
1.  Introduction
Concerning the contrasted behaviors of Arctic and Antarctic sea ice, it becomes crucial to accurately characterize 
and monitor the state of polar sea ice to explain the differences between Arctic and Antarctic sea ice change, 
considered by scientists as the polar sea ice paradox (King, 2014; Liu & Curry, 2011; Maksym et al., 2012; 
Walsh, 2009). Among the parameters critical for sea ice dynamic modeling is the surface elevation to determine 
the sea ice drag and the momentum flux in air-ice-ocean interactions (Guest & Davidson, 1991). A major weak-
ness is the assumption of a constant sea ice roughness in models, which is overly simplistic and cannot truly 
capture sea ice dynamic processes (Guest & Davidson, 1991). An advanced study has revealed that it is indeed 
required to account for variations of sea ice surface elevation in climate simulations in order to correctly represent 
the implications of sea ice change under a changing climate (Martin et al., 2016).

In the Antarctic, sea ice elevation, including ice freeboard and snow thickness above the local sea level as a refer-
ence, is significantly more pronounced than that in the Arctic due to strong wind (e.g., persistent offshore kataba-
tic winds) and wave (e.g., Weddell Gyre driven by Antarctic Circumpolar Current interactions with the Antarctic 
Continental Shelf) forcing on Antarctic sea ice (Nghiem et al., 2016). Thus, the capability to obtain sea ice digital 
elevation model (DEM) across the extensive expansion of the sea ice cover is crucial to address the DEM missing 
gap, especially for Antarctic sea ice. For this objective, the Operation-IceBridge and TanDEM-X Coordinated 
Science Campaign (OTASC) was successfully conducted in 2017 (Nghiem et al., 2018). This is presented in two 
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consecutive papers: Part 1 for the theory of radar polarimetric interferometry in this paper, and Part 2 for OTASC 
experimental observations in the next companion paper (Huang et al., 2021).

2.  Theoretical Modeling
Understanding sea ice remote sensing signatures was a thrust of the Accelerated Research Initiatives (ARI) in 
the 1990s, leading to significant progresses published in a compendium of papers (Jordan, 1998). Since the 
ARI, further advances have been made by an array of programs; however, sea ice remote sensing signatures 
remain to be understood and further advanced. To model microwave radar signatures of snow-covered sea ice, 
the classical radiative transfer theory (RT; Tsang et al., 1985) accounts for incoherent intensity, but it does not 
truly preserve the phase information and does not satisfy Maxwell's equations. Then, the modified RT (MRT) 
was developed to keep the ladder terms in the Feynman diagrams (Mudaliar & Lee, 1993); however, MRT 
becomes extremely complex to include realistic characteristics of snow-covered sea ice. To overcome these 
limitations, Maxwell's equations are used to develop an advanced radar scattering theory in order to correctly 
capture and preserve both amplitude and phase information, which is imperative for measuring sea ice DEM. 
While numerical methods can solve Maxwell's equations (Nghiem et al., 2019; Tan et al., 2017) requiring a 
high computation demand that limits the realization of a realistic characterization of snow-covered sea ice, 
the analytic approach allows complex properties and processes of snow and ice to be accounted for Nghiem 
et al. (1990, 1995a, 1995b).

Over past decades, the analytic solution was successful in capturing: polarimetric backscatter signatures of sea 
ice verified with observations from the Beaufort Sea Field Campaign (Nghiem et al., 1995a, 1995b), effects on 
polarimetric backscatter from frost flowers on sea ice verified with data from the Cold Regions Research and 
Engineering Laboratory Experiment (CRRELEX; Nghiem et al., 1995), radar backscatter response to thin sea ice 
growth process measured during CRRELEX (Nghiem et al., 1997), role of snow on the thermal dependence of 
radar backscatter over sea ice observed during the Seasonal Sea Ice Monitoring and Modeling Site experiment 
(Barber & Nghiem, 1999), synthetic aperture radar (SAR) signatures of Arctic sea ice tested with measurements 
from the Jet Propulsion Laboratory Airborne SAR campaign (Nghiem & Bertoia, 2001), preparation for the oper-
ational use of RADARSAT-2 for ice monitoring (Ramsay et al., 2004), radiometric signatures of river ice status 
and river discharge verified with in situ data (Brakenridge et al., 2017), and backscatter signature of snowmelt on 
the Greenland ice sheet for snowmelt mapping validated with data from the Greenland Climate Network (Nghiem 
et al., 2001).

With the above background on the development and verification of the analytic method from past research expe-
riences, we establish and present in this section the fundamental foundation for advanced radar polarimetric and 
interferometric measurements in order to guide the algorithm development for retrieval of sea ice DEM from 
satellite data acquired by SAR with polarimetric and interferometric capabilities such as TerraSAR-X (TSX) and 
TanDEM-X (TDX; Krieger et al., 2007). First, radar scattering coefficients are obtained with polarimetric and 
interferometric modeling based on the first principle of Maxwell's equations. Then, systematically informed by 
the symmetry group theory (Hamermesh, 1972), specific terms among the various complex polarimetric interfer-
ometric scattering coefficients in the covariance matrix are effectively selected to examine how radar measure-
ments can be utilized to observe sea ice DEM.

2.1.  Principle of Radar Polarimetric Inteferometry

For polarimetric interferometry, the deployment for radar measurements are illustrated in Figure 1. Consider a 
radar transmitting an incidence electric field 𝐴𝐴 𝐸𝐸0𝑖𝑖 toward a targeted area A on snow-covered sea ice, from which 
a scattered field 𝐴𝐴 𝐸𝐸0𝑠𝑠

(

𝑟𝑟𝑎𝑎

)

 is measured by a radar receiver at location 𝐴𝐴 𝑟𝑟𝑎𝑎 and another scattered field 𝐴𝐴 𝐸𝐸0𝑠𝑠

(

𝑟𝑟𝑏𝑏

)

 is 
measured by a different radar receiver at location 𝐴𝐴 𝑟𝑟𝑏𝑏 . This radar measurement deployment allows observations of: 
(a) monostatic scattering by taking ensemble averages for scattered field correlations at 𝐴𝐴 𝑟𝑟𝑎𝑎 , (b) bistatic scattering 
by taking ensemble averages for scattered field correlations at 𝐴𝐴 𝑟𝑟𝑏𝑏 , and (c) interferometric scattering by taking 
cross-ensemble averages for scattered field correlations at the two locations 𝐴𝐴 𝑟𝑟𝑎𝑎 and 𝐴𝐴 𝑟𝑟𝑏𝑏 .

The polarimetric interferometry theory in this paper will unify the treatment of all monostatic, bistatic, polari-
metric, and interferometric radar deployment in a single formulation, where multifold integrations over complex 
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variables for polarimetric backscatter, bistatic, and interferometric scattering 
coefficients are carried out over spatial and spectral domains for all prop-
agation mechanisms of ordinary and extraordinary electromagnetic waves 
in multi-layered anisotropic media. Thereby, the unified theory intrinsically 
accounts for the interferometric phase, radar resolution cell, baseline decor-
relation, rotation decorrelation, polarization diversity, depolarization effects, 
and characteristics of geophysical media.

2.2.  Electromagnetic Modeling

2.2.1.  Overall Formulation Concept

Electromagnetic modeling of geophysical media, such as snow-covered sea 
ice, based on the first principle of Maxwell's equations preserves the coherent 
phase information (Nghiem et  al.,  1990), which is fundamentally required 
for radar polarimetry and interferometry. Analytic solutions of Maxwell's 
equations that are computationally effective allow electromagnetic modeling 
of realistic and complicated properties of snow, sea ice, and seawater under 
various environmental conditions, and thereby providing insights into the 
scattering mechanisms and how they are related to physical characteristics 
of the geophysical media.

Within the concept of the analytic method, vector wave equations derived 
from Maxwell's equations are solved with dyadic Green's functions (DGFs) 
for a multi-layered configuration of snow-covered sea ice on seawater. Inte-
gral equations are cast from the vector wave equations to obtain electromag-
netic fields under the distorted Born approximation subject to boundary 
conditions at the air-snow, snow-ice, and ice-seawater interfaces. DGFs 
account for multiple wave-boundary interactions including multiple trans-
missions, refractions, reflections, and differential phase and attenuation of 
ordinary and extraordinary waves propagating downward and upward in the 
anisotropic layered media. The influence of medium inhomogeneities on 
wave phase and attenuation is treated with a decomposition of DGFs into 
principal-value parts and Dirac-delta parts together with the renormalization 
method in the strong fluctuation theory based on bilocal-approximation solu-
tions of Dyson's equations derived with the Feynman's diagram. Complex 
integrations are carried out with appropriate branch cuts and Riemann sheets.

The analytic modeling accounts for crystallographic structure of sea ice, 
uses realistic statistics of orientation and size distributions in snow and 
sea ice, and includes all wave-interaction types in the complex domain 
for all phases and polarization states of scattering signatures of snow-cov-
ered sea ice. Both  absorption and scattering loss for wave propagation 
with multiple scattering effects are included in the calculation of effective 
permittivities to be valid beyond the quasi-static limit. For rough surface 
scattering at interfaces in the layered media, the model includes rough-
nesses with different scales represented by a probability function. Effects 
of salinity in effective dispersion relations of electromagnetic waves are 
also considered.

2.2.2.  Multi-Layered Configuration

Stratified geophysical media, such as snow-covered sea ice on seawater, with 
variations in the vertical profile of their properties, are modeled with the 
multi-layered configuration in Figure 2. The upper half space represents the 

Figure 1.  The bistatic fully polarimetric interferometric deployment.

Figure 2.  Multi-layered configuration of snow-covered sea ice.
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air or free space where a remote-sensing radar is located to make measurements. Each layer between two inter-
faces is inhomogeneous with randomly embedded scatterers. The underlying medium is a homogeneous half 
space (e.g., seawater in polar oceans). The upper half space, labeled as region 0, has permittivity ϵ0. At a depth of 
dn−1 (for n = 1, 2, …, n, …, N + 1), the interface between region (n − 1) and region n is defined as the (n − 1)th 
planar interface (extension to rough surface will be included in another section below). The top interface or 0th 
interface is at location z = −d0 = 0, and the bottom one or the Nth interface is at z = −dN in the Cartesian system 

𝐴𝐴 (𝑥̂𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥𝑥) where the hat denotes a unit vector.

Region n is characterized with inhomogeneous permittivity 𝐴𝐴 𝐴𝐴𝑛𝑛

(

𝑟𝑟
)

 , which takes on value ϵbn if location 𝐴𝐴 𝑟𝑟 is in the 
background medium indicated by subscript b, and the value is ϵsn in scatterers represented by subscript s. For 

𝐴𝐴 𝑟𝑟 and other quantities in this paper, the single overbar indicates a vector. The underlying half space is region N 
+ 1 with homogeneous permittivity ϵN+1. Dependent on a preferential alignment of scatterers, a medium in the 
multi-layered configuration can be effectively anisotropic with a tilted optic axis. All media are non-magnetic 
with permeability denoted by μ0.

2.2.3.  Governing Equations

Derived from Maxwell's equations, the time-harmonic total fields 𝐴𝐴 𝐸𝐸0

(

𝑟𝑟
)

, 𝐸𝐸𝑛𝑛

(

𝑟𝑟
)

 , and 𝐴𝐴 𝐸𝐸𝑁𝑁+1

(

𝑟𝑟
)

 in regions 0, n, 
and N + 1 are governed by the following vector wave equations in the phasor form:

∇ × ∇ × 𝐸𝐸0

(

𝑟𝑟
)

− 𝑘𝑘
2

0
𝐸𝐸0

(

𝑟𝑟
)

= 0� (1)

∇ × ∇ × 𝐸𝐸𝑛𝑛

(

𝑟𝑟
)

− 𝑘𝑘
2

0

𝜖𝜖𝑛𝑛

(

𝑟𝑟
)

𝜖𝜖0
𝐸𝐸𝑛𝑛

(

𝑟𝑟
)

= 0� (2)

∇ × ∇ × 𝐸𝐸𝑁𝑁+1

(

𝑟𝑟
)

− 𝑘𝑘
2

0

𝜖𝜖𝑁𝑁+1

𝜖𝜖0
𝐸𝐸𝑁𝑁+1

(

𝑟𝑟
)

= 0� (3)

where the free-space wave number is 𝐴𝐴 𝐴𝐴0 = 𝜔𝜔
√

𝜇𝜇0𝜖𝜖0 and the angular frequency is ω = 2πf for wave frequency f.

In snow-covered sea ice, differences in permittivities of materials in a heterogeneous layer are encountered (e.g., 
ice grains in snow, and air bubbles or brine inclusions in sea ice). To account for the permittivity fluctuations, 
the medium in region n is represented with an auxiliary anisotropic permittivity tensor 𝐴𝐴 𝜖𝜖𝑔𝑔𝑔𝑔 (the double over bars 
denote a tensor). Introducing 𝐴𝐴 𝜖𝜖𝑔𝑔𝑔𝑔 in both sides of Equation 2, the wave equation becomes:

∇ × ∇ × 𝐸𝐸𝑛𝑛

(

𝑟𝑟
)

− 𝑘𝑘
2

0

𝜖𝜖𝑔𝑔𝑔𝑔

𝜖𝜖0
⋅ 𝐸𝐸𝑛𝑛

(

𝑟𝑟
)

= 𝑘𝑘
2

0
𝑄𝑄𝑛𝑛

(

𝑟𝑟
)

⋅ 𝐸𝐸𝑛𝑛

(

𝑟𝑟
)

� (4)

where the source term on the right-hand side of Equation 4 is related to the tensor difference between 𝐴𝐴 𝐴𝐴𝑛𝑛

(

𝑟𝑟
)

𝐼𝐼  
and 𝐴𝐴 𝜖𝜖𝑔𝑔𝑔𝑔 as follows:

𝑘𝑘
2

0
𝑄𝑄𝑛𝑛

(

𝑟𝑟
)

⋅ 𝐸𝐸𝑛𝑛

(

𝑟𝑟
)

= 𝑘𝑘
2

0

⎡

⎢

⎢

⎣

𝜖𝜖𝑛𝑛

(

𝑟𝑟
)

𝐼𝐼 − 𝜖𝜖𝑔𝑔𝑔𝑔

𝜖𝜖0

⎤

⎥

⎥

⎦

⋅ 𝐸𝐸𝑛𝑛

(

𝑟𝑟
)

� (5)

in which 𝐴𝐴 𝐼𝐼  is the unit dyad. The determination of 𝐴𝐴 𝜖𝜖𝑔𝑔𝑔𝑔 will be presented later in the framework of the strong fluctua-
tion theory. Physically, 𝐴𝐴 𝜖𝜖𝑔𝑔𝑔𝑔 is the effective permittivity tensor in the very low frequency limit and 𝐴𝐴 𝜖𝜖𝑔𝑔𝑔𝑔 characterizes 
wave propagation and attenuation in an effective medium without scattering effects. The dispersive scattering 
effects will be included in a frequency-dependent permittivity term to be presented later.

In the integral equation form, the total field in region m = 0, 1, 2, …, N, N + 1 is a superposition of the mean 
field and the scattered field:

𝐸𝐸𝑚𝑚

(

𝑟𝑟
)

= 𝐸𝐸
(0)

𝑚𝑚

(

𝑟𝑟
)

+ 𝑘𝑘
2

0

𝑁𝑁
∑

𝑛𝑛=1
∫
𝑉𝑉𝑛𝑛

𝑑𝑑𝑟𝑟𝑛𝑛𝐺𝐺𝑚𝑚𝑚𝑚

(

𝑟𝑟𝑟 𝑟𝑟𝑛𝑛

)

⋅𝑄𝑄𝑛𝑛

(

𝑟𝑟𝑛𝑛

)

⋅ 𝐸𝐸𝑛𝑛

(

𝑟𝑟𝑛𝑛

)

� (6)

 23335084, 2022, 5, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021E

A
002191 by D

tsch Z
entrum

 F. L
uft-U

. R
aum

 Fahrt In D
. H

elm
holtz G

em
ein., W

iley O
nline L

ibrary on [03/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Earth and Space Science

NGHIEM ET AL.

10.1029/2021EA002191

5 of 19

where Vn is the space occupied by region n and mean field 𝐴𝐴 𝐸𝐸
(0)

𝑚𝑚

(

𝑟𝑟
)

 is the solution to the wave equations where the 
scattering sources vanish. The second term in Equation 6 is the scattered field, which involves DGF 𝐴𝐴 𝐺𝐺𝑚𝑚𝑚𝑚

(

𝑟𝑟𝑟 𝑟𝑟𝑛𝑛

)

 
determined by:

∇ × ∇ × 𝐺𝐺𝑚𝑚𝑚𝑚

(

𝑟𝑟𝑟 𝑟𝑟𝑛𝑛

)

− 𝑘𝑘
2

0

𝜖𝜖𝑔𝑔𝑔𝑔

𝜖𝜖0
⋅ 𝐺𝐺𝑚𝑚𝑚𝑚

(

𝑟𝑟𝑟 𝑟𝑟𝑛𝑛

)

= 𝛿𝛿
(

𝑟𝑟 − 𝑟𝑟𝑛𝑛

)

𝐼𝐼� (7)

where subscript m in 𝐴𝐴 𝐺𝐺𝑚𝑚𝑚𝑚

(

𝑟𝑟𝑟 𝑟𝑟𝑛𝑛

)

 denotes the observation region containing observation point 𝐴𝐴 𝑟𝑟 , subscript n repre-
sents source region n = 1, 2, …, N containing source point 𝐴𝐴 𝑟𝑟𝑛𝑛 , and 𝐴𝐴 𝐴𝐴

(

𝑟𝑟 − 𝑟𝑟𝑛𝑛

)

 is the Dirac delta function. When m 
≠ n, observation point 𝐴𝐴 𝑟𝑟 is outside source region n where 𝐴𝐴 𝑟𝑟𝑛𝑛 is confined, the Dirac delta function in the right-hand 
side of Equation  7 vanishes. Within a scattering region, an observation point can coincide with a source point in 

the same region (m = n = 1, 2, …, N) causing the singularity in the DGF. In this case, 𝐴𝐴 𝐺𝐺𝑛𝑛𝑛𝑛

(

𝑟𝑟𝑟 𝑟𝑟𝑛𝑛

)

 is decomposed 
into a principal value part and a Dirac delta part:

𝐺𝐺𝑛𝑛𝑛𝑛

(

𝑟𝑟𝑟 𝑟𝑟𝑛𝑛

)

= 𝑃𝑃𝑃𝑃 𝐺𝐺𝑛𝑛𝑛𝑛

(

𝑟𝑟𝑟 𝑟𝑟𝑛𝑛

)

− 𝛿𝛿
(

𝑟𝑟 − 𝑟𝑟𝑛𝑛

)

𝑘𝑘
−2

0
𝑆𝑆𝑛𝑛

� (8)

where dyadic coefficient 𝐴𝐴 𝑆𝑆𝑛𝑛 conforms with the shape of the source exclusion volume. With this decomposition, 
the singular part in the integrand on the right-hand side of Equation 6 for m = n is extracted and then combined 
with total field 𝐴𝐴 𝐸𝐸𝑛𝑛

(

𝑟𝑟
)

 on the left-hand side to form external field 𝐴𝐴 𝐹𝐹𝑛𝑛

(

𝑟𝑟
)

 :

𝐹𝐹 𝑛𝑛

(

𝑟𝑟
)

=

[

𝐼𝐼 + 𝑆𝑆𝑛𝑛 ⋅𝑄𝑄𝑛𝑛

(

𝑟𝑟
)

]

⋅ 𝐸𝐸𝑛𝑛

(

𝑟𝑟
)

� (9)

In terms of external field 𝐴𝐴 𝐹𝐹𝑛𝑛

(

𝑟𝑟
)

 , the vector source in Equation 5 is redefined by introducing scatterer 𝐴𝐴 𝜉𝜉𝑛𝑛

(

𝑟𝑟
)

 such 
that:

𝑘𝑘
2

0
𝜉𝜉𝑛𝑛

(

𝑟𝑟
)

⋅ 𝐹𝐹 𝑛𝑛

(

𝑟𝑟
)

= 𝑘𝑘
2

0
𝑄𝑄𝑛𝑛

(

𝑟𝑟
)

⋅ 𝐸𝐸𝑛𝑛

(

𝑟𝑟
)

� (10)

It follows from Equation 10 that scatterer 𝐴𝐴 𝜉𝜉𝑛𝑛

(

𝑟𝑟
)

 region n is:

𝜉𝜉𝑛𝑛

(

𝑟𝑟
)

= 𝑄𝑄𝑛𝑛

(

𝑟𝑟
)

⋅

[

𝐼𝐼 + 𝑆𝑆𝑛𝑛 ⋅𝑄𝑄𝑛𝑛

(

𝑟𝑟
)

]−1

� (11)

By applying the distorted Born approximation to Equation 8 with the new definition of the sources by Equation 6, 
the total field observed in region 0 is:

𝐸𝐸0

(

𝑟𝑟
)

= 𝐸𝐸
(0)

0

(

𝑟𝑟
)

+ 𝑘𝑘
2

0

𝑁𝑁
∑

𝑛𝑛=1
∫
𝑉𝑉𝑛𝑛

𝑑𝑑𝑟𝑟𝑛𝑛 𝐺𝐺

(0)

0𝑛𝑛

(

𝑟𝑟𝑟 𝑟𝑟𝑛𝑛

)

⋅ 𝜉𝜉𝑛𝑛

(

𝑟𝑟𝑛𝑛

)

⋅ 𝐹𝐹
(0)

𝑛𝑛

(

𝑟𝑟𝑛𝑛

)

� (12)

where effective permittivity tensor 𝐴𝐴 𝜖𝜖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is used to calculate mean DGF 𝐴𝐴 𝐺𝐺

(0)

0𝑛𝑛

(

𝑟𝑟𝑟 𝑟𝑟𝑛𝑛

)

 and mean field 𝐴𝐴 𝐹𝐹
(0)

𝑛𝑛

(

𝑟𝑟𝑛𝑛

)

 .

Here, the wave propagation and attenuation are characterized by complex effective permittivity. The mixing of 
scatterers (e.g., ice grains in snow, air bubbles and brine inclusions in sea ice, etc.) in a host medium determines 
an effective permittivity tensor that governs wave propagation and attenuation in the inhomogeneous medium. 
The dispersion of the medium not only depends on dispersive permittivities of the constituents but also on scat-
tering effects of the inhomogeneities. The strong permittivity fluctuation theory (Tsang et  al.,  1985) is used 
to derive the effective permittivity tensor. The singularity of the DGF is accounted for and the derivation is 
carried out in the frequency domain. The theory is based on bilocal-approximation solutions of Dyson's equations 
derived with  the Feynman's diagram, where complex integrations are carried out with appropriate considerations 
of branch cuts and Riemann sheets in the complex plane of transcendental functions. Specific mathematical 
expression for complex effective permittivity can be obtained following the method of Nghiem et al.  (1996), 
including thermodynamic effects in sea ice.
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2.2.4.  Scattered Field Ensembles

A radar can measure both magnitudes and phases of scattered fields at two different locations 𝐴𝐴 𝑟𝑟𝑎𝑎 and 𝐴𝐴 𝑟𝑟𝑏𝑏 . The 
scattered fields are correlated to form backscatter images, bistatic images, interferometric correlation maps, 
or interferograms. Ensembles averages of scattered field products, also called scattered field correlations, are 
obtained from Equation 12 as:

⟨�0�
(

��
)

⋅ �
∗
0�
(

��
)

⟩ =
�
∑

�=1

�,�,�
∑

�,�,�,�,�
�4
0 ∫�����∫����



� �������

(

��, �
�
)

⋅
[


(0)
0���

(

��, ��
)

	 (0)
��

(

��
)

]

⋅
[


(0)
0���

(

��, �
�
)

	 (0)
��

(

�
�
)]∗

� (13)

where subscripts a and b are for the receiver locations, and 𝐴𝐴 𝐴𝐴𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉

(

𝑟𝑟𝑛𝑛, 𝑟𝑟
𝑜𝑜

𝑛𝑛

)

 is the jklm element of the fourth-rank 
correlation tensor 𝐴𝐴 𝐶𝐶𝜉𝜉𝜉𝜉

(

𝑟𝑟𝑛𝑛, 𝑟𝑟
𝑜𝑜

𝑛𝑛

)

 for scatterers in region n and is:

𝐶𝐶𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉

(

𝑟𝑟𝑛𝑛, 𝑟𝑟
𝑜𝑜

𝑛𝑛

)

=
⟨

𝜉𝜉𝑛𝑛𝑛𝑛𝑛𝑛

(

𝑟𝑟𝑛𝑛

)

𝜉𝜉
∗

𝑛𝑛𝑛𝑛𝑛𝑛

(

𝑟𝑟
𝑜𝑜

𝑛𝑛

)⟩

= ∫
∞

−∞

𝑑𝑑𝛽𝛽 𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉

(

𝛽𝛽

)

𝑒𝑒
−𝑖𝑖𝛽𝛽⋅(𝑟𝑟𝑛𝑛−𝑟𝑟

𝑜𝑜

𝑛𝑛)� (14)

in which the spectral density is 𝐴𝐴 𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉

(

𝛽𝛽

)

= Γ
(𝐶𝐶)

𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉
Φ𝜉𝜉𝜉𝜉

(

𝛽𝛽

)

 with variance 𝐴𝐴 Γ
(𝐶𝐶)

𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉
 . Note that 𝐴𝐴 Φ𝜉𝜉𝜉𝜉

(

𝛽𝛽

)

 is the same 
as that used to calculate effective permittivities. The scatterers are consistently described in the calculations of 

wave scattering, propagation, and attenuation. In Equation 13, elements in the mean DGF 𝐴𝐴 𝐺𝐺

(0)

0𝑛𝑛

(

𝑟𝑟𝑟 𝑟𝑟𝑛𝑛

)

 for 𝐴𝐴 𝑟𝑟 = 𝑟𝑟𝑎𝑎, 𝑟𝑟𝑏𝑏 
and in the external field 𝐴𝐴 𝐹𝐹

(0)

𝑛𝑛

(

𝑟𝑟𝑛𝑛

)

 are necessary to obtain the scattered field correlations.

2.2.5.  Dyadic Green's Function

DGF 𝐴𝐴 𝐺𝐺

(0)

0𝑛𝑛

(

𝑟𝑟𝑟 𝑟𝑟𝑠𝑠

)

 for observation point 𝐴𝐴 𝑟𝑟 in region 0 and source point 𝐴𝐴 𝑟𝑟𝑠𝑠 in region n is derived from 𝐴𝐴 𝐺𝐺

(0)

𝑛𝑛0

(

𝑟𝑟𝑠𝑠, 𝑟𝑟
)

 for 
the source in region 0 and the observation in region n with the symmetric relation (Tai, 1971):

𝐺𝐺

(0)

𝑚𝑚𝑚𝑚

(

𝑟𝑟𝑟 𝑟𝑟𝑠𝑠

)

= 𝐺𝐺

(0)⊤

𝑛𝑛𝑛𝑛

(

𝑟𝑟𝑠𝑠, 𝑟𝑟
)� (15)

The DGFs for regions 0, n = 0, 1, 2, …, N, N + 1 are determined by dyadic wave equations:

∇ × ∇ × 𝐺𝐺

(0)

00

(

𝑟𝑟𝑟 𝑟𝑟𝑠𝑠

)

− 𝑘𝑘
2

0
⋅ 𝐺𝐺

(0)

00

(

𝑟𝑟𝑟 𝑟𝑟𝑠𝑠

)

= 𝛿𝛿
(

𝑟𝑟 − 𝑟𝑟𝑠𝑠

)

𝐼𝐼𝐼 𝐼𝐼 ≥ 0� (16)

∇ × ∇ × 𝐺𝐺

(0)

𝑛𝑛0

(

𝑟𝑟𝑟 𝑟𝑟𝑠𝑠

)

− 𝑘𝑘
2

0

𝜖𝜖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝜖𝜖0
⋅ 𝐺𝐺

(0)

𝑛𝑛0

(

𝑟𝑟𝑟 𝑟𝑟𝑠𝑠

)

= 0,−𝑑𝑑𝑛𝑛−1 ≥ 𝑧𝑧 ≥ −𝑑𝑑𝑛𝑛
� (17)

∇ × ∇ × 𝐺𝐺

(0)

(𝑁𝑁+1)0

(

𝑟𝑟𝑟 𝑟𝑟𝑠𝑠

)

− 𝑘𝑘
2

0

𝜖𝜖𝑁𝑁+1

𝜖𝜖0
⋅ 𝐺𝐺

(0)

(𝑁𝑁+1)0

(

𝑟𝑟𝑟 𝑟𝑟𝑠𝑠

)

= 0,−𝑑𝑑𝑁𝑁 ≥ 𝑧𝑧� (18)

The DGFs are subject to the radiation condition at infinite distances above and below the interfaces. At the inter-
faces (e.g., air-snow, snow-ice, ice-seawater), DGFs have to satisfy boundary conditions requiring the continuity 

of 𝐴𝐴 𝐴𝐴𝐴 × 𝐺𝐺

(0)

𝑛𝑛0  and 𝐴𝐴 𝐴𝐴𝐴 × ∇ × 𝐺𝐺

(0)

𝑛𝑛0  for the tangential electric and magnetic fields as:

𝑧̂𝑧 × 𝐺𝐺

(0)

00

(

𝑟𝑟𝑟 𝑟𝑟𝑠𝑠

)

= 𝑧̂𝑧 × 𝐺𝐺

(0)

10

(

𝑟𝑟𝑟 𝑟𝑟𝑠𝑠

)

𝑧̂𝑧 × ∇ × 𝐺𝐺

(0)

00

(

𝑟𝑟𝑟 𝑟𝑟𝑠𝑠

)

= 𝑧̂𝑧 × ∇ × 𝐺𝐺

(0)

10

(

𝑟𝑟𝑟 𝑟𝑟𝑠𝑠

)

⎫

⎪

⎬

⎪

⎭

at 𝑧𝑧 = 0� (19)

𝑧̂𝑧 × 𝐺𝐺

(0)

𝑛𝑛0

(

𝑟𝑟𝑟 𝑟𝑟𝑠𝑠

)

= 𝑧̂𝑧 × 𝐺𝐺

(0)

(𝑛𝑛+1)0

(

𝑟𝑟𝑟 𝑟𝑟𝑠𝑠

)

𝑧̂𝑧 × ∇ × 𝐺𝐺

(0)

𝑛𝑛0

(

𝑟𝑟𝑟 𝑟𝑟𝑠𝑠

)

= 𝑧̂𝑧 × ∇ × 𝐺𝐺

(0)

(𝑛𝑛+1)0

(

𝑟𝑟𝑟 𝑟𝑟𝑠𝑠

)

⎫

⎪

⎬

⎪

⎭

at 𝑧𝑧 = −𝑑𝑑𝑛𝑛� (20)
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𝑧̂𝑧 × 𝐺𝐺

(0)

𝑁𝑁0

(

𝑟𝑟𝑟 𝑟𝑟𝑠𝑠

)

= 𝑧̂𝑧 × 𝐺𝐺

(0)

(𝑁𝑁+1)0

(

𝑟𝑟𝑟 𝑟𝑟𝑠𝑠

)

𝑧̂𝑧 × ∇ × 𝐺𝐺

(0)

𝑁𝑁0

(

𝑟𝑟𝑟 𝑟𝑟𝑠𝑠

)

= 𝑧̂𝑧 × ∇ × 𝐺𝐺

(0)

(𝑁𝑁+1)0

(

𝑟𝑟𝑟 𝑟𝑟𝑠𝑠

)

⎫

⎪

⎬

⎪

⎭

at 𝑧𝑧 = −𝑑𝑑𝑁𝑁� (21)

With the saddle point method, the solution for DGF 𝐴𝐴 𝐺𝐺

(0)

0𝑛𝑛

(

𝑟𝑟𝑟 𝑟𝑟𝑠𝑠

)

 in the radiation field can be written in the follow-
ing form (Lee & Kong, 1985):

𝐺𝐺

(0)

0𝑛𝑛

(

𝑟𝑟𝑟 𝑟𝑟𝑠𝑠

)

=
𝑒𝑒
𝑖𝑖𝑖𝑖0𝑟𝑟

4𝜋𝜋𝜋𝜋
𝑒𝑒
−𝑖𝑖𝑘𝑘𝜌𝜌 ⋅ 𝜌𝜌𝑠𝑠𝑔𝑔𝑛𝑛

(

𝑘𝑘𝜌𝜌,𝑘𝑘
𝑤𝑤

𝑛𝑛𝑛𝑛,𝑧𝑧 𝑠𝑠

)

� (22)

where 𝐴𝐴 𝑘𝑘𝜌𝜌 is the lateral wave vector, 𝐴𝐴 𝐴𝐴
𝑤𝑤

𝑛𝑛𝑛𝑛 is the vertical component of the wave vector for wave type w, and 
𝐴𝐴 𝜌𝜌𝑠𝑠 = 𝑥̂𝑥𝑥𝑥𝑠𝑠 + 𝑦̂𝑦𝑦𝑦𝑠𝑠 . Representing multiple wave interactions with medium boundaries in layered media, dyadic coef-

ficient 𝐴𝐴 𝑔𝑔𝑛𝑛

(

𝑘𝑘𝜌𝜌, 𝑘𝑘
𝑤𝑤

𝑛𝑛𝑛𝑛, 𝑧𝑧𝑠𝑠

)

 is defined as:

��

(

��, ��
��, ��

)

=
∑

�

∑

�
�̂
(

��
0�

)

[

����

(

−��

)

�̂ (���
��)

×�−�������� + ����

(

−��

)

�̂
(

���
��
)

�−������ ��
]� (23)

where μ = h, v is for horizontal h or vertical v polarization, and u and d for upgoing and downgoing directions, 
respectively. If region n is isotropic, the characteristic wave has horizontal h or vertical v polarization, ν is h or v, 
and the wave types are w = hu, hd, vu, vd. Also, there is no distinction in the propagation of horizontal or verti-
cal wave; therefore, 𝐴𝐴 𝐴𝐴

ℎ𝑢𝑢

𝑛𝑛𝑛𝑛 = 𝑘𝑘
𝑣𝑣𝑣𝑣

𝑛𝑛𝑛𝑛 ≡ 𝑘𝑘
𝑢𝑢

𝑛𝑛𝑛𝑛 and 𝐴𝐴 𝐴𝐴
ℎ𝑑𝑑

𝑛𝑛𝑛𝑛 = 𝑘𝑘
𝑣𝑣𝑣𝑣

𝑛𝑛𝑛𝑛 ≡ 𝑘𝑘
𝑑𝑑

𝑛𝑛𝑛𝑛 . If region n is anisotropic, the characteristic waves are 
ordinary o or extraordinary e and ν = o, e. In this case, there are four wave types w = ou, od, eu, ed for ordinary 
upgoing, ordinary downgoing, extraordinary upgoing, and extraordinary downgoing waves. These account for the 
anisotropic wave speed difference and differential attenuation.

2.2.6.  External Fields

External field 𝐴𝐴 𝐹𝐹
(0)

𝑛𝑛

(

𝑟𝑟
)

 in region n are obtained from solutions of vector wave equations:

∇ × ∇ × 𝐹𝐹
(0)

𝑛𝑛

(

𝑟𝑟
)

− 𝑘𝑘
2

0

𝜖𝜖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝜖𝜖0
𝐹𝐹

(0)

𝑛𝑛

(

𝑟𝑟
)

= 0, 𝑛𝑛 = 1, 2,… , 𝑁𝑁� (24)

which are solved subject to the boundary conditions at interface z = 0, −d1, −d2, …, dN. For incidence field 
𝐴𝐴 𝐸𝐸0𝑖𝑖 =

[

ℎ̂ (𝑘𝑘0𝑧𝑧𝑧𝑧)𝐸𝐸ℎ𝑖𝑖 + 𝑣̂𝑣 (𝑘𝑘0𝑧𝑧𝑧𝑧)𝐸𝐸𝑣𝑣𝑣𝑣

]

𝑒𝑒
𝑖𝑖𝑘𝑘0𝑖𝑖⋅𝑟𝑟 propagating in the direction of incidence wave vector 𝐴𝐴 𝑘𝑘0𝑖𝑖 whose z compo-

nent is k0zi, the mean fields is:

𝐹𝐹
(0)

𝑛𝑛

(

𝑟𝑟
)

= 𝑒𝑒
𝑘𝑘𝜌𝜌𝜌𝜌 ⋅ 𝜌𝜌 𝑃𝑃 𝑛𝑛

(

𝑘𝑘𝜌𝜌𝜌𝜌, 𝑘𝑘
𝑤𝑤

𝑛𝑛𝑛𝑛𝑛𝑛
, 𝑧𝑧

)

, 𝑛𝑛 = 1, 2� (25)

where subscript i indicates the incidence wave, 𝐴𝐴 𝜌𝜌 = 𝑥̂𝑥𝑥𝑥 + 𝑦̂𝑦𝑦𝑦 is the lateral spatial vector, 
𝐴𝐴 𝑘𝑘𝜌𝜌𝜌𝜌 = 𝑥̂𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑦̂𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑘𝑘0 (𝑥̂𝑥 sin 𝜃𝜃0𝑖𝑖 cos𝜙𝜙0𝑖𝑖 + 𝑦̂𝑦 sin 𝜃𝜃0𝑖𝑖 sin𝜙𝜙0𝑖𝑖) is the lateral incidence wave vector with incidence 

angle θ0i and azimuthal angle ϕ0i, and 𝐴𝐴 𝐴𝐴
𝑤𝑤

𝑛𝑛𝑛𝑛𝑛𝑛
 is the vertical component of the wave vector for wave type w in region n.

Polarization vector 𝐴𝐴 𝑃𝑃 𝑛𝑛

(

𝑘𝑘𝜌𝜌𝜌𝜌, 𝑘𝑘
𝑤𝑤

𝑛𝑛𝑛𝑛𝑛𝑛
, 𝑧𝑧

)

 in Equation 25 is expressed as follows:

� �

(

���, ��
���, �

)

=
∑

�

∑

�
���

[

����

(

���

)

�̂
(

���
���

)

���������

+ ����

(

���

)

�̂
(

���
���

)

���������
]� (26)

where μ = h, v and ν = h, v in an isotropic layer or ν = o, e in an anisotropic layer.

Coefficients U and D are derived from boundary conditions with the matrix method. To illustrate wave interac-
tion processes described by U’s and D’s, consider amplitude vector 𝐴𝐴 𝐴𝐴𝑛𝑛 of upgoing waves and 𝐴𝐴 𝐵𝐵𝑛𝑛 of downgoing 
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waves in region n. Amplitude vectors of waves, propagating away and toward each interface, are related with 
matrix equations:

⎡

⎢

⎢

⎣

𝐴𝐴𝑛𝑛

𝐵𝐵(𝑛𝑛+1)

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

𝑅𝑅𝑛𝑛(𝑛𝑛+1) 𝑇𝑇 (𝑛𝑛+1)𝑛𝑛

𝑇𝑇 𝑛𝑛(𝑛𝑛+1) 𝑅𝑅(𝑛𝑛+1)𝑛𝑛

⎤

⎥

⎥

⎦

⋅

⎡

⎢

⎢

⎣

𝐵𝐵𝑛𝑛

𝐴𝐴(𝑛𝑛+1)

⎤

⎥

⎥

⎦

� (27)

In the upper half space (region 0), 𝐴𝐴 𝐵𝐵0 is the amplitude vector of the incidence wave. In the underlying medium 
(region N + 1) such as seawater beneath the sea ice layer, there is no upgoing wave and 𝐴𝐴 𝑅𝑅(𝑁𝑁+1)𝑁𝑁 and 𝐴𝐴 𝑇𝑇 (𝑁𝑁+1)𝑁𝑁 are 
not needed. Amplitude vectors in different layers are related to incidence vector 𝐴𝐴 𝐵𝐵0 by:

𝐴𝐴𝑛𝑛 = 𝑈𝑈𝑛𝑛 ⋅ 𝐵𝐵0 and 𝐵𝐵𝑛𝑛 = 𝐷𝐷𝑛𝑛 ⋅ 𝐵𝐵0
� (28)

Elements in 𝐴𝐴 𝑈𝑈𝑛𝑛 are Unμν and in 𝐴𝐴 𝐷𝐷𝑛𝑛 are Dnμν. Matrix 𝐴𝐴 𝑈𝑈 0 is defined as the reflection matrix 𝐴𝐴 𝑅𝑅0 for region 0 and 𝐴𝐴 𝐷𝐷𝑁𝑁+1 
is the transmission matrix 𝐴𝐴 𝑇𝑇𝑁𝑁+1 for region N + 1. From the system of matrix equations in Equation 27, downgo-
ing and upgoing amplitude vectors are solved in terms of 𝐴𝐴 𝐵𝐵0 and the results are then compared to Equation 28 to 
obtain coefficient matrices in the DGFs and the polarization vectors.

2.2.7.  Integration Method

The correlation of the μ-polarized scattered field 𝐴𝐴 𝐴𝐴𝜇𝜇𝜇𝜇

(

𝑟𝑟𝑎𝑎

)

 , received at 𝐴𝐴 𝑟𝑟𝑎𝑎 and excited by a τ-polarized incidence 
field Eτi, with the conjugated ν-polarized scattered field 𝐴𝐴 𝐴𝐴

∗
𝜈𝜈𝜈𝜈

(

𝑟𝑟𝑏𝑏

)

 , received at 𝐴𝐴 𝑟𝑟𝑏𝑏 and excited by a conjugated κ-po-
larized incidence field 𝐴𝐴 𝐴𝐴

∗

𝜅𝜅𝜅𝜅
 , is obtained from Equations 13, 14, 22, and 25 and expressed as:

⟨���
(

��
)

�∗
��
(

��
)

⟩ = ����∗
��

�4
0�

��0(��−��)

16�2����

�
∑

�=1

�
∑

�,
,�,�

�,�,

∑

	,�,�,�

∫ ∞
−∞��� ∫� ��� ∫� ��

�
� ⋅ ��

(

���−�
�
�−��

)

⋅���−�
(

���−�
�
�−��

)

⋅���

∫ ∞
−∞��
 ∫

−��−1
−��

�
� ∫
−��−1
−��

�
�� ⋅ �−��
(
�−

�
�) ��	���

(

��, �

)

⋅���	
(

�
�
�, ���

�
, 
�
)

���

(

���, �

�
�, 
�

)

⋅�∗
���

(

�
�
�, ���

�
, 
��
)

 ∗
���

(

���, ��
�
�, 


�
�

)

� (29)

where 𝐴𝐴 𝛽𝛽 = 𝛽𝛽𝜌𝜌 + 𝑧̂𝑧𝑧𝑧𝑧𝑧 , 𝐴𝐴 𝛽𝛽𝜌𝜌 = 𝑥̂𝑥𝑥𝑥𝑥𝑥 + 𝑦̂𝑦𝑦𝑦𝑦𝑦 , subscripts μ, ν, τ, κ = h, v, superscripts a and b indicate the receiver toward 
which the scattered waves propagate, subscripts p, q, r, s are for all wave types w = hu, hd, vu, vd in an isotropic 
medium or w = ou, od, eu, ed in an anisotropic medium, and the footprint A is the radar resolution cell. The 
bistatic fully polarimetric interferometric deployment depicted in Figure 1 has been used to arrive at Equation 29 

where the incidence or excitation fields propagate in the same direction. DGF element 𝐴𝐴 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛

(

𝑘𝑘
𝑎𝑎

𝜌𝜌, 𝑘𝑘
𝑎𝑎𝑎𝑎

𝑛𝑛𝑛𝑛, 𝑧𝑧𝑛𝑛

)

 and 

normalized mean field component 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛

(

𝑘𝑘𝜌𝜌𝜌𝜌, 𝑘𝑘
𝑞𝑞

𝑛𝑛𝑛𝑛𝑛𝑛
, 𝑧𝑧𝑛𝑛

)

 for 𝐴𝐴 𝑗𝑗𝑗 𝑘̂𝑘 = 𝑥̂𝑥𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥 are defined as:

𝑔𝑔𝑛𝑛𝑛𝑛𝑛𝑛

(

𝑘𝑘
𝑎𝑎

𝜌𝜌, 𝑘𝑘
𝑎𝑎𝑎𝑎

𝑛𝑛𝑛𝑛, 𝑧𝑧𝑛𝑛

)

=

[

𝜇̂𝜇
(

𝑘𝑘
𝑢𝑢

0𝑧𝑧

)

⋅ 𝑔𝑔𝑛𝑛

(

𝑘𝑘
𝑎𝑎

𝜌𝜌, 𝑘𝑘
𝑎𝑎𝑎𝑎

𝑛𝑛𝑛𝑛, 𝑧𝑧𝑛𝑛

)]

⋅ 𝑗𝑗� (30)

𝑛𝑛𝑛𝑛𝑛𝑛

(

𝑘𝑘𝜌𝜌𝜌𝜌, 𝑘𝑘
𝑞𝑞

𝑛𝑛𝑛𝑛𝑛𝑛
, 𝑧𝑧𝑛𝑛

)

= 𝐸𝐸
−1

𝜏𝜏𝜏𝜏
𝑃𝑃 𝑛𝑛

(

𝑘𝑘𝜌𝜌𝜌𝜌, 𝑘𝑘
𝑞𝑞

𝑛𝑛𝑛𝑛𝑛𝑛
, 𝑧𝑧𝑛𝑛

)

⋅ 𝑘̂𝑘 |

𝐸𝐸𝜈𝜈𝜈𝜈=0,𝜈𝜈≠𝜏𝜏� (31)

The scattered field correlation given by Equation 29 involves nine-fold integrations (2 for 𝐴𝐴 𝐴𝐴𝛽𝛽𝜌𝜌 , 2 for 𝐴𝐴 𝐴𝐴𝜌𝜌𝑛𝑛 , 2 for 𝐴𝐴 𝐴𝐴𝜌𝜌
𝑜𝑜

𝑛𝑛 , 
1 for dβz, 1 for dζn, and 1 for 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑜𝑜

𝑛𝑛 ). A methodology to carry out the integrations needs to be implemented. First, 
the integrands in Equation 29 are oscillatory due to the wave phases involving the lateral spaces. A spatial trans-
formation is necessary such that the phases arrange themselves into a highly oscillatory term and a smooth term. 
Such a transformation is the following linear orthogonal mapping from 𝐴𝐴 𝜌𝜌𝑛𝑛 and 𝐴𝐴 𝜌𝜌

𝑜𝑜

𝑛𝑛 spaces to 𝐴𝐴 𝑅𝑅𝑛𝑛 and 𝐴𝐴 𝑅𝑅
𝑜𝑜

𝑛𝑛 spaces:

𝜌𝜌𝑛𝑛 = 𝑅𝑅𝑛𝑛 + 𝑅𝑅
𝑜𝑜

𝑛𝑛 and 𝜌𝜌
𝑜𝑜

𝑛𝑛 = 𝑅𝑅𝑛𝑛 − 𝑅𝑅
𝑜𝑜

𝑛𝑛� (32)
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With the corresponding Jacobian 𝐴𝐴 𝐴𝐴
(

𝜌𝜌𝑛𝑛, 𝜌𝜌
𝑜𝑜

𝑛𝑛

)

∕𝜕𝜕

(

𝑅𝑅𝑛𝑛,𝑅𝑅
𝑜𝑜

𝑛𝑛

)

 , substituting Equation 32 in Equation 29 renders:

⟨���
(

��
)

�∗
��
(

��
)

⟩ = ����∗
��

�4
0�

��0(��−��)

16�2����

�
∑

�=1

�
∑

�,
,�,�

�,�,

∑

	,�,�,�

�
(

��, �
�
�
)

�
(

��,�
�
�

)

∫ ∞
−∞��� ∫� ����

�
(

�
�
�−�

�
�

)

⋅�� ∫� ��
�
� �

�
[

2���−
(

�
�
�+�

�
�

)

−2��
]

⋅�
�
�

∫ ∞
−∞��
 ∫

−��−1
−��

�
� ∫
−��−1
−��

�
�� ⋅ �−��
(
�−

�
�)��	���

(

��, �

)

⋅���	
(

�
�
�, ���

�
, 
�
)

���

(

���, �

�
�, 
�

)

⋅�∗
���

(

�
�
�, ���

�
, 
��
)

 ∗
���

(

���, ��
�
�, 


�
�

)

� (33)

The integrand in the integration over 𝐴𝐴 𝐴𝐴𝑅𝑅
𝑜𝑜

𝑛𝑛 is highly oscillatory over resolution A unless 𝐴𝐴 2𝛽𝛽𝜌𝜌 approaches 𝐴𝐴 2𝑘𝑘𝜌𝜌𝜌𝜌 −

(

𝑘𝑘
𝑎𝑎

𝜌𝜌 + 𝑘𝑘
𝑏𝑏

𝜌𝜌

)

 . 

This integration together with the Jacobian result in the delta function 𝐴𝐴 4𝜋𝜋2
𝛿𝛿

[

2𝑘𝑘𝜌𝜌𝜌𝜌 −

(

𝑘𝑘
𝑎𝑎

𝜌𝜌 + 𝑘𝑘
𝑏𝑏

𝜌𝜌

)

− 2𝛽𝛽𝜌𝜌

]

 . Then, the 

delta function sets 𝐴𝐴 𝛽𝛽𝜌𝜌 = 𝑘𝑘𝜌𝜌𝜌𝜌 −

(

𝑘𝑘
𝑎𝑎

𝜌𝜌 + 𝑘𝑘
𝑏𝑏

𝜌𝜌

)

∕2 by the sifting property for the integration over 𝐴𝐴 𝐴𝐴𝛽𝛽𝜌𝜌 . Now, five-fold 
integrations remain in:

⟨���
(

��
)

�∗
��
(

��
)

⟩ = ����∗
��

�4
0�

��0(��−��)

4����

�
∑

�=1

�
∑

�,�,�,�


,�,�
∑


,�,	,�

∫� ����
�
(

�
�
�−�

�
�

)

⋅�� ∫ ∞
−∞��� ∫

−��−1
−��

��� ∫
−��−1
−��

���� ⋅ �−���(��−�
�
�)

��
�	�

(

��� −
�
�
� + �

�
�

2
, ��

)

⋅ ���

(

�
�
�, ���

��, ��
)

���

(

���, ��
���, ��

)

⋅�∗
��	

(

�
�
�, ���

��, ���
)

 ∗
���

(

���, ��
���, �

�
�

)

� (34)

For azimuth resolution X and range resolution Y, A = XY. Also, let 𝐴𝐴 𝑘𝑘
𝑎𝑎𝑎𝑎

𝜌𝜌 = 𝑘𝑘
𝑏𝑏

𝜌𝜌 − 𝑘𝑘
𝑎𝑎

𝜌𝜌 or equivalently 𝐴𝐴 𝐴𝐴
𝑎𝑎𝑎𝑎

𝑥𝑥 = 𝑘𝑘
𝑏𝑏

𝑥𝑥 − 𝑘𝑘
𝑎𝑎

𝑥𝑥 
and 𝐴𝐴 𝐴𝐴

𝑎𝑎𝑎𝑎

𝑦𝑦 = 𝑘𝑘
𝑏𝑏

𝑦𝑦 − 𝑘𝑘
𝑎𝑎

𝑦𝑦 . The integrations over 𝐴𝐴 𝐴𝐴𝑅𝑅𝑛𝑛 in range and azimuth are readily carried out, with the sinc function 
sinc(x) = x −1 sin(x), to obtain:

⟨���
(

��
)

�∗
��
(

��
)

⟩ = ����∗
��

�4
0 � ���0(��−��)

4����
sinc

(

���
� �
2

)

sinc
(���

� �
2

)

�
∑


=1

�
∑

�,	,�,�

�,�,�
∑

�,�,�,�
∫ ∞
−∞��� ∫

−�
−1
−�


��
 ∫
−�
−1
−�


���
�−���(�
−�
�

)

⋅�
����

(

��� −
�
�
� + �

�
�

2
, ��

)

⋅ �
��
(

�
�
�, ���


�, �

)


��

(

���, �	

��, �


)

⋅�∗

��

(

�
�
�, ���


�, ��

)

 ∗

��

(

���, ��

��, �

�



)

� (35)

To simplify the form of Equation 35 for the remaining integrations, coefficients in g and 𝐴𝐴  that are independent 
of βz, zn, and 𝐴𝐴 𝐴𝐴

𝑜𝑜

𝑛𝑛 are taken out of the integrands. For this purpose, we define the following relations:

����
(

�
�
�, ���

��, ��
)

= ����
(

�
�
�, ���

��

)

�−��
��
����

���

(

���, ��
���, ��

)

= ���

(

���, ��
���

)

���
�
�����

�∗
���

(

�
�
�, ���

��, �
�
)

= �∗
���

(

�
�
�, ���

��

)

�����∗�� �
�

 ∗
���

(

���, �

���, �



�

)

=  ∗
���

(

���, �

���

)

�−��
∗����
�

� (36)

��
��� = −���

�� + ��
��� ; �, � ∈ {ℎ�, ℎ�, ��, ��} , {��, ��, ��, ��}

��
��� = −���∗

�� + ��∗
��� ; �, � ∈ {ℎ�, ℎ�, ��, ��} , {��, ��, ��, ��}

� (37)
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By combining wave numbers in the exponential functions in Equations 35 and 36 and using the definitions for 
wave numbers in Equation 37, the triple integrations over dβz, dzn, and 𝐴𝐴 𝐴𝐴𝐴𝐴

0
𝑛𝑛 are:

��,����
�,���� = ∫ ∞

−∞��� ������

(

��� −
�
�
� + �

�
�

2
, ��

)

∫ −��−1
−��

���

−�
(

��−�����
)

�� ∫ −��−1
−��

����
�(��−�
�
���)���

� (38)

where the integrations over dzn and 𝐴𝐴 𝐴𝐴𝐴𝐴
0
𝑛𝑛 for the vertical spaces are readily obtained. The integrated results intro-

duce simple poles determined by z components of wave vectors so that for all wave types in the complex βz plane 
as seen in the following expression for 𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
 :

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
= ∫ ∞

−∞
𝑑𝑑𝑑𝑑𝑧𝑧 𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉

(

𝑘𝑘𝜌𝜌𝜌𝜌 −
𝑘𝑘
𝑎𝑎

𝜌𝜌 + 𝑘𝑘
𝑏𝑏

𝜌𝜌

2
,𝛽𝛽 𝑧𝑧

)

⋅

𝑒𝑒
𝑖𝑖

(

𝛽𝛽𝑧𝑧−𝜅𝜅
𝑎𝑎
𝑛𝑛𝑛𝑛𝑛𝑛

)

𝑑𝑑𝑛𝑛−1
− 𝑒𝑒

𝑖𝑖

(

𝛽𝛽𝑧𝑧−𝜅𝜅
𝑎𝑎
𝑛𝑛𝑛𝑛𝑛𝑛

)

𝑑𝑑𝑛𝑛

𝛽𝛽𝑧𝑧 − 𝜅𝜅
𝑎𝑎

𝑛𝑛𝑛𝑛𝑛𝑛

⋅

𝑒𝑒
−𝑖𝑖(𝛽𝛽𝑧𝑧−𝜅𝜅

𝑏𝑏
𝑛𝑛𝑛𝑛𝑛𝑛)𝑑𝑑𝑛𝑛−1 − 𝑒𝑒

−𝑖𝑖(𝛽𝛽𝑧𝑧−𝜅𝜅
𝑏𝑏
𝑛𝑛𝑛𝑛𝑛𝑛)𝑑𝑑𝑛𝑛

𝛽𝛽𝑧𝑧 − 𝜅𝜅
𝑏𝑏

𝑛𝑛𝑛𝑛𝑛𝑛

� (39)

The last integration over dβz depends on statistical descriptions of the inhomogeneous media by spectral density 
𝐴𝐴 𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉 . For 𝐴𝐴 𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉 containing high order poles in upper and lower half planes and vanishing at the infinite extent 

of the complex βz-plane, the integration over dβz is carried out by closing appropriate integration contours. For 
poles in the upper half plane and the term in Equation 39 involving the exponential function 𝐴𝐴 exp [𝑖𝑖 (𝑑𝑑𝑛𝑛 − 𝑑𝑑𝑛𝑛−1) 𝛽𝛽𝑧𝑧] , 
the contour integration is taken along the positive real axis and along the upper infinite semi-circle on the complex 
βz-plane so that the integration is converged. Similarly for the lower poles and the term in Equation 39 involving 

𝐴𝐴 exp [−𝑖𝑖 (𝑑𝑑𝑛𝑛 − 𝑑𝑑𝑛𝑛−1) 𝛽𝛽𝑧𝑧] , the infinite semi-circle contour is in the lower βz-plane. Thus we have:

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

+

=→ + ∩↗
0
= 2𝜋𝜋𝜋𝜋

(

Res
+
)

and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

−

=→ + ∪↗
0
= −2𝜋𝜋𝜋𝜋 (Res

−
)

� (40)

where arrows are for integrations along the real axis, 𝐴𝐴 ∩↗
0 is the integration along the upper semi-circle, and 𝐴𝐴 ∩↗

0 
along the lower one. Note that the semi-circle integrations vanish due to Jordan's lemma. In Equation 40, the resi-
due theorem is applied and Res + and Res − are residues of the poles in the upper and lower halves of the βz-plane. 
Then, from Equation 40, 𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
 becomes:

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

+

+ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

−

= 2𝜋𝜋𝜋𝜋
(

Res
+
− Res

−
)

� (41)

Thus, all nine-fold integrations in Equation 29 can be carried out. From Equations 35–41, we obtain the scattered 
field ensemble:

⟨���
(

��
)

�∗
��
(

��
)

⟩ = ����∗
��

� ���0(��−��)
4�����

sinc
(

���
� �
2

)

sinc
(���

� �
2

)



∑

�=1

�
∑


,�,�,�

�,�,�
∑

�,�,�,�
Ψ�,
�

�,��,�� Ψ
�,��∗
�,��,�� ��,
���

�,����

� (42)

where we have defined the following quantities:

Ψ
𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
= 𝜋𝜋

1

2 𝑘𝑘
2

0
𝑔𝑔𝑛𝑛𝑛𝑛𝑛𝑛

(

𝑘𝑘
𝑎𝑎

𝜌𝜌,𝑘𝑘
𝑎𝑎𝑎𝑎

𝑛𝑛𝑛𝑛

)𝑛𝑛𝑛𝑛𝑛𝑛

(

𝑘𝑘𝜌𝜌𝜌𝜌,𝑘𝑘
𝑞𝑞

𝑛𝑛𝑛𝑛𝑛𝑛

)

Ψ
𝑏𝑏𝑏𝑏𝑏𝑏𝑏∗

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
= 𝜋𝜋

1

2 𝑘𝑘
2

0
𝑔𝑔
∗

𝑛𝑛𝑛𝑛𝑛𝑛

(

𝑘𝑘
𝑏𝑏

𝜌𝜌,𝑘𝑘
𝑏𝑏𝑏𝑏

𝑛𝑛𝑛𝑛

) ∗
𝑛𝑛𝑛𝑛𝑛𝑛

(

𝑘𝑘𝜌𝜌𝜌𝜌,𝑘𝑘
𝑠𝑠

𝑛𝑛𝑛𝑛𝑛𝑛

)

� (43)
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2.2.8.  Covariance Matrix for Polarimetric Interferometry

The covariance matrix for the generalized fully polarimetric interferometry is a complex matrix defined in the 
linear polarization basis as:

𝐶𝐶𝜒𝜒 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜒𝜒ℎℎℎℎ 𝜒𝜒ℎℎℎ𝑣𝑣 𝜒𝜒ℎℎ𝑣𝑣𝑣 𝜒𝜒ℎℎ𝑣𝑣𝑣𝑣

𝜒𝜒ℎ𝑣𝑣𝑣𝑣 𝜒𝜒ℎ𝑣𝑣𝑣𝑣𝑣 𝜒𝜒ℎ𝑣𝑣𝑣𝑣𝑣 𝜒𝜒ℎ𝑣𝑣𝑣𝑣𝑣𝑣

𝜒𝜒𝑣𝑣𝑣𝑣𝑣 𝜒𝜒𝑣𝑣𝑣𝑣𝑣𝑣 𝜒𝜒𝑣𝑣𝑣𝑣𝑣𝑣 𝜒𝜒𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝜒𝜒𝑣𝑣𝑣𝑣𝑣𝑣 𝜒𝜒𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝜒𝜒𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝜒𝜒𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

� (44)

in which the elements are given by the following relation:

𝜒𝜒𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇 = 4𝜋𝜋𝜋𝜋𝑎𝑎𝑟𝑟𝑏𝑏⟨𝐸𝐸𝜇𝜇𝜇𝜇

(

𝑟𝑟𝑎𝑎

)

⋅ 𝐸𝐸
∗
𝜈𝜈𝜈𝜈

(

𝑟𝑟𝑏𝑏

)

⟩∕
(

𝐴𝐴 𝐴𝐴𝜏𝜏𝜏𝜏𝐸𝐸
∗

𝜅𝜅𝜅𝜅

)

� (45)

where E is the electric field transmitted (denoted by subscript i) and received (denoted by subscript s) by the 
radar, subscripts μ, ν, τ, κ = h, v, superscripts a and b indicate the receiver toward which the scattered waves prop-
agate, and A is the radar resolution cell. The bistatic fully polarimetric interferometric deployment is depicted in 
Figure 1 where the incidence or excitation fields propagate in the same direction.

From Equations 42, 43, and 45 together with the resolution correlation coefficient given by the product ρXρY for 
𝐴𝐴 𝐴𝐴𝑋𝑋 = sinc

(

𝑘𝑘
𝑎𝑎𝑎𝑎

𝑥𝑥 𝑋𝑋∕2
)

 in azimuth and 𝐴𝐴 𝐴𝐴𝑌𝑌 = sinc
(

𝑘𝑘
𝑎𝑎𝑎𝑎

𝑦𝑦 𝑌𝑌 ∕2
)

 in range, polarimetric interferometry scattering coeffi-
cient χμτνκ becomes:

𝜒𝜒𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇 = 𝑒𝑒
𝑖𝑖𝑖𝑖0(𝑟𝑟𝑎𝑎−𝑟𝑟𝑏𝑏)𝜌𝜌𝑋𝑋𝜌𝜌𝑌𝑌

(

𝑁𝑁
∑

𝑛𝑛=1

𝑤𝑤
∑

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥
∑

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

Ψ
𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
Ψ

𝑏𝑏𝑏𝑏𝑏𝑏𝑏∗

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

)

� (46)

which conveys information about the remotely sensed area in wave frequency, observation angle, polarization, 
and scattering amplitude and phase.

2.2.9.  Properties and Processes Contained in the Physics-Based Solution

Derived from vector wave equations satisfying Maxwell's equations subject to boundary conditions for stratified 
multi-layered media, result Equation 46 readily includes:

1.	 �interferometric phase 𝐴𝐴 𝐴𝐴
𝑖𝑖𝑖𝑖0(𝑟𝑟𝑎𝑎−𝑟𝑟𝑏𝑏) with azimuth decorrelation ρX (Zebker & Villasenor, 1992) and range decor-

relation ρY (Li & Goldstein, 1990)
2.	 �frequency dispersion due to permittivity variations of constituents (e.g., air, ice, brine, seawater) in heteroge-

neous media (e.g., snow, sea ice)
3.	 �shielding effect from the effective permittivities that include scattering effects in additional to the quasi-static 

parts
4.	 �multi-layered configuration for N layers allowing the modeling of various types of snow-covered sea ice over-

coming the weak profile requirement in the Wentzel-Kramers-Brillouin method
5.	 �phases for multiple wave types pqrs preserved in the correlation calculations for both upward and downward 

propagation directions consisting of 16 wave-type interaction combinations in an isotropic medium (e.g., 
snow with randomly oriented ice grains) and 256 combinations in a general anisotropic medium (e.g., colum-
nar sea ice, sea ice with brine channels aligned in a preferential direction)

6.	 �multiple interactions with interfaces in the multi-layered media (e.g., snow on sea ice over seawater) repre-
sented by coefficient Ψ’s, including multiple reflections, refractions, transmissions, and birefringent effect 
or double refraction in a stratified anisotropic medium like first-year sea ice with brine inclusions having a 
preferential alignment in the C-axis crystallographic structure of the natural Ih ice grown on seawater

7.	 �physical and structural properties of snow and sea ice described by 𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
 including permittivities of the 

medium constituents and scatterer geometry under various physical and environmental conditions in polar 
regions, and
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8.	 �all polarization combinations μτνκ for fully polarimetric response of snow-covered sea ice to different inci-
dence and scattered waves with different boundary conditions, scattering geometry, wave speed, and attenua-
tion, including depolarization effects

The generalization of polarimetric interferometry given in Equation 46 can be readily and automatically reduced 
to bistatic scattering coefficients and backscattering coefficients when the observation points and wave directions 
are taken to the appropriate limits. In fact, polarimetric bistatic coefficient γμτνκ in the polarimetric bistatic covar-

iance matrix 𝐴𝐴 𝐶𝐶𝛾𝛾 and backscattering coefficient σμτνκ in the polarimetric monostatic covariance matrix 𝐴𝐴 𝐶𝐶𝜎𝜎 can be 
derived from Equation 46 and the general covariance matrix 𝐴𝐴 𝐶𝐶𝜒𝜒 defined by Equation 44:

𝛾𝛾𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇 = lim
𝑎𝑎→𝑏𝑏

𝜒𝜒𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇 ⇒ 𝐶𝐶𝛾𝛾 = lim
𝑎𝑎→𝑏𝑏

𝐶𝐶𝜒𝜒� (47)

𝜎𝜎𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇 = lim
𝑏𝑏→𝑎𝑎

𝜒𝜒𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇 ⇒ 𝐶𝐶𝜎𝜎 = lim
𝑏𝑏→𝑎𝑎

𝐶𝐶𝜒𝜒� (48)

Since snow-covered sea ice are reciprocal media, 𝐴𝐴 𝐶𝐶𝜎𝜎 in Equation 48 reduces to a 3 × 3 Hermitian matrix 𝐴𝐴 𝐶𝐶  with 
nine complex elements for polarimetric backscatter coefficients given by Nghiem et al. (1990):

𝐶𝐶 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜎𝜎ℎℎℎℎ 𝜎𝜎ℎℎℎ𝑣𝑣 𝜎𝜎ℎℎ𝑣𝑣𝑣𝑣

𝜎𝜎
∗

ℎℎℎ𝑣𝑣
𝜎𝜎ℎ𝑣𝑣𝑣𝑣𝑣 𝜎𝜎ℎ𝑣𝑣𝑣𝑣𝑣𝑣

𝜎𝜎
∗

ℎℎ𝑣𝑣𝑣𝑣
𝜎𝜎
∗

ℎ𝑣𝑣𝑣𝑣𝑣𝑣
𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

⎤

⎥

⎥

⎥

⎥

⎦

= 𝜎𝜎

⎡

⎢

⎢

⎢

⎢

⎣

1 𝛽𝛽
√

𝑒𝑒 𝑒𝑒
√

𝛾𝛾

𝛽𝛽
∗
√

𝑒𝑒 𝑒𝑒 𝑒𝑒
√

𝛾𝛾𝛾𝛾

𝜌𝜌
∗
√

𝛾𝛾 𝛾𝛾
∗
√

𝛾𝛾𝛾𝛾 𝛾𝛾

⎤

⎥

⎥

⎥

⎥

⎦

� (49)

where the symbol ∗ denotes the complex conjugate, and σ = σhhhh is a normalization factor in the real-value co-po-
larized ratio γ, the real-value cross-polarized ratio e, and the complex-value correlation coefficients ρ, β, and ξ 
determined by the following equations:

𝛾𝛾 =
𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝜎𝜎
, 𝑒𝑒 =

𝜎𝜎ℎ𝑣𝑣𝑣𝑣𝑣

𝜎𝜎
, 𝜌𝜌 =

𝜎𝜎ℎℎ𝑣𝑣𝑣𝑣

𝜎𝜎
√

𝛾𝛾

,

𝛽𝛽 =
𝜎𝜎ℎℎℎ𝑣𝑣

𝜎𝜎
√

𝑒𝑒

, and 𝜉𝜉 =
𝜎𝜎ℎ𝑣𝑣𝑣𝑣𝑣𝑣

𝜎𝜎
√

𝛾𝛾𝛾𝛾

� (50)

In a short-hand notation, σhhhh = σHH, σvvvv = σVV, and σhvhv = σHV, and σvhvh = σVH, which are real numbers repre-
senting the radar power returns with different polarizations, either H for horizontal polarization or V for vertical 
polarization. In standard monostatic radar terminology, σHH and σVV are co-polarized backscatter coefficients, and 
σHV and σVH are cross-polarized backscatter coefficients.

2.2.10.  Orientation Distribution

Scatterers like ice crystals in snow and air bubbles or brine inclusions in sea ice are not spherical and have 
different shapes with different characteristic scales in the three-dimensional (3D) space. The use of the local 
correlation function (Nghiem et al., 1995a) in the above formulation allows a statistical characterization of irreg-
ular shapes of scatterers in three dimensions with ellipsoidal correlation functions. Stronger scattering will result 
from scatterers with orientations such that larger cross-sections of the scatterers face toward the incidence field 
and observation directions.

The orientation also influences effective permittivities, changes the location of the scattering center, and thus 
varies the electromagnetic-wave phase. Depending on the preferential alignment of scatterers, the medium can 
be effectively anisotropic on the macroscopic scale even when permittivities of all individual constituents are 
isotropic. For scatterers with distributed orientation, such as brine inclusions in sea ice having a range of tilted 
angles with respect to the vertical direction or a random orientation in snow, field correlations in the calcula-
tions of effective permittivities and scattering coefficients involve conditional probability of Eulerian angles 
relating 3D principal coordinates of a local scatterer to the global coordinates by a rotation transformation 
matrix.
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To account for effects of scatterer orientations, the probability density function of orientation pn(e1, e2, e3) for the 
Eulerian angles e1, e2, and e3 in region n is used in the calculations of effective permittivity and interferometric 
scattering with additional triple integrations for the three orientation angles, which can be carried out numerically 
following the method developed by Nghiem et al. (1995b).

2.2.11.  Size and Shape Distributions

The relationship between scatterer size and scattering strength in snow-covered sea ice are highly nonlinear. For 
example, backscattering cross-section is proportional to the sixth power of the size in the Rayleigh regime, and 
follows the power law with different power indices in other scattering regimes. Therefore, the size distribution 
needs to be included in the theory, especially to account for a wide range of multiple microwave frequencies.

Scatterer shape determines the polarizability and impacts the wave propagation even in the lowest-order term. 
Moreover, scattering is strongly dependent on the shape; a spherical scatterer increases the cross-section if it 
is squeezed to an oblate spheroid for the same volume, or the cross-polarized return becomes larger if it is 
elongated to a tilted prolate spheroid. Using the method for electromagnetic modeling of sea ice by Nghiem 
et al. (1996, 1995a, 1995b), effects of size and shape distributions are characterized by size and shape probability 
density functions, which are allowed to be interrelated to account for thermodynamic metamorphoses in snow 
and sea ice.

2.2.12.  Multiple Species

A heterogeneous layer in geophysical media is usually a mixture of various species of scatterers with different 
phases, like ice, brine, and air in snow-covered sea ice. Each species of the scatterers has different permittivity, 
orientation, size, and shape. Scattering, attenuation, and wave speed are dependent on the mixing fractions of 
different species.

Multiple species are modeled with a speciation approach which groups constituents with the same permittivity 
into a species to derive effective permittivities and scattering coefficients for the multiphase mixture. Each of the 
multiple species can also have distributed properties in orientation, size, and shape. These advances in the theory 
can include complex realistic properties of snow-covered sea ice under changing environmental conditions at the 
expense of complicated mathematical derivations and computations, which can be implemented with high-end 
computing facilities.

2.2.13.  Rough Surfaces

Physical properties of snow-covered sea ice are further complicated by rough surface effects from both small-
scale roughness (e.g., mm to cm scales at snow and ice interfaces) and large-scale roughness (e.g., hummocks 
due to differential melt, pressure ridges on sea ice, rafting of sea ice, etc.; Nghiem et al., 1995a). Rough surface 
scattering is modeled with a probability density p(f) of the roughness profile that can be characterized by a height 
variance σ 2 and correlation length lr to calculate surface scattering contribution at different frequencies and 
polarizations.

Moreover, for the surface scattering from an interface in multi-layered media, differences in attenuations and 
wave speeds and multiple interactions in the layers are accounted for, following the formulation by Nghiem 
et al. (1995a). The incidence wave is scattered by the rough interface (e.g., air-snow interface). The wave contin-
ues propagating into the snow layer where both the coherent and incoherent fields are scattered again by ice grains 
and the rough snow-ice interface. Part of the wave is transmitted into the underlying sea ice layer and is further 
scattered by scatterers (air bubbles and brine inclusions) in this layer and also by the rough interface between sea 
ice and seawater. The wave also reflects back toward the top interface and is scattered again by the inhomogenei-
ties and the rough surfaces.

Processes of multiple scattering are complicated and involve surface scattering from above and below medium 
interfaces, multiple volume scattering in the heterogeneous layers, higher-order interactions between volume and 
surface scatterings, and wave propagation and attenuation in the multi-layered anisotropic media; all of which are 
included in the derivation of the overall resultant solution (Nghiem et al., 1995a).
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2.3.  Symmetry Group Theory

A fully polarimetric radar can measure radar scattering from geophysical media will all polarization combina-
tions, resulting in many real and complex scattering coefficients as given Equations 46–48. Among a multitude of 
these polarimetric interferometric scattering coefficients, some terms may be primarily useful to retrieve sea ice 
DEM while other terms may introduce nonuniqueness and excessive noise. Thus, it is crucial to select which scat-
tering coefficients to use and which ones to avoid. In this regard, the symmetry Group theory (Hamermesh, 1972) 
allows an examination of potential relationship among the various radar scattering coefficients for an effective 
selection of a primary set of radar measurements that preserve and contain the necessary information relevant to 
the measurement of sea ice DEM in this case.

Depending on symmetry conditions in snow-covered sea ice, not all scattering coefficients are independent as 
relationship exists among the polarimetric parameters (Nghiem et al., 1992, 1993). Thus, fully polarimetric meas-
urements can be redundant and costly to implement in a satellite SAR system requiring an excessive data rate 
and data volume to be acquired across the vast expanse of polar sea ice over which many SAR scenes need to be 
processed. In particular, for OTASC, many TSX/TDX satellite SAR scenes were collected along thousand-km 
ground tracks and analyzing all covariance matrix terms is cumbersome and may potentially lead to confused 
results due to the nonuniqueness issue.

In the group theory, the symmetry is fundamentally determined by the mirror refection, axial rotation, and linear 
translation, which are invariant in the linear polarization basis regardless of the scattering mechanisms (Nghiem 
et al., 1993). The azimuthal symmetry group is a composition of the reflection and rotation symmetries, and 
is therefore consistent with the characteristics of both groups. In the azimuthal symmetry, sea ice backscatter 
is statistically similar on the left-hand side and the right-hand side with respect to a vertical plane oriented  in 
any direction. Together with the reciprocity principle, the azimuthal symmetry group dictates that (Nghiem 
et al., 1992):

𝜎𝜎ℎ𝑣𝑣𝑣𝑣𝑣 = (𝜎𝜎ℎℎℎℎ + 𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 − 2Re 𝜎𝜎ℎℎ𝑣𝑣𝑣𝑣) ∕4� (51)

or normalized as 𝑒𝑒 = (1 + 𝛾𝛾 − 2Re 𝜌𝜌)∕4� (52)

Scattering from sea ice with randomly oriented scatterers in the ice volume and randomly oriented features on the 
ice surface is isotropic so that σHH ≈ σVV so that γ ≈ 1, and Im ρ ≈ 0 so that ρ ≈ |ρ| (Nghiem et al., 1992). With 
the isotropic approximation condition, Equation 52 becomes e ≈ (1 + 1–2|ρ|)/4, and therefore:

|𝜌𝜌| ≈ 1 − 2𝑒𝑒� (53)

where e = σHV/σHH = σVH/σHH for reciprocal media such as snow-cover sea ice. Equation 53 suggests that there 
can be a simple inverse relationship where the co-polarimetric signature magnitude |ρ| decreases as the cross-po-
larization ratio e increases. Since e is larger for older and thicker sea ice (Nghiem et al., 1995b) with a higher ice 
surface elevation above the seawater level compared to that of younger and thinner sea ice, an inverse relation 
between |ρ| and sea ice DEM may potentially exist so that |ρ| can be selected and effectively utilized to develop a 
protocol to retrieve sea ice DEM from satellite SAR data.

3.  Model Simulations
Physical structures and properties of sea ice are different in different polar regions. For Arctic sea ice, the approx-
imate inverse relation in Equation 53 was observed in polarimetric SAR measurements over multi-year sea ice but 
not over first-year sea ice (Nghiem et al., 1993). Whether such relation may or may not exist for different classes 
of sea ice needs to be investigated for Antarctic sea ice because results for Arctic sea ice are not necessarily appli-
cable to different sea ice conditions in the Antarctic. Thus, using the full electromagnetic model in Section 2, we 
carry out and present here a simulation of radar scattering coefficients based on physical parameters specifically 
pertaining to Antarctic snow-covered sea ice to select appropriate radar terms in order to develop a protocol for 
sea ice DEM retrieval in the Antarctic.

As a result of sea ice deformation processes, especially in the Western Weddell Sea driven by wind and wave 
dynamic forcing (Nghiem et al., 2016), sea ice becomes ridged, thickened, and elevated, leading to desalina-
tion through processes such as gravity drainage (Gow et al., 1987; Weeks & Ackley, 1982) that causes a loss  
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of seawater brines in drainage channels where the voids become air inclusions with elongated shapes (Tison 
et al., 2008). As older sea ice is formed earlier and has a longer time to undergo deformation processes with 
a prolonged time for more extensive and intensive ridging for more elevated surface where more desalination 
occurs. Thus, the deformation effects are cumulative as younger and thinner sea ice can be deformed and continue 
being deformed as the sea ice becomes older and thicker. Also, thick sea ice can undergo severe ridging due to 
strong storm forcing in the Antarctic (Massom & Stammerjohn, 2010). These inter-related processes suggest a 
potential inverse relation between sea ice DEM and desalination for old, rough, and deformed sea ice. In contrast, 
younger and thinner sea ice in the Antarctic may undergo seawater flooding due to snow loading effects (Arndt 
et al., 2017), which happen more pervasively in the Antarctic compared to the conditions in the Arctic. As such, 
the young and thin sea ice can become furthermore salinated rather than desalinated, and thereby rendering the 
relation between ice DEM and desalination inapplicable. Based on realistic physical characteristics of the internal 
ice and snow structures and the dielectric behaviors from measurements reported in the published literature (see 
Table 1), the model simulation must capture these physical processes corresponding to different classes of sea ice 
in the Antarctic, which can be identified and mapped with satellite radar backscatter data (Nghiem et al., 2016).

To set up the model simulation, consider a layered-medium configuration (Figure 3) consisting of a snow cover 
on an upper sea ice layer, overlying of a lower basal sea ice layer. This basal saline layer contains brine inclusions 
with a high salinity in the profile transitioning toward the ice-seawater interface such as observed in the Western 
Weddell Sea (Tison et al., 2008). The salinity in the basal layer can be contributed from past flooding events on 
younger and thinner ice that becomes older and thicker so that brines in the upper ice volume above the sea level 
are drained down, and thereby further salinating the lower basal layer. The snow cover is modeled by a mean 
snow depth ds = 30 cm for simplicity in understanding the polarimetric scattering processes in sea ice. For the 
objective of DEM retrieval over thick sea ice (1.5 to > 15 m), a 50% change in ds may result in ∼5% uncertainty 
in sea ice freeboard. The snow layer contains a fractional volume of 30% of randomly oriented ice grains (Nghiem 
et al., 1995b) with an oblate spheroidal shape characterized by scatterer correlation lengths of 0.9 and 1.5 mm. In 
the snow layer, the complex relative permittivity of ice grains is estimated to be 3.19 + i1.83 × 10 −3 with the real 
part from Vant et al. (1978) and the imaginary part from Tiuri et al. (1984) at the X-band frequency of 9.65 GHz 

Sea ice

  Ice structure, crystallography Gow et al. (1987), Tison et al. (2008), and Weeks and Ackley (1982)

  Ice salinity Gow et al. (1987), Tison et al. (2008), and Weeks and Ackley (1982)

  Brine distribution profile Gow et al. (1987), Tison et al. (2008), and Weeks and Ackley (1982)

  Brine channels Gow et al. (1987), Tison et al. (2008), and Weeks and Ackley (1982)

  Brine inclusion volume Cox and Weeks (1983), Tison et al. (2008), and Weeks and Ackley (1982)

  Air inclusion volume Cox and Weeks (1983) and Poe et al. (1974)

  Basal ice layer above seawater Tison et al. (2008)

  Ice dielectric Tiuri et al. (1984) and Vant et al. (1978)

  Brine dielectric Klein and Swift (1977) and Poe et al. (1972)

  Sea ice effective dielectric Nghiem et al. (1990, 1996, 1995a, 1993)

Snow cover

  Snow depth Worby et al. (2008)

  Snow loading Ackley and Sullivan (1994) and Arndt et al. (2017)

  Snow properties Eicken et al. (1994) and Massom et al. (2001)

  Ice dielectric Tiuri et al. (1984) and Vant et al. (1978)

  Effective dielectric of snow Nghiem et al. (1990, 1995a, 1993)

Seawater

  Salinity structure Foster and Carmack (1976)

  Seawater dielectric Klein and Swift (1977) and Poe et al. (1972)

Table 1 
Physical Characteristics of the Internal Ice and Snow Structures and the Dielectric Behaviors From the Published Literature
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and incidence angle centered around 34.9° for TSX/TDX SAR (Krieger 
et al., 2007). At the snow-air interface, rough surface is characterized with a 
Gaussian distribution (Nghiem et al., 1995b) where the height standard devi-
ation is 3.0 × 10 −3 m and correlation length is 2.0 × 10 −2 m to estimate the 
contribution from rough surface scattering in the total backscatter signatures.

The upper sea ice layer consists of an ice background medium (relative 
permittivity of 3.19 + i1.83 × 10 −3) and air inclusions (relative permittivity 
of 1.0 + i0.0) due to the gravity desalination that forces seawater out of elon-
gated brine channels with orientation angles randomly distributed in azimuth 
and a preferential alignment around 25° around the vertical direction. To 
be consistent with the elongated shape, air inclusions are prescribed in the 
model simulation with a prolate ellipsoidal form having correlation lengths 
of 0.2 mm in the minor axis and 2.0 cm in the major axis along the desalinated 
channels. In the basal salinated sea ice layer above the ice-seawater interface, 
where the fractional volume of brine inclusions can be high and range as 
much as 14%–26% (Tison et al., 2008) in the total sea ice volume, the average 
effective permittivity of the basal layer is 6.73 + i4.33 at 9.65 GHz, obtained 
from a generalized dielectric mixing formulation that includes attenuation 
from both absorption loss and scattering loss (Nghiem et  al.,  1996). Due 
to the large imaginary part of i4.33, electromagnetic waves at 9.65  GHz 
are attenuated in the basal layer above the interface between sea ice and 
seawater that has a relative permittivity of 37.83 + i41.48 × 10 −3 (Klein & 
Swift, 1977). In the model simulation, rough-surface height standard devia-
tion and correlation length are taken to be 5.0 mm and 7.0 cm respectively to 
account for the roughness at the interface between snow and sea ice.

The simulation is carried out over a range of sea ice freeboard from 0.2 to 
3.6 m (dDMS) for the upper sea ice layer above the sea level, where gravity 
desalination processes are effective especially for old, rough, and deformed 
sea ice conditions encountered over the Western Weddell Sea during the 
OTASC experiment (Nghiem et al., 2018). In this setting, hDMS = dDMS + ds. 
For each step of 0.1 m in dDMS, multiple scattered field ensembles are calcu-
lated. To assimilate the desalination process as sea ice becomes thicker and 
more elevated per Archimedes' principle, a function of dDMS = 0.1fa − 3.0 
is used to directly relate the fractional volume of air inclusions fa (in unit of 
0.1%) to dDMS (in unit of meter). Such gravity desalination processes in old, 
rough, and thick sea ice were reported (Gow et al., 1987). As ρ is determined 
by fa, which in turn depends on sea ice elevation, ρ carries the information 
allowing the retrieval of sea ice elevation. The simulation includes statistic 
characterizations of dDMS such as Gaussian, bell-shape, triangular-shape, and 
uniform distributions, which yield similar results as tested over a range of 
±0.3 m around each step of the mean value of dDMS for the different distri-
bution functions, where fa takes on the specific value corresponding to each 
value of dDMS in the ensemble calculations. This is to account for different 
elevations due to various surface features (e.g., pressure ridges, rubble ice, 
etc.) occurred in each radar footprint area (∼10 × 10 m).

To examine how the model simulation for |ρ| vs. sea ice elevation hDMS may 
capture the behavior observed from OTASC field data, noise effects on |ρ| in 
TSX/TDX SAR measurements are removed with a de-noised method (Huang 
et al., 2021; Nghiem et al., 1995b) to allow a consistent comparison of |ρ| from 
experimental data and from model results that do not contain noise effects. As 
hinted by the symmetry group theory (Subsection 2.3), Figure 4 indeed reveals 
an inverse relation between |ρ| and sea ice DEM in the model simulation with  

Figure 3.  Configuration of snow-covered sea ice and parameters for model 
simulation (see references and the relevant text in Section 3).

Figure 4.  Comparison of sea ice elevation (hDMS) vs. |ρ| from model 
simulation results (×) with the regression line in black and from OTASC 
observations (+) with the regression line in brownish gray.
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a relation of hDMS = −5.28|ρ| + 4.61 (plotted with an offset of 0.3 in Figure 4) 
that nearly replicates the relation of hDMS = −5.09|ρ| + 4.20 from OTASC 
observations (Huang et al., 2021). The spread in |ρ| are also similar with a 
standard deviation of 0.12 from simulation results, and 0.10 from OTASC 
data ranging from 0.35 to 0.86 for |ρ| data obtained in the field campaign.

Regarding the phase of ρ (denoted by ∠ρ) presented in Figure 5, the compar-
ison between simulation and experiment for hDMS and ∠ρ shows that both 
have a similar nonlinear trend for hDMS > 1.3 m. For smaller hDMS (<1.3 m), 
both show an increasing trend, but the simulation curve has a steeper slope 
compared to that from OTASC. Also, results from both theoretical calcula-
tions and field observations have a large variability, and non-unique values of 
hDMS in the cubic regression vs. ∠ρ so that there can be double values of hDMS 
for a given value of ∠ρ. In this comparison, the phase calibration for ∠ρ has 
been verified (Huang et al., 2021). To overlay simulated results on measured 
data of ∠ρ in Figure 5, the model ∠ρ has been shifted by a small offset of 14°, 
which is within one standard deviation of ∠ρ measured over sea ice during 
OTASC in the Western Weddell Sea (Huang et al., 2021).

4.  Conclusions
For measurement of Antarctic sea ice DEM, a theory of radar polarimetric interferometry has been developed 
based on the analytic wave method fundamentally founded on the first principle of Maxwell's equations. As such, 
this theory allows the appropriate preservation of phase information that is imperative for radar polarimetric 
interferometry. Guided by the symmetry group theory to systematically examine a myriad of complex-valued 
terms in the fully polarimetric interferometric covariance matrix, the normalized co-polarized correlation coeffi-
cient ρ is suggested to have a potential use for retrieval of sea ice DEM. Model simulation results with properties 
of snow-covered sea ice pertaining to Antarctic sea ice conditions show an inverse relation between |ρ| and sea 
ice DEM, which is hinted by the group theory and verified with OTASC observations.

As a key conclusion from results presented in this paper, a protocol is set up for sea ice DEM retrieval from 
satellite radar data acquired by X-band SAR such as TSX/TDX in the following steps: (a) process SAR data for 
noise subtraction from radar scattering coefficients, and for removing noise effects to obtained de-noised |ρ|; (b) 
use noise-subtracted scattering coefficients to classify sea ice and select the classes of rough and old sea ice with 
desalination from gravity drainage; (c) apply |ρ| data in the inverse relation to retrieve sea ice DEM; and (d) vali-
date retrieval results with OTASC observations. Note that ρ is a normalized polarimetric term per Equation 50, 
where the backscatter intensity is canceled out so that the magnitude of ρ varies between 0 and 1. This makes the 
DEM retrieval robust and less dependent on the absolute calibration of backscatter intensity.

Due to the nonlinearity and nonuniqueness, the phase term ∠ρ will not improve and may actually degrade the 
estimation of sea ice DEM, which should be retrieved only with the |ρ|. Nevertheless, the interferometric phase 
term 𝐴𝐴 𝐴𝐴

𝑖𝑖𝑖𝑖0(𝑟𝑟𝑎𝑎−𝑟𝑟𝑏𝑏) contains additional geometry information that can be used together with |ρ| to achieve optimal 
results for sea ice DEM retrieval. The validated sea ice DEM derived from polarimetric interferometric SAR 
data will be valuable to obtain the DEM map over the same area of the corresponding sea ice class map across 
extensive areas of the satellite data coverage, so that a quantitative statistical characterization of large-scale sea 
ice roughness can be obtained from the DEM to associate to the corresponding classification of rough and old 
sea ice. This was not possible in the past as collocated and contemporaneous roughness and ice classification 
maps were not available to determine the large-scale roughness pertaining to each nomenclature of sea ice classes 
(WMO, 2014). Moreover, the DEM data product will enable a possible investigation of 3D characteristic patterns 
of sea ice DEM as directional forcing by winds and currents can form 3D directional features in the sea ice cover. 
These are to be presented in details in the next companion paper (Huang et al., 2021).

In this paper, we have focused on the specific objective of using the polarimetric interferometry model of sea 
ice to identify the specific radar terms to select and the terms to avoid in the protocol development for sea ice 
elevation retrieval in the Antarctic. Nevertheless, the model capabilities can be explored in other research efforts 

Figure 5.  Comparison of sea ice elevation (hDMS) vs. ∠ρ from model 
simulation results (×) with the fitting curve in black and from OTASC 
observations (+) with the fitting curve in brownish gray.
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to  test  the applicability for monitoring Arctic sea ice elevation, Great Lakes ice height, lake-ice level across 
the cold landscape, or other geophysical parameters in different environments of the Earth. Moreover, with the 
advent of multiple international SAR missions for Earth observations, the theory of radar polarimetric interfer-
ometry can be used to investigate the synergistic capabilities of SAR data at different frequencies, polarizations, 
incidence angles, etc., for science investigations in the cryosphere and elsewhere. Such studies will be useful to 
develop radar missions for cryospheric science in particular and for Earth science in general to select necessary 
rather than redundant radar measurements so that the satellite missions can be the most cost effective to be 
launched in the future.

Data Availability Statement
Data are at the data port https://dx.doi.org/10.21227/s7df-tq97.
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