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Abstract 

Synthetic aperture radar interferometry is a well-established technique for producing high-resolution digital elevation 

models of the Earth’s surface. Observations of some interferograms, however, show that coherent azimuth ambiguities 

may determine phase biases and coherence losses that significantly degrade the interferometric performance. Whereas 

imposing very low ambiguity levels may represent a severe design constraint, a slight variation of the pulse repetition 

interval may suffice decorrelating ambiguities and thus reducing the phase biases and coherence losses without affecting 

the imaged swath width. This work is relevant for the design of future spaceborne interferometric systems and for the 

enhanced exploitation of current ones. 

 

1 Introduction 

Synthetic aperture radar (SAR) interferometry exploits the 

coherent combination of two SAR images, acquired from 

slightly-different viewing angles and often referred to as 

the master and slave images, to form a digital elevation 

model (DEM) of the observed scene [1]-[4]. The height ac-

curacy of the resulting DEM ultimately depends on the 

complex correlation (or coherence) between the two SAR 

images, which is the product of the contributions of various 

decorrelation sources, such as thermal noise, quantization 

noise, baseline decorrelation, volume decorrelation, Dop-

pler decorrelation, temporal decorrelation, coregistration 

and processing, range and azimuth ambiguities [5]-[6]. 

Azimuth ambiguities were initially accounted for through 

a decorrelation contribution 𝛾𝑎𝑚𝑏,𝑎𝑧 given by [6] 

𝛾𝑎𝑚𝑏,𝑎𝑧 =
1

1 + 𝐴𝐴𝑆𝑅
 

(1) 

where AASR is the azimuth ambiguity-to-signal ratio 

(AASR), i.e., similarly to thermal noise. Observations of 

TanDEM-X interferograms, such as the one in Figure 1 

acquired over the Franz Josef Land, Russia, however, have 

shown that coherent azimuth ambiguities may determine 

significant interferometric phase biases 𝜑𝑏𝑖𝑎𝑠 and modula-

tions of the coherence magnitude 𝛾, which can be analyti-

cally described by the following expressions [7]: 

𝜑𝑏𝑖𝑎𝑠 = arg {1 + 𝐴𝐴𝑆𝑅𝑙𝑜𝑐𝑎𝑙

𝛾𝑎

𝛾𝑚

𝑒𝑗(𝜑0,𝑎−𝜑𝑜,𝑚)} (2) 

𝛾 =  
1

1 + 𝐴𝐴𝑆𝑅𝑙𝑜𝑐𝑎𝑙
∙ 

√𝛾𝑚
2 + 𝐴𝐴𝑆𝑅𝑙𝑜𝑐𝑎𝑙

2 𝛾𝑎
2 + 2 𝐴𝐴𝑆𝑅𝑙𝑜𝑐𝑎𝑙

𝛾𝑎

𝛾𝑚
cos 𝜑0,𝑎 − 𝜑𝑜,𝑚 

(3) 

where 𝐴𝐴𝑆𝑅𝑙𝑜𝑐𝑎𝑙 is the local azimuth ambiguity-to-signal 

ratio, 𝛾𝑚 and 𝜑𝑜,𝑚 are the coherence magnitude and inter-

ferometric phase of the ambiguity-free interferogram, and 

𝛾𝑎 and 𝜑𝑜,𝑎 are the coherence magnitude and interferomet-

ric phase of the interferogram of the ambiguities.  

A spectral-based technique to estimate the local azimuth 

ambiguity-to-signal ratio is presented in [8], where it is also 

shown that the latter ratio is likely to be larger than -10 dB 

in low-backscatter areas and can even reach 0 dB in some 

cases. As discussed in [9], a local AASR of -5 dB results 

in a phase bias characterized by a standard deviation of 5 

to 10 degrees (depending on the signal-to-noise ratio) and 

a coherence contribution of azimuth ambiguities in the or-

der of 0.7-0.8, which are critical to be accounted for in the 

overall coherence budget. One could reduce the local 

AASR by imposing a lower AASR in the design, but this 

would drive the complexity and the cost of the SAR sys-

tem. 

The local ambiguity-to-signal ratio could also be reduced 

by removing azimuth ambiguities through a postprocessing 

step [10]-[17]. A Wiener filter could be applied, as pro-

posed in [11], but this would result in a resolution degrada-

tion, which turns into a reduction of the number of interfer-

ometric looks and thus of the coherence. Ambiguities could 

also be coherently subtracted directly from the interfero-

gram, as first demonstrated in 2011 in a DLR-internal study 

to reduce the phase errors and coherence loss in the Tan-

DEM-X interferogram of Figure 1 (see also [7], [9]) and 

then further elaborated for short-baseline along-track inter-

ferometry in [18], but the accurate and fully autonomous 

estimation of the complex scaling coefficient makes this 

technique challenging. 

2 Decorrelating Ambiguities 

Equations (2) and (3) suggest that the phase bias and the 

coherence loss can also be limited by reducing the coher-

ence magnitude of the interferogram of the ambiguities 𝛾𝑎, 

i.e., by decorrelating the azimuth ambiguities of the master 

and slave images. If total decorrelation is achieved, there is 

no bias anymore and the coherence contribution degener-

ates into the expression in (1), where AASR has still to be 

understood as the local one. 

𝛾𝑎 is influenced by the acquisition geometry, which in 

some cases makes the azimuth ambiguities of the master 

and slave images be reciprocally shifted and therefore 

decorrelated. Under the conservative assumption that the 

acquisition geometry leads to a superposition of the ambi-

guities, ambiguity decorrelation can still be achieved by 

acting on the reciprocal sampling of the master and slave 

images. The repeat-pass and the single-pass cases will be 

separately discussed in the following. 



  
Figure 1 Interferometric phase (left) and magnitude of the 

complex coherence (right) of a detail of a TanDEM-X in-

terferogram affected by azimuth ambiguities, acquired 

over the Franz Josef Land, Russia. 

3 Repeat-Pass SAR Interferometry 

If the master and the slave images are acquired at different 

times (this also includes the case of the pursuit monostatic 

mode of TanDEM-X [6], where the time lag between the 

two acquisitions is in the order of few seconds), the adop-

tion of a slightly different pulse repetition frequency (PRF) 

in the two acquisitions might suffice to decorrelate azimuth 

ambiguities.  

Let us consider two acquisitions with slightly different 

PRFs, 𝑃𝑅𝐹1 and 𝑃𝑅𝐹2, and let us define 

𝛥𝑃𝑅𝐹 ≐ 𝑃𝑅𝐹2 − 𝑃𝑅𝐹1 (4) 

The first-order azimuth ambiguities for the two acquisi-

tions will be relatively displaced in azimuth by a quantity 

𝛥𝑥 proportional to 𝛥𝑃𝑅𝐹 and given by [19]-[21] 

𝛥𝑥 =
𝜆 𝑅0 𝛥𝑃𝑅𝐹

2 𝑣𝑆
  (5) 

where 𝜆 is the wavelength, 𝑅0 is the radar-target distance, 

and 𝑣𝑆 is the satellite speed, and, in order to decorrelate 

azimuth ambiguities, the relative azimuth shift 𝛥𝑥 has to 

be larger than the autocorrelation length of the ambiguous 

signals times the satellite speed.  

The latter depends on the power spectral density (PSD) of 

the ambiguous signals, therefore both on the azimuth an-

tenna pattern and the selected PRF. Figure 2 shows on the 

left panel the PSDs of the main signal and the first-order 

left ambiguity for a rectangular antenna with length L = 4.8 

m,  𝜆 = 0.03 m, and PRF = 3000 Hz, and on the right panel 

the corresponding normalized autocorrelation functions, 

obtained as inverse Fourier transforms of the PSDs. As it 

is apparent, due to the shape of the ambiguous spectrum, 

the autocorrelation length of the ambiguity can be several 

times (i.e., 2-3 times) larger than that of the main signal, 

which can be approximately expressed as 𝐿 (2 𝑣𝑆)⁄ . The 

autocorrelation length become smaller for higher PRF, i.e., 

around 5000 Hz, which are however unlikely to be used 

within typical acquisitions.  

Defining as α the ratio of the autocorrelation lengths of the 

ambiguity and the main signal, it holds 

𝛥𝑃𝑅𝐹 > α
𝐿 𝑣𝑆

𝜆 𝑅0

 (6) 

where conservative values α of least 2-3 should be as-

sumed. For TanDEM-X, 𝛥𝑃𝑅𝐹 ≅ 4 Hz is required for 

𝑃𝑅𝐹 ≅ 3000 Hz, which does not influence the width of the 

swath to be imaged. Figure 3 shows the coherence of the 

ambiguities, as evaluated with a two-dimensional simula-

tion for TanDEM-X with PRF = 3000 Hz and different val-

ues of 𝛥𝑃𝑅𝐹, which confirms the results obtained using 

(6). 

 
Figure 2 Power spectral densities (left) and normalized au-

tocorrelation functions (right) of the main signal and the 

first-order left ambiguity for TanDEM-X with 𝑃𝑅𝐹 =
3000 Hz. 

 
Figure 3 Coherence of the ambiguities for repeat-pass 

SAR interferometry as a function of the PRF difference be-

tween the two acquisition 𝛥𝑃𝑅𝐹 for TanDEM-X with 

𝑃𝑅𝐹 = 3000 Hz. 

4 Single-Pass SAR Interferometry 

If the master and slave images are acquired at the same 

time and a single transmitter is used, the adoption of a 

slight, continuous variation of the pulse repetition interval 

(PRI) could help decorrelate ambiguities, as long as a non-

zero along-track baseline 𝐵𝑎 is present. The impulse re-

sponse function (IRF) in proximity of the ambiguities, in 

fact, is azimuth-variant in case of PRI variation and the 

along-track baseline induces (after coregistration) a rela-

tive azimuth time shift 𝛿𝑢 between the available azimuth 

samples of the master and slave images roughly given by  

𝛿𝑢 ≅
𝐵𝑎

2𝑣𝑔

 (7) 

where 𝑣𝑔 is the ground velocity and where a bistatic con-

figuration, where the same satellite transmits all pulses has 

been assumed (Figure 4).  

Under the assumption that the acquisition geometry leads 

to a superposition of the ambiguities, the absence of an 

along-tack baseline leads to the same IRFs of master and 

slave independently of the PRI variation scheme. At the 

same time, the presence of an along-track baseline without 

a PRI variation is not sufficient to avoid the ambiguity cor-

relation, as the ambiguities of the master and slave images 

might be characterized by different phases, but their phase 

difference would still be constant (the latter is also the case 

of Figure 1). 



In presence of the aforementioned relative shift, the raw 

data of master and slave could be resampled, e.g., using 

best linear unbiased (BLU) interpolation [22]-[25], to a 

uniform grid before focusing and interferogram formation. 

The coefficients of the BLU interpolation depend on the 

spectrum of the main signal and are not the optimal ones to 

resample the ambiguous signal, which will be resampled in 

a wrong way and, in general, in a different way in the mas-

ter and slave images, leading to a decorrelation of the am-

biguities. 

An additional advantage of a PRI variation, especially if 

followed by a “wrong” resampling, is that ambiguities will 

be further smeared compared to the constant PRF case and 

will be therefore characterized by a reduced range resolu-

tion. This corresponds to a smaller critical baseline for the 

ambiguities, which could in turn result in a decorrelation of 

the ambiguities of distributed scatterers. 

 
Figure 4 Relative azimuth time shift of the samples after 

co-registration resulting from a non-zero along-track base-

line. 

4.1 PRI Variation Schemes 

The PRI variation scheme will influence the positions of 

the blind ranges for each range line. In particular, the posi-

tions of the blind ranges depend on the moving sum of a 

number of consecutive PRIs equal to the number of travel-

ing pulses 𝑛𝑡 [26], which is roughly given by 

𝑛𝑡 ≅
2𝑅0

𝑐0𝑃𝑅𝐼𝑚𝑒𝑎𝑛

 (8) 

where 𝑐0 is the speed of light.  

The continuous variation of the PRI recalls staggered SAR 

systems, which include BLU interpolation as an integrating 

part of the concept [22]-[25] and for which ambiguities are 

likely to be fully smeared and decorrelated [21], [27]. 

While in staggered SAR, however, a PRI variation is re-

quired that ideally shifts blind ranges to all possible posi-

tions across the swath in order to have them uniformly dis-

tributed, for the scope of this work the PRI variation should 

allow keeping the width of the imaged swath. Considering 

that for most SAR systems the imaged swath is smaller 

than the maximum one allowed by the timing (or diamond) 

diagram due to e.g., signal-to-noise ratio or ambiguity re-

quirements, a small variation of the blind ranges across the 

synthetic aperture can be tolerated. 

Three PRI variation schemes are considered in the follow-

ing, namely:  

• Sinusoidal PRI Variation, whose PRIs can be written 

as 

𝑃𝑅𝐼𝑘 = 𝑃𝑅𝐼𝑚𝑒𝑎𝑛 (1 + 𝐴 𝑠𝑖𝑛
2𝜋𝑘

𝑁
) ,

𝑘 = 0,  𝑁 − 1 

(9) 

where 𝑃𝑅𝐼𝑚𝑒𝑎𝑛 is the mean PRI of the sequence, 𝐴 is the 

amplitude of the PRI variation, e.g., 𝐴 = 0.01 means that 

the PRI variation is ±1% with respect to 𝑃𝑅𝐼𝑚𝑒𝑎𝑛, and 𝑁 is 

the length (to be understood as number of PRIs) of the se-

quence, which repeats then periodically; 

• Square Wave PRI Variation, whose PRIs can be 

written as 

𝑃𝑅𝐼𝑘 = {
𝑃𝑅𝐼𝑚𝑒𝑎𝑛(1 + 𝐴), 𝑘 = 0,  𝑁 2⁄ − 1

𝑃𝑅𝐼𝑚𝑒𝑎𝑛(1 − 𝐴), 𝑘 = 𝑁 2⁄ ,  𝑁 − 1
 (10) 

with 𝑁 even to keep the symmetry.  

• Random PRI Variation (to be intended as a sequence 

of N random PRIs, which repeat periodically), whose 

PRIs can be written as   

where 𝑎𝑘 is an independent realization of a random variable 

with uniform distribution between -1 and 1. The advantage 

of repeating the same sequence of random realizations is 

justified in 4.2. 

Please note that the three PRI variation schemes are ex-

pressed so that they are characterized by the same PRI 

span, if the values of 𝐴 and 𝑁 are the same. 

4.2 Swath Reduction 

If the length 𝑁 of the sequence of PRIs is much larger than 

the number of traveling pulses 𝑛𝑡, the maximum achieva-

ble swath width 𝑊𝑆 for a sinusoidal or a square wave PRI 

variation is approximately given by   

𝑊𝑆 ≅ (1 − 2 𝐴 𝑛𝑡  )𝑊𝑆𝑐𝑜𝑛𝑠𝑡
 (12) 

where 𝑊𝑆𝑐𝑜𝑛𝑠𝑡
 is the maximum swath width obtained for a 

constant PRI equal to 𝑃𝑅𝐼𝑚𝑒𝑎𝑛, e.g., for  𝑛𝑡 = 16 and 𝐴 =
0.001, the maximum swath width would reduce by 3.2%, 

hence the need of keeping the amplitude 𝐴 very small. The 

formula is derived under the conservative assumption that 

the 𝑛𝑡 PRIs adjacent to the maximum PRI are all equal to 

the maximum PRI. 

Still under the assumption that the length 𝑁 of the PRI se-

quence of PRIs is much larger than the number of traveling 

pulses 𝑛𝑡, the assessment of the swath reduction for the pe-

riodic random PRI variation of (12) cannot be approxi-

mated in a straightforward way as in the case of sinusoidal 

and square wave PRI variations, but requires some further 

considerations. Due to the randomness of the PRI, theoret-

ically the swath reduction could also reach the value pro-

vided in (12), but this worst case would only happen in the 

very unlikely case that 𝑛𝑡 consecutive independent realiza-

tions of 𝑎𝑘 are all equal or almost equal to 1 (or -1). A more 

reasonable approach is to resort to probability theory. The 

sum of 𝑛𝑡 PRIs characterized as in (11), i.e., uniformly dis-

tributed, follows the Irwin-Hall distribution, which for 

large values of 𝑛𝑡 can be approximated by a Gaussian dis-

tribution, whose standard deviation (relative to 𝑃𝑅𝐼𝑚𝑒𝑎𝑛) 

𝜎 is given by 𝐴√𝑛𝑡 √3⁄ . By considering an interval of ±2𝜎 

(95% rule) and approximating, we obtain the following ex-

pression for the maximum achievable swath width 𝑊𝑆, 

which looks, but for a square root, very similar to (12): 

𝑊𝑆 ≅ (1 −
4

√3
 𝐴√𝑛𝑡  ) 𝑊𝑆𝑐𝑜𝑛𝑠𝑡

≈ (1 − 2 𝐴√𝑛𝑡  )𝑊𝑆𝑐𝑜𝑛𝑠𝑡
 

(13) 

𝑃𝑅𝐼𝑘 = 𝑃𝑅𝐼𝑚𝑒𝑎𝑛[1 + 𝐴 𝑎𝑘], 𝑘 = 0,  𝑁 − 1 (11) 



The comparison of (13) to (12) highlights that for a random 

PRI variation the same swath reduction is obtained for a 

much larger PRI span (i.e., 4 time larger for 𝑛𝑡 = 16) com-

pared to the sinusoidal and square wave cases. This is 

shown with an example in Figure 5, which refers to a Tan-

DEM-X like system characterized by a pulse width of 25 

µs and a mean pulse repetition interval 𝑃𝑅𝐼𝑚𝑒𝑎𝑛 =
0.303 ms. The areas in black include not only the blind 

ranges in the raw data, but also areas characterized by re-

duced range resolution after pulse compression [23]-[24]. 

 
Figure 5 Swath decrease at a slant range around 𝑅0 =
700 km as a result of the sinusoidal PRI variation in (9) 

with 𝑁 = 100 and 𝐴 = 0.007 (left), the square wave PRI 

variation of (10) with 𝑁 = 100 and 𝐴 = 0.007 (center) 

and a random PRI variation of (11) with 𝑁 = 100 and 𝐴 =

0.007√𝑛𝑡 (right). 

 

A larger PRI span implies a further smearing of azimuth 

ambiguities, which might help reducing the critical base-

line, as discussed above. The interval has been chosen 

around ±2𝜎 and not larger, because the length of the PRI 

sequence is limited and so is the number of realizations – 

this justifies repeating the same random sequence rather 

than having a very long one (requirements on the minimum 

PRI  sequence length will be discussed in 4.3) – and assum-

ing that an “unfortunate” realization can just be discarded, 

as the system designer can choose the PRI variation to be 

adopted for the acquisition in advance.  

If the length of the PRI sequence 𝑁 is instead equal to the 

number of traveling pulses 𝑛𝑡 (or to 𝑛𝑡 − 1), larger PRI 

span (and namely amplitudes 𝐴) can be exploited without 

incurring in a significant swath reduction. For all three con-

sidered PRI variations, in fact, the moving sum will be con-

stant for one of the two blind ranges delimiting the swath, 

due to the fact that the addends of the moving sum stay the 

same, and almost constant for the other one, where the 

moving sum includes 𝑁 − 1 out of the 𝑁 values. In this 

case for all three considered PRI variations the same PRI 

span leads to the same swath reduction and the maximum 

achievable swath width 𝑊𝑆 can be approximated as  

𝑊𝑆 ≅ (1 − 𝐴)𝑊𝑆𝑐𝑜𝑛𝑠𝑡
 (14) 

In this case, in fact, the maximum relative variation of the 

blind range is 2𝐴 (i.e., the highest possible difference be-

tween 2 PRIs of the sequence), but the swath reduction is 

only due to one of the two blind ranges.  

Figure 6 shows an example of the case 𝑁 = 𝑛𝑡 for the 

three considered PRI variations. It is apparent that the 

swath reduction is much smaller than in Figure 4, although 

the PRI span is much larger (𝐴 = 0.05 vs. 𝐴 = 0.007). For 

𝑁 = 𝑛𝑡 − 1, the moving sum would be constant for the 

closer of the two blind ranges and (14) will still hold. 

 
Figure 6 Swath decrease for the case 𝑁 = 𝑛𝑡 = 16  at a 

slant range around 𝑅0 = 700 km as a result of the sinusoi-

dal PRI variation in (9) (left), the square wave PRI varia-

tion of (10) (center) and a random PRI variation of (11), all 

with 𝐴 = 0.05. 

4.3 Decorrelation and Along-Track Base-

line 

The PRI variation scheme and its parameters 𝑁 and 𝐴 have 

to be selected for a given along-track baseline in order to 

provide a substantial decorrelation of azimuth ambiguities, 

while keeping the swath reduction as small as possible. 

The trend of ambiguity decorrelation versus along-track 

baseline can be obtained for a specific set of system param-

eters and an along-track baseline by means of simulation.  

For a periodic PRI sequence, this trend will also be periodic 

with period 𝐵𝑎𝑝𝑒𝑟𝑖𝑜𝑑
  given by  

𝐵𝑎𝑝𝑒𝑟𝑖𝑜𝑑
= 2 𝑣𝑔 ∑ 𝑃𝑅𝐼𝑘

𝑁−1

𝑘=0

≅ 2 𝑣𝑔 𝑁 𝑃𝑅𝐼𝑚𝑒𝑎𝑛  (15) 

This means that for an along-track baseline equal to integer 

multiples of 𝐵𝑎𝑝𝑒𝑟𝑖𝑜𝑑
 the samples of master and slave in 

spite of the PRI variation and the non-zero along-track 

baseline will still be available at the same positions and will 

not determine any ambiguity decorrelation. 

Given a sequence of PRI and an along-track baseline, it is 

possible to assess the resulting ambiguity decorrelation by 

convolving the impulse response of the ambiguity, which 

is in general different for the master and slave images, with 

fully-developed speckle and estimating the coherence. For 

sinusoidal and square wave PRI variations, it can be ob-

served that the coherence of the ambiguities decreases as 

the along-track baseline increases from 0 to 𝐵𝑎𝑝𝑒𝑟𝑖𝑜𝑑
2⁄  (or 

from 𝑝 𝐵𝑎𝑝𝑒𝑟𝑖𝑜𝑑
 to 𝑝 𝐵𝑎𝑝𝑒𝑟𝑖𝑜𝑑

+ 𝐵𝑎𝑝𝑒𝑟𝑖𝑜𝑑
2⁄ , with 𝑝 ∈ ℕ), as 

the relative shift between the available samples of master 

and slave increases. Likewise, as the along-track baseline 

increases from 𝐵𝑎𝑝𝑒𝑟𝑖𝑜𝑑
2⁄  to 𝐵𝑎𝑝𝑒𝑟𝑖𝑜𝑑

 (or from 𝑝 𝐵𝑎𝑝𝑒𝑟𝑖𝑜𝑑
+

𝐵𝑎𝑝𝑒𝑟𝑖𝑜𝑑
2⁄  to (𝑝 + 1)𝐵𝑎𝑝𝑒𝑟𝑖𝑜𝑑

, with 𝑝 ∈ ℕ), the coherence 

of the ambiguities increases. The maximum decorrelation 

therefore occurs for 

 𝐵𝑎 = (𝑝 + 1 2⁄ )𝐵𝑎𝑝𝑒𝑟𝑖𝑜𝑑
, 𝑝 ∈ ℕ  (16) 

where ℕ also include 0. For random PRI variations the 

along-track baseline that leads to the maximum ambiguity 

decorrelation depends on the specific PRI realizations, still 

the minimum usually corresponds to the value of 𝐵𝑎 given 

in (16).  

These considerations therefore suggest that the length 𝑁 of 

the PRI sequence can be selected (at least for sinusoidal 



and square wave schemes) so that the maximum decorrela-

tion is obtained. By substituting (15) in (16) it holds 

𝑁 ≅
𝐵𝑎

2 (𝑝 + 1 2⁄ ) 𝑣𝑔 𝑃𝑅𝐼𝑚𝑒𝑎𝑛

, 𝑝 ∈ ℕ (17) 

The expression in (21) provides a set of possible values of 

𝑁, that can be obtained by varying the integer variable 𝑝 

and, if needed, to some extend the value of 𝑃𝑅𝐼𝑚𝑒𝑎𝑛, as-

suming that 𝐵𝑎 and 𝑣𝑔 are given. For 𝐵𝑎 = 290 m, 𝑣𝑔 =

7040 m/s and 𝑃𝑅𝐼𝑚𝑒𝑎𝑛 = 0.303 ms, for instance, we can 

choose 𝑁 = 136 (corresponding to 𝑝 = 0 and belonging to 

the case  𝑁 ≫ 𝑛𝑡), but also 𝑁 = 16 (corresponding to 𝑝 =
4 and belonging to the case 𝑁 = 𝑛𝑡) or other further values 

of 𝑁. 

Once different options for the sequence length are availa-

ble, the parameter 𝐴, related to the PRI span, needs to be 

selected. In general, the higher the PRI span, the more sub-

stantial the ambiguity decorrelation, but also the more sig-

nificant the swath reduction.  

Two-dimensional (2-D) simulations have been carried out 

for a typical spaceborne scenario and the same sequences 

for which the swath reduction had been assessed in Figure 

5 and Figure 6. The coherence has been estimated using a 

9×9-pixel window. Figure 7 shows for the aforementioned 

PRI variations the coherence of the ambiguities as a func-

tion of the along-track baseline. These plots have to be con-

sidered as periodical, i.e., they repeat with a period given 

by the maximum along-track baseline given in the plot.  

 
(a)                                            (b) 

Figure 7 Coherence of the ambiguities as a function of the 

along-track baseline for the sinusoidal PRI variation in (9) 

(blue), the square wave PRI variation of (10) (red) and the 

random PRI variation of (11) (green). (a) 𝑁 = 100 (length 

of the sequence of PRIs is much larger than the number of 

traveling pulses), corresponding to swath width reduction 

depicted in Figure 5. (b) 𝑁 = 16 sinusoidal PRI variation 

(length of the sequence of PRIs equal to the number of trav-

eling pulses), corresponding to swath width reduction de-

picted in Figure 6. 

 

It can be noticed that long sequences allow decorrelation 

for larger along-track baselines, although one could also 

exploit in some cases the periodical effect with short se-

quences. Figure 5 (c) shows that for a short sequence and a 

small amplitude the achieved decorrelation might not be 

enough. 

As is apparent for comparable swath reduction, the square 

wave PRI variation allows in both cases for the highest 

decorrelation, while a random PRI variation is less effec-

tive, especially if the length of the sequence of PRIs is 

equal to the number of traveling pulses. 

5 Impact on Interferogram and 

DEM Quality 

In order to observe the impact of ambiguity decorrelation 

on the interferogram and the resulting DEM for different 

level of coherence, simulated interferograms and DEM 

have been generated starting from the dataset of Figure 1. 

In particular, after removing the azimuth ambiguities from 

both master and slave using a Wiener filter, the ambiguities 

have been re-introduced by convolving the main response 

with the IRF of the ambiguity, translating and scaling it. 

Furthermore, different degrees of coherence of the ambi-

guity have been introduced. Figure 8 shows the resulting 

interferometric phase, coherence, and DEM, for a system 

with AASR = -17 dB, in both the case of no decorrelation 

and that of a coherence of the interferogram of ambiguities 

equal to 0.3. 

 

  
 

  
 

Figure 8 Impact of ambiguity decorrelation on interfero-

metric phase (left), interferometric coherence (center), and 

DEM (right). (top) No decorrelation. (bottom) Coherence 

of the ambiguity = 0.3. 

6 Conclusions and Outlook 

This paper proposes a method to decorrelate azimuth am-

biguities in SAR interferometry through a slight variation 

of the PRI either between the two acquisitions (for the re-

peat-pass case) or in a continuous periodic way (for the sin-

gle-pass case). The PRI variation scheme needs to account 

for the along-track baseline of the acquisition and to be op-

timized accordingly. While an accurate performance as-

sessment can only be performed for a specific system, sim-

ple simulations under conservative assumptions show the 



potential of the technique, which could be useful for the 

design of future spaceborne interferometric systems, such 

as High Resolution Wide Swath (HRWS) [28], as well as 

for the enhanced exploitation of current ones. 
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