regard to torques since most compliant contacts
with the environment happen with much lower velocities than those of the movements
analyzed, e.g. gripping would require the arm movement to be fully finished before
interacting with the object. The maximum torque error in poses is below 3.5Nm, which
is still larger than the occasional discrepancies observed on the real robot external
torques in the wiping experiment examined in section 4.4.2.

Movements showed similar mean RMSE values as poses but much larger maximum
RMSE values. The peak of the RMSE at 2.441 in the state space movement from zero
to ready position correlates with a large torque difference necessary to drop the arms
all the way to their desired position. The highest single joint torque error at 6.245Nm
also occurs in this movement and can be put into relation by looking at the torques
around the zero position. They reach more than 60Nm at the same joint, reducing it to
a relative error of under 10%, see Fig. 5.2(a). This offset is still significant and indicates

51

5 Discussion

(a) Torques in the zero_to_ready movement in
state space control

(b) Torques in the ready_to_idle movement in
state space control

Figure 5.2: Separate torque graphs for the right arm joints in simulation and reality

room for improvement e.g. regarding inertial properties, especially considering that
the maximum error for holding the zero pose is much lower at 2.73Nm.
This joint is not responsible for the maximum errors of all movements, the comparison
of separate torques rather indicates that a certain error relative to the current torque is
common among all joints, see Fig. 5.2(b).

The observed errors should be put into relation to the errors between the real robot
and the model, i.e. a discrepancy between the commanded torques calculated by the
Simulink model and the torques measured by the sensors on the real robot. Normally,
the commanded torques are simply applied, but the state space controller gives over
the actuator control to joint-level controllers. These aim to reach a commanded position
on their joint using a PD controller. The commanded torque from Simulink is therefore
not applied in this case.
These commanded torques only consist of the gravity compensation output and do not
grow with the position error. This makes a comparison in movements useless, so the
error is only calculated for poses in state space control. The joint-level controllers hold
the pose against gravity with the necessary torques, which are different than suggested

52

5.1 Controller Accuracy

Figure 5.3: Mean RMSE between recorded - simulated, commanded - recorded and
commanded - simulated torques

by the Simulink controller.
The mean RMSE between real and commanded torques is at 0.889 for the arms, the
RMSE of recorded and simulated torques is at 1.223 and the mean RMSE of simulated
and commanded torques is at 0.827, visualized in Fig. 5.3.
This shows that the torque differences between the simulation and the real robot are
around the same magnitude as the differences between the assumptions of the Simulink
model and the torques required in reality or simulation. For the torso the torque dis-
crepancies between reality and Simulink and between simulation and Simulink are both
larger than those between recorded and simulated data: 2.442 between commanded and
sensor torques, 3.275 between commanded and simulated torques and 2.057 between
sensor and simulated torques. This could suggest that the simulation model is closer to
the real Justin than the Simulink model in regard to the torso. However the real and
simulated measurements contain gravity compensation torques together with small
position error torques which might also be the source of the larger discrepancies to
commanded torques.

Regarding the torso, the mean RMSE values are significantly higher than in the arm
joints, but remain below 2.5.
The maximum torque errors in the torso are in parts surprisingly large, especially one
that is larger than 11Nm for the torso_back movement.
Comparing that error to the torque requirements of its movement in Fig. 4.8 shows
the relative torque error is at about 10% because the acting torques reach over 110 Nm.
The torso_back movement also has by far the highest torque changes and the largest
cartesian displacement of the upper torso from its default position above the platform.
Moving between the standard poses does not produce torque errors larger than 8.5Nm

53

5 Discussion

in the torso.
This larger discrepancy was also found in the torso position errors in the previous
section and might be a problem with the parallel torso construction, the specific root of
this problem is not clear.

Generally, the usual poses of the robot are held with acceptable torque accuracy
in torso and arm joints. Movements between those are only slightly less accurate, while
demanding movements that go towards the limits of the real robot can lead to larger
torque differences.
The inertial properties of arm joints and the parallel torso construction could be im-
proved in the future, for now the limitations can be respected by avoiding environment
contacts while the torso joints experience significant rotations. It’s also likely that the
torques of torso joints would not play a significant role in the accuracy of external force
estimations anyway as long as the forces are applied to arms or hands and not the torso
links.

5.1.3 End Effector Pose

The cartesian position error of the end effectors is of high interest for any movement
and pose since Justin’s hands set the highest demands regarding position and rotation
accuracy, larger errors are likely to introduce significant changes to the outcome of
tasks, e.g. make the difference between touching a surface and hovering above it.

We focus on the evaluation of simulated positions determined through forward kine-
matics.
In this case the errors are very small: A mean cartesian error of 0.171cm for poses in
state space allows for very fine interactions with objects and demonstrates that the
remaining joint errors do not accumulate to undesired offsets in the hands.
The fact that the mean cartesian accuracy doesn’t decrease significantly in movements
is a very desirable effect for environment interactions, but the maximum position error
does reach 1.005cm in the zero_to_ready movement.
The joint impedance accuracy is slightly lower at a mean error of 0.568cm, caused by
the lower joint position accuracy. The errors remain in acceptable boundaries of under
2cm which still allows for quite accurate interactions, the mean error of 0.601cm in
movements can be considered good.
Generally, the end effector position is more reliable in poses than in movements. Fine
interactions during such movements are avoided anyway.
The low maximum rotation distance is also a strong indicator for the high precision of
the arm joints.

54

5.1 Controller Accuracy

Comparing these results to the errors measured in Gazebo, it’s obvious that the position
errors of Gazebo are much larger, reaching more than 1cm mean cartesian error for both
state space and joint impedance control. However, the absolute differences between
state space and joint impedance mean errors are similar, at around 0.5cm. This indicates
a constant offset in the measurements taken from the simulation.
The causes for this offset between measured and calculated hand positions are unclear,
but likely lie in some accumulated inaccuracies in the Simulink or Gazebo model of
Rollin’ Justin.
It’s also not clear whether the cartesian positions of the real end effectors are calculated
completely accurately by the Simulink model. The offset in Gazebo is significant and
obviously the Gazebo position is the deciding factor in the outcome of interactions, not
the forward kinematics results.

5.1.4 General Assessment

The expectations for the different controllers were fully met - the state space controller
provides higher position accuracy for both torso and arm joints, joint impedance control
still produces quite accurate results when used with some caution regarding the torso
and isn’t designed for maximum accuracy on the real robot either.
Overall, the torque accuracy of arm and torso joints does not differ significantly between
the two controllers. It’s likely that the model could be optimized further regarding its
inertial properties to gain small improvements. It’s also worth investigating whether
adapting the Simulink model makes more sense as the commanded torques from
Simulink in state space control are about as far from the real robot’s requirements as
the simulated torques.
Just like on the real robot, contacts with the environment should happen in a slow
and controlled manner to avoid torque errors from movements influencing the contact
forces. The larger torque errors in the torso are worth investigating, too, but likely
negligible for most scenarios with environment contacts.
The cartesian hand position accuracy fulfilled the expectations regarding the forward
kinematics calculations. Interactions with Justin’s hands are likely to tolerate the
position errors of about 0.17cm in state space control even in scenarios with high
accuracy demands. Both controllers provide good results that correlate with their joint
position accuracy.
The comparison with Gazebo measurements shows an offset that is likely also present
in some magnitude on the real robot. It is not trivial to measure Justin’s real end
effector positions but it would be useful for improving the models used in Simulink
and Gazebo.

55

5 Discussion

Figure 5.4: Discrepancies of commanded and recorded finger joint positions compared
to simulation errors, the maximum errors are in degrees while the RMSE
does not have a unit

5.2 Finger Accuracy

The finger positions have much larger errors on average and at their maximum than
arm or torso positions for either controller. The graphs of joint positions over time also
show a significant error at the start as seen in Fig. 4.11. This diagram does not show
the end position of that joint, the graphs are cut off when the commanded angles reach
their final point, the real joint does get closer to its commanded position.
A further comparison of the logged positions of the real fingers and their commanded
positions demonstrates that the real hand is not following them very strictly. With
regard to commanded positions the real fingers execute the open hand pose more
accurately, for the closed hand pose the simulation is closer to commanded positions
than reality, see Fig. 5.4. The errors between simulated and real fingers are at similar
magnitudes as respective discrepancies to commanded positions in both poses.
This puts the simulation errors into relation, but in an ideal case, the simulated finger
movements follow the real movements as closely as possible, not the commanded ones.
Some parameters could be optimized for this purpose, e.g. the PD gains, inertia tensors
as well as friction and damping values.
We chose the parameters for the experiments through a simple grid search approach.
Further optimization does not appear necessary since the maximum errors stay in
somewhat acceptable boundaries and the Gazebo simulation will not be used for
the simulation of gripping. The multitude of collisions and the simplified collider
boundaries of the fingers would lead to instability when attempting to hold an object
tightly.

56

5.3 Environment Contacts

5.3 Environment Contacts

The wiping experiment provides insights to the compliant contact behavior of the
simulation and demonstrates the usage of parameter variations as a way to deal with
world state uncertainty.

The time offsets are caused by additional atomic operations executed between the
movements. The shorter observed delays are caused by parameter changes e.g. com-
pensating for the wiper mass. The source for the large delay of about four seconds
likely lies in the fact that the wiping action switches to a second action template at that
point. The first template is responsible for taking the wiper and the second for wiping
the panel and placing the wiper back.
The time discrepancies between simulation and reality are successfully compensated by
logging the execution timestamps of the consecutive action steps. This could be further
improved by recording the timestamps on the real robot and executing each step in the
simulation once the simulation time - not real time - has reached the next timestamp.
Live application of the simulation could also solve this problem by sending any user
input to two running Simulink controllers - one for the real robot and one for the
simulation.

The simulated torques measured on the arm joints are generally of a similar mag-
nitude to those in reality. They do vary significantly with the different parameter
sets analyzed in the experiment, which is generally an expected effect and allows for
optimization.
The simulated torques appear at the correct times and for similar durations, indicating
that the surface contacts are generally replicated well and the wiper is dragged across
the surface instead of e.g. getting stuck.
Some of the parameter sets result in no contacts or far too large torques, while others
show torques roughly at the desired magnitudes.
However, the projection of the contact force into the arm joints as torques is incorrect
in the simulation, most prominently in joints 0 and 3, which experience the largest
torques. The torques produced by the simulated panel contact affect the fourth joint
much more than the first, in reality this is observed the other way around.
The torque peaks are also more pointed in the simulation. Both of these discrepancies
could be caused by the wiper being simulated as a rigid body with just one surface
contact point. In reality, the wiper head is a soft body that gets slightly deformed by
the contact force and rather creates a line of contact with the panel. This can result in a
more evened out spatial and temporal distribution of the contact force and therefore
joint torques.

57

5 Discussion

The cartesian end effector position reaches a satisfying accuracy. In a scenario like
the wiping experiment the time offsets during movements - while the commanded
positions are synchronized - do not have a significant influence on the results because
the contacts are far longer than the offsets. Other experiments with higher time accu-
racy demands could run into difficulties. It would be worth investigating whether this
behavior occurs only in contact scenarios or generally in cartesian impedance control.
The low errors on the x and y axis also confirm that the wiper is dragged across the
surface at a correct speed in the simulation. This indicates that the friction force acting
against the movement direction has a similar effect on the movement as in reality, even
though the real wiper would have different physical properties with its soft head.
The z-position errors shown in the results demonstrate a limit of the rigid body simula-
tion: A z-position difference of half a centimeter significantly changes the torques and
a more accurate z-position in the simulation comes with unrealistically large torques.
A certain trade-off is unavoidable in this case.
A closer analysis also shows slightly higher accuracy of x- and y-positions for the
largest panel height with the wiper angle of 0.0. This indicates that this parameter com-
bination represents the real world state the best. The much too large dimensions of the
torques occurring in that case might be due to the compression of the soft wiper head
in reality that is not replicated in the simulation and that would reduce the contact force.

The parameter variations for this experiment did not result in a single ideal parameter
set but rather give boundaries to acceptable parameter combinations since some of
them resulted in no contacts or excessively hard contacts. The combinations of a wiper
x-angle of 0.0 and a panel height of 1.00m, a wiper x-angle of -0.075 rad and a panel
height of 1.02m and a wiper x-angle of -0.15 rad with a panel height of 1.04m all
resulted in similar torques that were at roughly the same magnitudes as the real values.
The best position accuracy occurred in the combination of a panel height of 1.04m with
an x-angle of 0.0, but also resulted in joint torques several times larger than the ones
measured in reality.
The integration of a soft body simulation or an estimation with a spring at the head of
the wiper could likely increase the simulation accuracy for this wiper application.

It’s clear that the choice of two parameters is not sufficient to deal with the uncertainty
of the wiper pose and the panel position, a total of ten parameters would be available
for the two objects, one rotation and three position variables for the panel and 3 position
plus 3 rotation variables for the wiper pose relative to the wrist of the left arm.
We inserted some knowledge manually, like the fact that the robot and panel can only
be rotated along their vertical axes even though the visually determined world state

58

5.3 Environment Contacts

suggests otherwise. We also manually determined the wiper pose and chose one of the
angles as the most significant regarding surface contacts.
Future experiments could attempt to include more of the available variables or find
ways to choose the significant ones with a data-based approach. The wiper pose could
also be estimated initially by simulating the grasping behavior in a separate hand
simulation or with a dynamic monitoring that binds the wiper to the hand when the
fingers close around it.
The discrepancy in the proportions of the projection of contact forces onto arm joint
torques stood out negatively and should be looked into in the future.
A simpler experiment that might grant more insight to the current compliant contact
behavior would be the contact of Justin’s hand with the surface of a scale. This would
allow us to get the contact force directly, would not require an end effector tool and
could be varied with the desired end effector position at different depths below the
scale surface. In Gazebo, the direct access to surface contact forces is possible with
contact sensors.

59

6 Conclusion and Outlook

We draw a conclusion of the coupled systems, the experiment results and discussion
and provide an outlook on the use cases and possible improvements to the system.

6.1 Conclusion

The coupling process of the Simulink controller with a simulation was generally suc-
cessful and the processes are synchronized reliably. We explained improvements and
limitations of the robot model with a parallelogram torso construction as the largest
change. The simulation is now fully driven by torques and forces rather than kinematic
positions of robot elements.
We also conducted a deeper accuracy analysis of the simulated controller behavior
regarding joint angles, torques and the end effector positions and orientations. The
joint and end effector positions were replicated with satisfying accuracy in both state
space and joint impedance control, the measured torques showed some discrepancies,
especially in the torso.
We implemented a separate simple finger controller that provided acceptable results,
consistent contact-based grasping would need to be simulated separately anyway.

With the wiping task, we successfully simulated a typical action of the real Justin
including compliant contacts with a flat surface. Parameter variations of the end
effector tool and the solar panel position demonstrated a way to deal with uncertainty
regarding the world state. The grid search approach lead to a number of superior
parameter combinations without a clear ideal one.
The end effector positions were replicated well even during the surface contacts, but
some limits of the simulation were demonstrated by the varying torque accuracy.
Generally the impedance control approach clearly replicates compliant contacts in the
simulation and allows for control over the contact forces.
These results allow for the conclusion that the main objective of this thesis is fulfilled,
the simulation can now replicate force-based applications of the robot. The conduction
of further experiments could grant more insights to the current compliant contact
behavior and could help improve and define limits to the accuracy of the simulation
e.g. regarding soft bodies or collider geometry.

61

6 Conclusion and Outlook

6.2 Outlook

The developed coupled simulation can fulfil any of the purposes of the previous simu-
lation and extends the range of applications:
Kinematic collision checks or initiation of physics-based interactions of other objects -
such as dropping a ball into a container - are more accurate when the robot’s joint posi-
tions follow controller input than when they replicate the commanded poses. Collisions
can be either detected through the physics engine API or using the metrics explored in
4.4.
The metric of a contact force was previously useless as the kinematic joint commands
produced undefined torques, these are now realistically simulated and could e.g. be
used in the world state interpretation, as training data for contact classification or in
the predictive abilities.
The projection methods can now include torques, forces and the compliant controller
behavior which enables more advanced scenarios like the panel wiping explored in this
thesis, the connection of a plug to a socket or interactions with heavier objects where
the simulation could help estimating load limits of the robot.
To accommodate for uncertainties in the estimated world state, multiple simulations
with slightly varied poses or parameters - as demonstrated in the wiping experiment -
can be executed during or preceding the real robot action.
Future work could develop more sophisticated approaches to dealing with this un-
certainty e.g. by calculating probabilistic success chances of planned actions and
intervening when large contact forces are risked.
These use cases can be implemented with little effort, building scenarios in the simula-
tion only requires 3D models and their world positions. Many of the systems working
on the real Justin - action planning, user interaction methods - could be plugged into
the simulation as they mostly interact with the Simulink controller. Some require
additional input like a camera input for localization, which would require extensions
of the simulation.
The controller itself can also be easily tested, the changes required to interface with LN
are minar and can be matter in a matter of minutes. Compiling a new controller and
deploying it to the simulation is done locally and quickly, there are no hardware faults
like on the real robot and errors in the controller programming can’t have negative
consequences.
The robot model can also be grounds for testing: Simulating sensor or actuator defects
can help identify possible outcomes or detect and localize failures on the real robot
faster.

Some of the shortcomings of the coupled simulation such as the cartesian position

62

6.2 Outlook

offsets can be tracked down to the discrepancies between the model used in Gazebo, the
real robot and the model in Simulink. A unified model of the robot’s links and joints
including their inertial properties should be an easy way to improve the simulation and
can be achieved partly through automatic evaluation of CAD files of robot parts.
The simulation of gripping objects with multiple fingers is difficult to achieve due to
the multitude of contact forces, shifting this logic to a different simulation that only
deals with finger contacts may be worth exploring and could integrate the Simulink
controller of Justin’s hands instead of the PD controller implemented in Gazebo.
The rolling platform of the robot that wasn’t handled in this thesis could also be
implemented in future work, it was fixed to the origin in the current simulation. The
four wheel-contacts to the ground might pose a challenge to the stability of the robot
while the result hardly contributes to the simulation use cases. Instead moving the
platform according to the interpolated commanded movements on two prismatic joints
along the x and y axis of the world using forces would likely be recommended and
could be realized with much less effort.

63

List of Figures

1.1 Previous (yellow) and new (light blue) capabilities of the simulated Justin 2

3.1 Control loop communicating between user, simulation and controller
Simulation - Controller interfaces marked in red 11

3.2 Blocking scenarios between Gazebo and Simulink, red areas mark block-
ing of execution . 15

3.3 The two torso constructions fulfil the same purpose with different me-
chanical concepts . 19

3.4 The conceptual construction of the parallel torso pieces. The actuated
joints are marked with τ . 20

4.1 End effector cartesian position and rotation error visualized 25
4.2 The main robot poses used for the experiments 28
4.3 The special torso movements . 30
4.4 Arm Joint Error Metrics over time for the zero_to_ready movement in

state space control . 30
4.5 Open and closed finger poses used for the experiments 31
4.6 Mean and maximum RMSE of arm and torso joint positions in both

analyzed controllers . 32
4.7 Mean and maximum RMSE of arm and torso joint torques in both

analyzed controllers . 34
4.8 Torso torques per joint in the torso_back movement in both controllers,

recorded and simulated data in similar colors 36
4.9 Metrics for the end effector poses in state space and joint impedance

control . 38
4.10 Finger Mean RMSE values for the open and closed finger pose and

movements between the two . 38
4.11 Finger 17 with the maximum position error in the hand closing movement 39
4.12 The real and simulated Justin wiping the solar panel surface 39
4.13 Recorded and simulated torques from the panel contact on the zero-

indexed joints of the left arm, panel height 1.04m, wiper angle -0.075
rad . 43

65

List of Figures

4.14 Measured (upper diagram) and commanded (lower diagram) cartesian
position of the left hand end effector in simulation and reality, divided
into the three spatial axes . 45

4.15 Z-positions of the simulated end effector for a wiper angle of 0 and
varying panel heights in the simulation in comparison to commanded
and measured Z-position of the real robot, the low section of the graph
in orange indicates the contact phase . 46

4.16 Real-time factor evaluations of the simulation 47

5.1 Mean RMSE between recorded - simulated, commanded - recorded and
commanded - simulated positions . 50

5.2 Separate torque graphs for the right arm joints in simulation and reality 52
5.3 Mean RMSE between recorded - simulated, commanded - recorded and

commanded - simulated torques . 53
5.4 Discrepancies of commanded and recorded finger joint positions com-

pared to simulation errors, the maximum errors are in degrees while the
RMSE does not have a unit . 56

66

List of Tables

3.1 Data from Gazebo to Simulink . 11
3.2 Data from Simulink to Gazebo . 12
3.3 Controller behavior . 18

4.1 Mean RMSE of joint positions for arms and torso 33
4.2 Mean RMSE of joint torques for arms and torso 35
4.3 Simulated solar panel contacts for different parameters sets 41
4.4 Simulated contact torques for different parameters sets in relation to

peaks recorded on the real robot, joints are zero-indexed 44

67

Bibliography

[1] N. Y. Lii, D. Leidner, A. Schiele, P. Birkenkampf, B. Pleintinger, and R. Bayer,
“Command robots from orbit with supervised autonomy: An introduction to the
meteron supvis-justin experiment,” in Proceedings of the Tenth Annual ACM/IEEE
International Conference on Human-Robot Interaction Extended Abstracts, ser. HRI’15
Extended Abstracts, Portland, Oregon, USA: Association for Computing Machin-
ery, 2015, pp. 53–54, isbn: 9781450333184. doi: 10.1145/2701973.2702022.

[2] A. S. Bauer, P. Schmaus, F. Stulp, and D. Leidner, “Probabilistic effect prediction
through semantic augmentation and physical simulation,” in 2020 IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2020, pp. 9278–9284. doi:
10.1109/ICRA40945.2020.9197477.

[3] D. Leidner, C. Borst, A. Dietrich, M. Beetz, and A. Albu-Schäffer, “Classifying
compliant manipulation tasks for automated planning in robotics,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Sep. 2015.

[4] D. Leidner and M. Beetz, “Inferring the effects of wiping motions based on haptic
perception,” in 2016 IEEE-RAS 16th International Conference on Humanoid Robots
(Humanoids), 2016, pp. 461–468. doi: 10.1109/HUMANOIDS.2016.7803316.

[5] M. A. Oliveira, S. Doncieux, J.-B. Mouret, and C. Peixoto Santos, “Optimization
of Humanoid Walking Controller: Crossing the Reality Gap,” in IEEE RAS In-
ternational Conference on Humanoid Robots (Humanoids 2013), Atlanta, GA, United
States, Oct. 2013, pp. 106–111. doi: 10.1109/HUMANOIDS.2013.7029963.

[6] S. Koos, J.-B. Mouret, and S. Doncieux, “Crossing the Reality Gap in Evolutionary
Robotics by Promoting Transferable Controllers,” in Conference on Genetic and
Evolutionary Computation, United States: ACM, publisher, Jul. 2010, pp. 119–126.

[7] J. Collins, D. Howard, and J. Leitner, “Quantifying the reality gap in robotic
manipulation tasks,” in 2019 International Conference on Robotics and Automation
(ICRA), 2019, pp. 6706–6712. doi: 10.1109/ICRA.2019.8793591.

[8] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M.
Hutter, “Learning agile and dynamic motor skills for legged robots,” Science
Robotics, vol. 4, no. 26, eaau5872, 2019. doi: 10.1126/scirobotics.aau5872.
eprint: https://www.science.org/doi/pdf/10.1126/scirobotics.aau5872.

69

https://doi.org/10.1145/2701973.2702022
https://doi.org/10.1109/ICRA40945.2020.9197477
https://doi.org/10.1109/HUMANOIDS.2016.7803316
https://doi.org/10.1109/HUMANOIDS.2013.7029963
https://doi.org/10.1109/ICRA.2019.8793591
https://doi.org/10.1126/scirobotics.aau5872
https://www.science.org/doi/pdf/10.1126/scirobotics.aau5872

Bibliography

[9] S. Höfer, K. Bekris, A. Handa, J. C. Gamboa, M. Mozifian, F. Golemo, C. Atkeson,
D. Fox, K. Goldberg, J. Leonard, C. Karen Liu, J. Peters, S. Song, P. Welinder, and
M. White, “Sim2real in robotics and automation: Applications and challenges,”
IEEE Transactions on Automation Science and Engineering, vol. 18, no. 2, pp. 398–400,
2021. doi: 10.1109/TASE.2021.3064065.

[10] E. Salvato, G. Fenu, E. Medvet, and F. A. Pellegrino, “Crossing the reality gap:
A survey on sim-to-real transferability of robot controllers in reinforcement
learning,” IEEE Access, vol. 9, pp. 153 171–153 187, 2021. doi: 10.1109/ACCESS.
2021.3126658.

[11] M. Raibert, K. Blankespoor, G. Nelson, and R. Playter, “Bigdog, the rough-terrain
quadruped robot,” IFAC Proceedings Volumes, vol. 41, no. 2, pp. 10 822–10 825,
2008, 17th IFAC World Congress, issn: 1474-6670. doi: https://doi.org/10.
3182/20080706-5-KR-1001.01833.

[12] C. E. Agüero, N. Koenig, I. Chen, H. Boyer, S. Peters, J. Hsu, B. Gerkey, S. Paepcke,
J. L. Rivero, J. Manzo, E. Krotkov, and G. Pratt, “Inside the virtual robotics
challenge: Simulating real-time robotic disaster response,” IEEE Transactions
on Automation Science and Engineering, vol. 12, no. 2, pp. 494–506, 2015. doi:
10.1109/TASE.2014.2368997.

[13] E. Coevoet, A. Escande, and C. Duriez, “Soft robots locomotion and manipula-
tion control using fem simulation and quadratic programming,” 2019 2nd IEEE
International Conference on Soft Robotics (RoboSoft), pp. 739–745, 2019.

[14] L. Sentis, J. Park, and O. Khatib, “Compliant control of multicontact and center-
of-mass behaviors in humanoid robots,” IEEE Transactions on Robotics, vol. 26,
no. 3, pp. 483–501, 2010. doi: 10.1109/TRO.2010.2043757.

[15] C. Semeraro, M. Lezoche, H. Panetto, and M. Dassisti, “Digital twin paradigm:
A systematic literature review,” Computers in Industry, vol. 130, p. 103 469, 2021,
issn: 0166-3615. doi: https://doi.org/10.1016/j.compind.2021.103469.

[16] F. Biesinger and M. Weyrich, “The facets of digital twins in production and
the automotive industry,” in 2019 23rd International Conference on Mechatronics
Technology (ICMT), 2019, pp. 1–6. doi: 10.1109/ICMECT.2019.8932101.

[17] K. S. D. Ravi, M. S. Ng, J. Ibáñez, and D. Hall, “Real-time digital twin of on-
site robotic construction processes in mixed reality,” Nov. 2021. doi: 10.22260/
ISARC2021/0062.

70

https://doi.org/10.1109/TASE.2021.3064065
https://doi.org/10.1109/ACCESS.2021.3126658
https://doi.org/10.1109/ACCESS.2021.3126658
https://doi.org/https://doi.org/10.3182/20080706-5-KR-1001.01833
https://doi.org/https://doi.org/10.3182/20080706-5-KR-1001.01833
https://doi.org/10.1109/TASE.2014.2368997
https://doi.org/10.1109/TRO.2010.2043757
https://doi.org/https://doi.org/10.1016/j.compind.2021.103469
https://doi.org/10.1109/ICMECT.2019.8932101
https://doi.org/10.22260/ISARC2021/0062
https://doi.org/10.22260/ISARC2021/0062

Bibliography

[18] M. Kapteyn, D. Knezevic, D. Huynh, M. Tran, and K. Willcox, “Data-driven
physics-based digital twins via a library of component-based reduced-order mod-
els,” International Journal for Numerical Methods in Engineering, vol. n/a, no. n/a,
doi: https://doi.org/10.1002/nme.6423. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/nme.6423.

[19] F. Laukotka, M. Hanna, and D. Krause, “Digital twins of product families in
aviation based on an mbse-assisted approach,” Procedia CIRP, vol. 100, pp. 684–
689, 2021, 31st CIRP Design Conference 2021 (CIRP Design 2021), issn: 2212-8271.
doi: https://doi.org/10.1016/j.procir.2021.05.144.

[20] H. Meyer, J. Zimdahl, A. Kamtsiuris, R. Meissner, F. Raddatz, S. Haufe, and M.
Bäßler, “Development of a digital twin for aviation research,” in Deutscher Luft-
und Raumfahrt Kongress, Sep. 2020.

[21] E. Glaessgen and D. Stargel, “The digital twin paradigm for future nasa and
u.s. air force vehicles,” in 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference. doi: 10.2514/6.2012-1818. eprint: https:
//arc.aiaa.org/doi/pdf/10.2514/6.2012-1818.

[22] K. Hagmann, A. Hellings, J. Klodmann, R. Richter, F. Stulp, and D. Leidner,
“A digital twin approach for contextual assistance for surgeons during surgical
robotics training,” Frontiers in Robotics and AI, no. 8, pp. 305–319, Sep. 2021.

[23] A. Albu-Schäffer and G. Hirzinger, “A globally stable state feedback controller for
flexible joint robots,” Advanced Robotics, vol. 15, no. 8, pp. 799–814, 2001. doi: 10.
1163/156855301317198133. eprint: https://doi.org/10.1163/156855301317198133.

[24] C. Ott, O. Eiberger, W. Friedl, B. Bauml, U. Hillenbrand, C. Borst, A. Albu-Schaffer,
B. Brunner, H. Hirschmuller, S. Kielhofer, R. Konietschke, M. Suppa, T. Wimbock,
F. Zacharias, and G. Hirzinger, “A humanoid two-arm system for dexterous
manipulation,” in 2006 6th IEEE-RAS International Conference on Humanoid Robots,
2006, pp. 276–283. doi: 10.1109/ICHR.2006.321397.

[25] A. S. Bauer, A. Köpken, and D. Leidner, “Multi-agent heterogeneous digital twin
framework with dynamic responsibility allocation for complex task simulation,”
in 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, and M. E. Taylor, Eds.,
IFAAMAS, May 2022, pp. 1–9.

[26] T. Chai and R. Draxler, “Root mean square error (rmse) or mean absolute error
(mae)?– arguments against avoiding rmse in the literature,” Geoscientific Model
Development, vol. 7, pp. 1247–1250, Jun. 2014. doi: 10.5194/gmd-7-1247-2014.

71

https://doi.org/https://doi.org/10.1002/nme.6423
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.6423
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.6423
https://doi.org/https://doi.org/10.1016/j.procir.2021.05.144
https://doi.org/10.2514/6.2012-1818
https://arc.aiaa.org/doi/pdf/10.2514/6.2012-1818
https://arc.aiaa.org/doi/pdf/10.2514/6.2012-1818
https://doi.org/10.1163/156855301317198133
https://doi.org/10.1163/156855301317198133
https://doi.org/10.1163/156855301317198133
https://doi.org/10.1109/ICHR.2006.321397
https://doi.org/10.5194/gmd-7-1247-2014

Bibliography

[27] D. Huynh, “Metrics for 3d rotations: Comparison and analysis,” Journal of Mathe-
matical Imaging and Vision, vol. 35, pp. 155–164, Oct. 2009. doi: 10.1007/s10851-
009-0161-2.

[28] D. Leidner, C. Borst, and G. Hirzinger, “Things are made for what they are:
Solving manipulation tasks by using functional object classes,” in 2012 12th
IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), 2012,
pp. 429–435. doi: 10.1109/HUMANOIDS.2012.6651555.

72

https://doi.org/10.1007/s10851-009-0161-2
https://doi.org/10.1007/s10851-009-0161-2
https://doi.org/10.1109/HUMANOIDS.2012.6651555

	Contents
	Introduction
	Related Work
	Rollin' Justin
	Dynamic Robot Simulations
	Reality Gap
	Usages

	Digital Twin

	Coupling of Controller and Simulation
	Systems Used
	General Concept
	Data Interfaces
	Synchronization
	Controllers
	Digital Twin
	Reference Frames
	Parallel Torso Construction
	Finger Controller

	System Evaluation
	Metrics
	Joint Positions
	Torques
	End Effector Poses
	Finger Positions

	Experiment Setup
	Parameters
	Static Pose Accuracy
	Tracking Accuracy
	Finger Accuracy

	Experiment Results
	Torque Results
	End Effector Pose Results
	Finger Position Results

	Environment Contact Experiment
	Setup
	Results

	Performance

	Discussion
	Controller Accuracy
	Joint Positions
	Torques
	End Effector Pose
	General Assessment

	Finger Accuracy
	Environment Contacts

	Conclusion and Outlook
	Conclusion
	Outlook

	List of Figures
	List of Tables
	Bibliography

