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Abstract
Collaborative teams of heterogeneous robots will be a key technology for future planetary
exploration missions. Therefore, a high degree of local autonomy is required. In this work, a
concrete use case involving a Rover System (LRU) and a Micro Aerial Vehicle (ARDEA) is
presented. It is assumed that during an exploration flight of the flying robot, an interesting
spot is detected which is supposed to be further investigated by scientific tools of the ground
robot. For that purpose, the relative orientation and translation between the two systems need
to be determined with a high accuracy by the use of on-board sensor readings. The task of
pose estimation can be formulated as a modified and temporal version of a Perspective-n-Point
(PnP) problem. While in a classic PnP formulation, the pose can be estimated from known
3D-2D correspondences in one image frame, the proposed approach formulates the problem in
terms of 3D-2D correspondences belonging to a flight trajectory over time.
An essential part of the overall problem is given by detecting and tracking ARDEA in a
sequence of images to retrieve 2D observations. To address this issue, two different approaches
are proposed. One uses a combination of Background Subtraction and Correlation Filter based
tracking (CFTs). The other approach is based on the RetinaNet detector which is trained on
the task of detecting ARDEA in an image. Both approaches are evaluated on experimental
data to assess and compare their performances.
For the task of pose estimation, an existing approach aware of 2D uncertainties in the image
plane is extended to also incorporate 3D uncertainties originating from VO measurements.
The pose of ARDEA in the camera frame of the LRU is computed by minimizing weighted
residuals in a reduced observation space which is spanned by tangent vectors to the unit sphere
in the camera frame. As a reliability measure, covariance estimates of the resulting pose
parameteres are derived. The proposed approach for fully uncertainty-aware pose estimation is
validated in simulation and in a real-world experiment. Results indicate the large potential of
the proposed approach by significantly increasing the accuracy of the estimated poses and by
yielding meaningful covariance estimates.

This thesis will introduce a framework for estimating the pose of ARDEA with respect to LRU
based on image streams of cameras mounted on LRU and Visual Odometry readings from
ARDEA.
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1
Introduction

The application of space robotics has enabled scientific breakthroughs and is a key technology
to fulfilling the human ambition to explore extraterrestrial bodies such as Moon or Mars.
Planetary exploration missions aim to find answers to fundamental scientific questions as for
example about the origin of Earth or the potential existence of extraterrestrial life. However,
developments in the field of space robotics do not only address these fundamental research
areas, but they can also contribute to other scientific disciplines including applications like
medical technology (surgical robotics), search and rescue or agricultural robotics [1]. Although
space robotic missions may sound futuristic, they have quite a rich history. The first robotic
system that has been successfully operated on an extraterrestrial body dates back to 1967 when
the Surveyor 3 lander launched to Moon including an on-board robotic sampler [2]. Lately,
especially rover missions have gained particular attention with space rover missions like NASA’s
Perseverance Rover (launched 2020) or ESA’s ExoMars Rover (launch scheduled for 2022).

Figure 1.1.: Sketch of a planetary exploration mission using a heterogeneous team of robots [3].

Mainly two key attributes for space robotic systems can be identified [2]: locomotion and
autonomy. Especially a high level of autonomy is essential as long round-trip communication
times make teleoperation by humans difficult. These communication delays can range from
several seconds (Moon) to several minutes (Mars) [4]. The required level of local autonomy can
be supported by building heterogeneous teams of robots.
The ARCHES (Autonomous Robotic Networks to Help Modern Societies) project by the
Helmholtz Association addresses this challenge. In cooperation with the Helmholtz Institutes
AWI, GEOMAR and KIT, the DLR develops a heterogeneous team consisting of flying and
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1. Introduction

driving robots together with mobile infrastructure elements that can explore environments
that are out of reach for humans. The sketch in Figure 1.1 visualises a possible scenario of
a planetary exploration by a heterogeneous team of robots. These teams can benefit from
complementary capabilities of every individual agent and can operate collaboratively to perform
complex tasks in unknown and challenging surroundings [5]. There is a larger number of further
benefits such as increased efficiency and robustness by parallelization and redundancy.

As part of the ARCHES project, a team of two driving robots and one flying robot has been
developed at DLR. Figure 1.2 shows the two rovers, LRU1 and LRU2 (LRU: Lightweight
Rover Unit), as well as the micro aerial vehicle (MAV) ARDEA (Autonomous Robot Design for
Extraterrestrial Applications).
ARDEA is characterized by its high maneuverability which enables it to act as a fast scout
easily reaching areas that are otherwise difficult to access such as craters or caves. It is equipped
with two pairs of ultra-wide angle stereo camera. Each of these cameras provide inputs to an
independent visual odometry [6].
LRU1 and LRU2 both have individually controlled and powered wheels on actuated boogies
empowering them to autonomously navigate and explore in rough terrain. They are both
equipped with a set of on-board sensors such as different navigation or scientific cameras.
This thesis will cover a specific use case of collaboration between ARDEA and LRU1 who can
additionally serve as a carrier for the MAV with a take-off and landing platform. In particular,
the following scenario is considered. Both platforms are deployed in a planetary mission and
ARDEA is currently on an exploration flight. While being in the field of view of one of LRU1’s
cameras, it discovers an interesting detail and sends a command to LRU1 demanding for further
inspection by the LRU and its instruments. In that case, the orientation and position of
ARDEA relative to the rover needs to be estimated as accurately as possible to allow for a
safe navigation. The goal of this thesis will be to determine the transformation between the
two frames by only relying on on-board sensor information (camera images) of LRU and VO
readings of ARDEA.

Figure 1.2.: DLR’s mobile robots LRU1 (bottom left), LRU2 (bottom right) and ARDEA (top)
during experiments at a Moon-analagoue test site on Mt. Etna, Italy [4].
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1.1. Problem Statement

1.1. Problem Statement

The use case that has just been described can be formulated as a camera pose estimation
problem or more precisely, as a modified version of a Perspective-n-Point (PnP) problem. In
the classic definition of the PnP problem, the camera pose (orientation and translation) relative
to a world reference frame can be determined based on a set of known 3D points and 2D
observations. These 3D-2D correspondences are given by a set of known 3D keypoints and the
corresponding 2D observations can be detected in a single image frame.

In contrast to the classic definition, we assume the distance between ARDEA and the LRU to
be too large to extract a reliable set of multiple keypoints on ARDEA in the image. It is shown
in Figure 1.3 that hardly any reliable matches between ORB features [7] can be obtained when
ARDEA is relatively small compared to the image dimensions (roughly 50ˆ 50 compared to
original dimensions of 2452ˆ 2056).
In fact, for even larger distances, ARDEA’s appearance reduces to only one reliable keypoint,
the current position in the frame. Thus, instead of using a set of 3D-2D correspondences in
a single image, a sequence of points on a flight trajectory over time can be used to estimate
the camera pose. For this modified definition of a temporal PnP problem, 2D observations
can be obtained from detecting and tracking ARDEA in a sequence of images. Corresponding
3D points of the trajectory can be inferred from on-board sensor data of ARDEA. Concretely,
Visual Odometry (VO) results, consisting of delta orientations and translations together with
uncertainty estimates, can yield information about the 3D trajectory.

This leads to a two-part definition of the problem that will be addressed in this thesis.
1. Tracking of ARDEA

To obtain 2D observations of ARDEA’s trajectory in the image plane, an approach for
detecting and tracking ARDEA throughout a sequence of images needs to be established.

2. Pose Estimation
A modified PnP problem is supposed to be solved based on 3D-2D correspondences
describing the flight trajectory of ARDEA in its fixed object frame and in the image
plane. Additionally, one goal of this thesis is to incorporate 3D covariance information
provided by the VO into pose estimation to improve the results.

Figure 1.3.: Region of ARDEA is extracted for close range image (bottom left) and far range
image (top left). ORB features are computed using the OpenCV implementation.
Best four matches are highlighted.
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1. Introduction

1.2. Contributions and Outline

As indicated by the problem definition, the contributions of this thesis will be manifold and
will be dealing with both of the sub-problems. The main contributions can be identified as the
following components.

• Visual object tracking is one of the key challenges of this work. Two different approaches
will be presented to achieve the goal of reliably tracking an object of interest. One of
the presented approaches is based on conventional computer vision methods. The other
one uses deep-learning based techniques. Both algorithms will be compared in terms of
accuracy, reliability and generalization capabilities. Moreover, it will be shown how they
can be collaboratively applied to contribute to each other.

• The classic PnP problem will be re-formulated such that the problem is spanned by 3D-2D
correspondences over time instead of correspondences in a single image. Furthermore,
it will be formulated in terms of VO readings given by delta poses between subsequent
frames.

• An existing uncertainty-aware PnP solver (MLPnP [8]) will be extended. The original
approach only considers uncertainties of 2D observations. In this thesis, a new approach
will be developed based on MLPnP that also takes uncertainties of 3D observations into
account.

After this brief introduction, the remainder of this thesis is structured as follows:

Chapter 2 gives a quick overview of noteworthy related work in the two disciplines of visual
object detection respectively tracking and pose estimation.
Following that, chapter 3 will deal with the topic of visual object detection and tracking. First,
the theoretical background of selected existing tracking or detection methods will be established.
Thereafter, the introduced methods will be applied to build a reliable tracker for the concrete
use case of this thesis. It will be started with the approach based on conventional methods.
After that, a deep-learning based approach will be presented and it will be shown how it can
be supported by the previous one.
The theoretical foundations of the pose estimation problem will be covered in chapter 4. In
the beginning of the chapter, the problem will be formulated in terms of 2D observations
and 3D odometry readings. It will be shown how the problem can be transformed into a
reduced observation space as already presented in the MLPnP framework. Furthermore,
covariance information will also be propagated into this reduced observation space. Finally,
the pose estimation problem is formulated as a minimization problem. Linear as well as non-
linear solutions to this optimization problem will be derived incorporating known covariance
information.
After the introduction of theoretical concepts in the previous chapters, chapter 5 will evaluate
the presented methods in an experimental setup. Experimental data sets that have been
recorded for that purpose will be characterized. Both presented tracking approaches that have
been introduced are evaluated and compared by qualitative and quantitative means. The
proposed novel approach for pose estimation will first be tested in a simulation environment
and then applied to real-world data.
Chapter 6 concludes this thesis by summarizing and discussing the key results and will give an
outlook on potential improvements and future work.
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2
Related Work

As already stated in the introduction, the contributions of this thesis can be split into two
sub-problems. One of these problems is tracking an object and its trajectory in a sequence of
images which is often referred to as Visual Object Tracking (VOT) in the literature. The other
one is pose estimation which is done by solving a modified version of a so-called Perspective-
n-Point (PnP) problem. Both of these topics have a long history in research and the most
important developments in these areas will be briefly summarized in this chapter.

2.1. Visual Object Tracking

One of the most relevant research topics in the field of computer vision right now is the problem
of Visual Object Tracking (VOT) with a large number of new algorithms being proposed every
year. The strong interest in VOT can be explained by its large variety of application areas such
as human-computer interaction, autonomous driving, robotics or surveillance to name only a
few examples.

Despite the great progress that has been achieved in the field of visual tracking within the last
years, VOT still remains a very challenging problem facing issues like image noise, complex or
fast motions, occlusions, illumination changes or real-time requirements. Although VOT is a
very recent topic, it has a long history reaching back several decades. In 2006, an overview of
early tracking algorithms was provided in [9]. A more current survey [10] gives a good overview
of current state-of-the-art tracking approaches focussing especially on correlation filter based
tracking (CFT). The use of deep learning for the task of Multiple Object Tracking (MOT) is
summarized in [11]. While task definitions of object tracking might slightly differ between these
surveys, they all point out two key steps in every tracking approach: object detection and data
association. Hereby, data association describes the process of establishing correspondences
between detections of the same object in subsequent frames. Due to the importance of object
detection, most common trackers follow the tracking-by-detection approach.
Traditional hand-crafted object detectors, given in [9], are either point-based detectors (e.g.
Harris [12], SIFT [13]), segmentation-based (e.g. Mean-Shift [14]) or using background modeling
techniques. A common example of the last class has been introduced in [15] and is known as
Mixture-of-Gaussians (MOG). It sets up a Gaussian Mixture Model (GMM) to distinguish
between background and foreground pixels.
While all these methods use different object representations (points, contours, pixel-based),
most state-of-the-art approaches rely on the representation of an object by its rectangular
bounding box.
For instance, one group of algorithms relying on bounding box representations which has been
quite popular in research are Correlation Filter based Trackers (CFTs). As already indicated by
the name, CFTs use correlation filters trained on target image patches for the purpose of object
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2. Related Work

tracking. The target position in a new frame can then be estimated by determining the position
of the maximum filter response. Initially, the requirement to train those filters in advance made
these approaches inappropriate for online tracking. That changed with the development of the
Minimum Output of Sum of Squared Error (MOSSE) filter [16]. Minimizing the sum of squared
errors between an desired output and the actual filter response in the Fourier domain allowed
for an efficient online training. Based on MOSSE, a large number of state-of-the-art tracking
approaches have been proposed lately.
One of those extensions is known as Kernelized Correlation Filter (KCF) [17] tracker which
successfully integrated the use of kernel functions into filter training. By that, tracking accuracy
could be improved. Still operating in the Fourier domain, KCF was able to keep almost the same
time-efficiency as MOSSE. Furthermore, KCF integrated Histogram of Orientated Gradients
(HOG) [18] features to extend CFTs to multiple channels working on feature representations
of the objects. Besides HOG features, other feature representations that are widely applied
in CFT approaches are for instance Colorname (CN) features [19] or most recently also deep
features. The performance of these basic examples of CFTs is limited by the assumption of the
object maintaining its original size. Furthermore, their performance degrades in the case of
irregularly shaped objects which might result in the CFT learning background information.
There have been several developments to overcome these drawbacks. To address the issue of
scale changes, Discriminative Scale Space Tracking (DSST) [20] has been proposed which learns
separate filters for translation and scale estimation. Moreover, various approaches have been
introduced that incorporate measures of regularization to down-weight background information
or corrupt examples. Examples are the Spatially Regularized Discriminative Correlation Filter
(SRDCF) [21] tracker or the Spatial-Temporal Regularized Correlation Filter (STRCF) [22]
tracker. Another remarkable work has been Channel Spatial Reliability for Discriminative
Correlation Filter (CSRDCF) [23] which integrates channel and spatial reliability measures
into the learning stage of the filter. A probabilistic approach is used to obtain a binary spatial
reliability map indicating which pixel values should be ignored. Channel reliability is measured
by maximal filter responses per feature channel. All CF based tracking approaches share their
computational efficiency and real-time capability.

Not only CFTs have been heavily under investigation, but with the rapid development in the
field of deep learning, also great progress has been achieved for object detection. Learning-based
detectors are usually categorized as two-stage or one-stage detectors. The first stage of a
two-stage detector generates a set of candidate proposals which are then classified as foreground
classes or background in the second stage. In contrast, one-stage detectors formulate the
problem as a single regression problem which can be trained end-to-end from raw images to
class probabilities and bounding boxes. In general, two-stage detectors usually achieve higher
localization and object recognition accuracy whereas one-stage detectors outperform two-stage
detectors in terms of inference speed [24].
Algorithms of the so-called R-CNN family can be mentioned here as commonly used two-stage
detectors. Original R-CNN [25] has been improved over the years resulting in Fast R-CNN [26]
and Faster R-CNN [27] and a large number of further extensions. Despite the great accuracy
of R-CNN type detectors, the use case of this thesis demands for real-time algorithms and thus,
one-stage detectors are more favorable in this case. The first noteworthy one-stage detectors
are probably SSD [28] and YOLO [29] which has a large number of extensions [30],[31],[32].
However, their accuracy still trailed that of two-stage detectors. The authors of [33] identified
class imbalance during training of the network as the main reason limiting the performance of
one-stage detectors. This class imbalance is caused by the large number of candidate locations
that are evaluated per image. The majority of them are easy negatives, which means they
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2.2. Perspective-n-Point Problem

are not containing any object. Hence, they do not contribute to useful learning signals and
can overwhelm training. To address the issue of class imbalance, a novel loss formulation is
introduced in [33] focussing on training hard negative samples. This loss is called Focal Loss
and the network architecture used for training is known as RetinaNet.
In the context of this thesis, several of the previously introduced tracking or detection approaches
are combined to build a reliable tracker for ARDEA. Conventional methods are applied in
simple use cases to generate labeled training data. Using this labeled data, a RetinaNet model
will be trained on detection of ARDEA.

2.2. Perspective-n-Point Problem

The goal of the PnP problem is to estimate the pose of a camera (relative orientation and
translation) in a world reference frame given a set of n corresponding 3D points in the reference
frame and its 2D projections in the image. This task is important in a large number of
applications, such as robot localization and object manipulation, photogrammetry, augmented
reality or surgical navigation. Driven by this wide range of potential applications, which often
require robust, efficient and highly accurate solutions, a great variety of algorithms has been
developed addressing the PnP problem.
Research on this topic has a long tradition, starting with the first algorithms beeing introduced
in the 1980’s. These early developments focused on solving the PnP problem with the minimum
number of three given correspondences which yields up to four solutions. Some well-known
solutions for the P3P problem are given in [34] or [35]. Additional points can be used for disam-
biguation as shown for example in [36] where a solution to the P4P respectively P5P problem
is presented. Unfortunately, these algorithms are prone to outliers or noisy measurements and
thus, often have to be applied in RANSAC [34] based outlier rejection schemes.
Whereas the previously introduced approaches are dependent on a fixed number of points, most
solvers can handle an arbitrary number of given correspondences. Following [8], these can be
divided into iterative, non-iterative or polynomial, non-polynomial solvers. Iterative solvers
aim to minimize different objective functions based on geometric or algebraic errors. Examples
of iterative methods are LHM [37] or Procrustes PnP (PPnP) [38]. The latter one minimizes
the error between the object coordinates and the reprojected image points in the camera frame.
High computational costs as well as their sensitivity to local minima are major drawbacks of
iterative methods.
Similarly, early non-iterative solvers suffered from high computational complexity. A break-
through in the development of non-iterative PnP solvers was the introduction of EPnP [39],
the first efficient non-iterative solution. It was later improved by subsequent Gauss-Newton
minimization [40]. The speed-up of EPnP is achieved by reducing the problem from an ar-
bitrary number of correspondences to finding the position of a fixed number of four control
points which are a weighted sum of all 3D points. Most recent, non-iterative state-of-the-art
solutions are polynomial solvers replacing linearizations of the EPnP approach with polynomial
solvers. Among these are the Direct Least-Squares (DLS) [41], the Accurate and Scalable PnP
(ASPnP) [42], the Optimal PnP (OPnP) [43] and the Unified PnP (UPnP) [44] algorithm.
Thus far, all algorithms share the assumption of equally accurate observations and the lack of
erroneous correspondences which yields geometrical optimality in most cases but not statistical
optimality. The first approach to integrate an algebraic outlier rejection criterion into the pose
estimation has been introduced as Robust Efficient Procrustes PnP (REPPnP) [45]. After elim-
inating correspondences with an algebraic error exceeding a certain threshold, the final solution
is obtained by iteratively solving the Orthogonal Procrustes problem. Using the representation
of all points as four control points adapted from the EPnP algorithm, the approach remains
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2. Related Work

very efficient and achieves speed gains by a factor of 100 compared to RANSAC based outlier
rejection.
The first algorithm that explicitly integrates observation uncertainties into the framework is
known as Covariant Efficient Procrustes PnP (CEPPnP) [46]. Alike REPPnP, it still uses
the control point formulation of EPnP. 2D feature uncertainties are assumed to be known
and expressed in terms of covariance matrices. The uncertainties are then propagated into
the subspace spanned by the control points using the Jacobian. Finally the solution to the
PnP problem is obtained from a Maximum Likelihood (ML) minimization approximated by
an unconstrained Sampson error function which naturally penalizes noisy correspondences.
Furthermore, CEPPnP is able to maintain real-time capability.
Another approach towards solving the PnP problem including 2D feature uncertainties is
presented as Maximum Likelihood PnP (MLPnP) [8]. In this case, all points and uncertainties
are propagated into a reduced observation space which is given by the tangent vector space on
the unit sphere in the camera frame and has been derived in [47]. Instead of performing ML
minimization to estimate the control points as in CEPPnP, MLPnP directly minimizes residuals
in the tangent planes over the unknown quantities, the rotational and translational parameters,
without losing real-time capability. This enables MLPnP to provide pose uncertainties which
also represent a measure of reliability.
Later, Image Uncertainty-Based Absolute Camera Pose Estimation with Fibonacci Outlier
Elimination (IUPnP) [48] has been published based on MLPnP. It combines the approach of
minimizing residuals in the reduced observation space with an algebraic outlier rejection scheme.
Correspondences with tangent space residuals exceeding a threshold are iteratively rejected
while also iteratively updating the threshold value using the Fibonacci technique.
However, there are hardly any known PnP solvers that also take observation uncertainties
in the 3D reference points into account. To the best of my knowledge, the only work that
also considers 3D uncertainties is called EKFPnP (Extended Kalman Filter for Camera Pose
Estimation in a Sequence of Images) and has recently been published [49]. Uncertainties are
incorporated from 2D feature uncertainties and implicitly from the camera motion history. An
extended Kalman Filter (EKF) is applied as probabilistic model for camera pose estimation.
The pose estimation is done in two steps. First, during prediction, the camera motion model is
applied to obtain an a priori pose estimate of the camera pose which is refined in the correction
step by minimizing the reprojection error. One advantage of this approach is that it also yields
covariance estimates of the resulting pose which can again be taken as a measure of reliability.
This thesis will present a novel approach towards solving the PnP problem with consideration
of observation uncertainties in 2D and 3D. The theoretical framework of MLPnP is modified to
operate on odometry readings as input. Furthermore, it will be shown how covariances from
odometry readings can be propagated into the same reduced observation space. Finally, the
pose can be obtained from a generalized least-squares minimization of weighted residuals in the
tangent space.
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3
Tracking Approach

This work deals with two separate sub-problems. The first part consists of detecting and
tracking a certain object (ARDEA) in a sequence of images and determining its trajectory. For
this specific task, two different approaches have been implemented which will be presented. One
of these approaches is based on conventional methods. The other one is deep learning based.
In the beginning of this chapter, the theoretical background of the applied methods is briefly
explained. After that, it will be described how these methods are combined to successfully
track ARDEA in any video sequence and how to obtain the corresponding 2D trajectory.

3.1. Theoretical Background

Detection and tracking of ARDEA is achieved by relying on maninly three methods. A
background subtraction approach called Mixture of Gaussians (MOG) [15],[50] is combined
with CSRDCF [23], a correlation filter based tracker (CFT), to build a conventional tracker.
Additionally a RetinaNet [33] detector is trained on detection of ARDEA. For all of the three
methods the fundamental concepts will be briefly introduced.

3.1.1. Background Subtraction: Mixture of Gaussians (MOG)
Background subtraction methods aim to detect intruding objects in a scene. In many cases
a basic assumption is that the scene without the intruding object can be well described by a
statistical model. This model is comprised of probability density functions for each pixel x
(value in a colorspace, e.g. RGB) separately. The density functions can be learned from a batch
of training samples (image frames) χT “ txt, . . . ,xt´T u over a time period T with xt being
the pixel values at a time t. As there can be either samples belonging to foreground (FG) or
background (BG) objects in the training batch, a Gaussian Mixture Model (GMM) with M
components to describe a probability density function for every pixel can be defined as:

p px|χT , BG` FGq “
M
ÿ

m“1
πmN

`

x|µm, σ
2
mI

˘

(3.1)

with πm denoting cluster weights and the cluster means µm respectively variances σ2
m. The

number of componentesM has to be specified in advance in the original approach [15]. Recursive
update equations for the parameters of the m’-th component of the GMM for a new sample xt
are given by:

πm “ πm ` α
´

optqm ´ πm

¯

µm “ µm ` o
ptq
m

α

πm
δm

σ2
m “ σ2

m ` o
ptq
m

α

πm

`

δTmδm ´ σ
2
m

˘

(3.2)
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3. Tracking Approach

where δm “ xt ´ µm, o
ptq
m defining the ownership which is 1 for the closest Gaussian and 0

otherwise and a parameter α which sometimes is called a learning rate as it influences the
update steps.
Usually, as an intruding object should only be present in a small number of samples due to
movement, the foreground objects will be represented by clusters with small weights πm. Thus,
the background model can be approximated by the clusters with the B largest weights:

p px|χT , BGq “
B
ÿ

m“1
πmN

`

x|µm, σ
2
mI

˘

(3.3)

Assuming the weights to be in descending order, B can be chosen in the following way:

B “ arg min
b

˜

b
ÿ

m“1
πm ą p1´ cf q

¸

(3.4)

where cf is seen as a measure of the maximum portion of the data belonging to FG objects.
Finally, it can be decided whether a pixel belongs to the background by the following decision
rule:

p px|χT , BGq ą cthr (3.5)
with a threshold value cthr.
Using this decision rule, one can derive a background model for the input image sequence.

Intruding (FG) objects in the current image frame can then be detected by computing and
thresholding the absolute difference between the input frame and the background model. As
a result, a foreground mask is obtained marking regions of potential objects. The process of
object detection using a background subtraction mechanism is illustrated in Figure 3.1.
Zivkovic et al. [50] presented an extended version of the described approach. It is an improvement
by automatically selecting the number of required Gaussian components while simultaneously
reducing the computation time. A public implementation of the improved approach is available
within the OpenCV framework.

Figure 3.1.: Working Principle of Object Detection using Background Subtraction.
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3.1. Theoretical Background

3.1.2. CSRDCF: Discriminative Correlation Filter with Channel and Spatial Reliability
Correlation Filter based tracking methods in general follow the concept of tracking-by-detection.
The basic idea is to learn a correlation filter from a training sample which then enables the
detection of the same object in a different image. The new position is estimated as the location
of the maximum filter response. The general framework is illustrated in Figure 3.2.
For a given image sequence, the filters are initialized from a target patch cropped at the target’s
location in the initial frame of the sequence. During tracking, the object position in a new
frame can be estimated based on the estimated position in the previous frame. Therefore, a
feature map in the new frame is extracted at the location of the object in the previous frame.
After weighting the feature map with a cosine window to suppress boundary effects, the filter
response is calculated in the Fourier domain and transformed back into spatial domain to obtain
the response map. The maximum score in this response map then defines the new estimated
position of the target. Finally, the estimate of the updated position will be used to update the
correlation filters.
Estimating the optimal correlation filters can be seen as the key step of this pipeline. Instead
of operating on raw images, usually feature maps are extracted from every input image. The
goal can be formulated as estimating the filter h such that it yields a desired output g when
applying the filter to the input feature map f . This can be stated as a minimization problem:

arg min
h

Nd
ÿ

d“1
||fd ˚ hd ´ g||

2 (3.6)

where Nd is the number of feature channels and ˚ represents the convolution operation. Most
correlation filter based tracking approaches aim to solve that problem in the Fourier Domain
instead of solving it in the spatial domain. Applying a Fast Fourier Transform (p̂¨q is used to
label Fourier domain quantities) drastically reduces the computational cost as the convolution
operation becomes element-wise multiplication (denoted by d).

arg min
h

Nd
ÿ

d“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
f̂d d ĥd ´ ĝ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
(3.7)

Many CFT approaches additionally incorporate regularization terms that can reduce the
influence of background information. By the use of regularization the tracker can be prevented

Figure 3.2.: Schematic Overview of a CFT approach [51]
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3. Tracking Approach

from learning the background of irregularly shaped objects. A spatially regularized version of
equation (3.7) with a regularization parameter λ becomes

arg min
h

Nd
ÿ

d“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
f̂d d ĥd ´ ĝ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
` λ

Nd
ÿ

d“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ĥd

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
(3.8)

For this minimization problem, there still exists a closed-form solution. However, the solution
still suffers from the assumption of all pixels being equally reliable for filter learning. To address
that problem, CSRDCF extends common correlation filter based approaches by the use of
a binary spatial reliability map m indicating the reliability of each pixel for tracking. This
reliability of a pixel x conditioned on its appearance y can be specified as

p pm “ 1|y,xq 9 p py|m “ 1,xq p px|m “ 1q p pm “ 1q (3.9)

In equation (3.9), the appearance likelihood p py|m “ 1,xq in this approach is computed from
color histograms of the foreground and background. The prior p pm “ 1q is given by the ratio
between the foreground and background size and as spatial prior p px|m “ 1q, an Epanechnikov
kernel is chosen. Using the Epanechnikov kernel sets larger weights on central pixels which
are more likely to contain foreground pixels. A maximum a posteriori solution for the spatial
reliability map m is obtained by a Markov random field solver. Finally, m is imposed as
additional constraint on a dual problem of (3.8)
Furthermore, CSRDCF not only constructs a spatial reliability map, but it also incorporates
channel reliability. Introducing a channel reliability measure is supposed to distinguish filter
channels that have high discriminative power from those with low discriminative power. Channel
reliability is comprised of a learning channel reliability measure on the one hand and a detection
channel reliability measure on the other hand.
Learning channel reliability is considered during filter learning and expresses how well each
channel’s response fits the desired response g. Thus, the maximum response value wd “
ζ max pfd ˚ hdq of every learned filter channel can be used as a reliability measure using a
normalization constant ζ such that

ř

dwd “ 1.
In contrast to that, detection reliability of a feature channel expresses the reliability of predicting
the target’s new position as the location of the maximum filter response in the corresponding
channel. This reliability can be modeled as the ratio of the second and first major mode in
the response map. This can be justified by a simple example. If the two major modes were of
similar magnitude, both positions would equally likely be the target’s estimated position in
the new frame. Hence, the estimated position would be highly uncertain. Otherwise, if the
maximum response can be clearly identified, tracking can be achieved with low uncertainties.
Apart from spatial and channel reliability measures, CSRDCF also integrates Discriminative
Scale Space Tracking (DSST) by Danelljan et al. [20] which learns a separate filter for scale
estimation.
The implementation of CSRDCF is publicly available within the OpenCV framework (where it
is called CSRT ). The original implementation by Lukezic et al. uses HOG and CN features and
was proven to satisfy real-time requirements. By the time of its publication in 2016 it achieved
state-of-the art performance on several benchmarks (e.g. OTB100 or VOT2016).

3.1.3. RetinaNet
RetinaNet is a state-of-the-art one-stage object detector which has been published in 2018.
Object detection is defined as a regression problem and the network can be learned end-to-
end from input images to output bounding boxes and class probabilities. Its architecture is
comprised of a backbone network and two task-specific networks. The overall structure is
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3.1. Theoretical Background

Figure 3.3.: Network architecture of RetinaNet consisting of (b) a Feature Pyramid Network
(FPN) on top of a (a) ResNet architecture as backbone with two task-specific
subnetworks for (c) classification and (d) bounding box regression [33].

visualized in Figure 3.3.
Combining a ResNet architecture with a Feature Pyramid Network (FPN) [52] in the backbone
network enables the network to generate a rich, multi-scale convolutional feature pyramid. To
detect objects at different scales, each level of the pyramid can be used. Fixed anchor boxes
are defined on each level for every location of the feature map with different sizes and aspect
ratios covering the whole image. Each anchor is assigned a one-hot vector of classification
targets (length K: number of classes) and a vector of box regression targets (4 elements).
The assignemnt is done base on the Intersection over Union (IOU) between anchor boxes and
ground-truth object boxes. Each of these pyramidal levels feeds a classification and a bounding
box regression feed-forward network.

Box Regression Subnet
The box regression network yields 4A (A: number of predefined anchor boxes) linear outputs
per spatial location on every level. These outputs predict the relative offset between every
anchor and its assigned ground-truth bounding box using the standard box parametrization
of R-CNN [25]. The four output parameters can be interpreted as center offsets px and py
respectively width and height offsets pw and ph. The localization loss is given by the standard
smooth L1 loss for predictions p and regression targets t [26]:

Lloc pp, tq “
ÿ

iPtx,y,w,hu

smoothL1 ppi ´ tiq (3.10)

with the regression targets being calculated from anchor box parameters ai and ground-truth
box parameters gi using

tx “
gx ´ ax
aw

ty “
gy ´ ay
ah

tw “ log
ˆ

gw
aw

˙

th “ log
ˆ

gh
ah

˙

(3.11)

The smooth L1 loss in equation (3.10) is calculated as follows:

smoothL1 pxq “

#

0.5x2 |x| ă 1
|x| ´ 0.5 |x| ě 1

(3.12)
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Classification Subnet
In parallel to the box regression subnet, the classification subnet predicts the probability of
object presence per spatial location as a one-hot encoded vector. For training the classification
net, RetinaNet firstly proposed to use a novel loss formulation, the so-called focal loss. Note
that per image, the detector often evaluates several thousands of anchor boxes with only a few
of them really containing any objects of interest. Hence, many of them are easy negatives which
do not contribute to a useful learning signal. The focal loss is aiming to address this problem
of class imbalance by down-weighting easily classified examples and focussing on training on
hard examples. Consider a binary classification case with ground-truth classes y P t˘1u and
p P r0, 1s being the probability for the class y “ 1. Using the notation of pt as

pt “

#

p y “ 1
1´ p otherwise

(3.13)

the focal loss can be formulated as follows:

FL pptq “ ´ p1´ ptqγ log pptq (3.14)

The formula for the focal loss includes a focusing parameter γ ě 0 that is used to adjust the
rate at which easy examples are down-weighted. In the special case of γ “ 0 the focal reduces
to the simple cross entropy loss used in many classification problems.
The total loss function for training is comprised of the sum of focal loss as classification error
function and the smooth L1 loss as localisation error.
For prediction on new data, top predictions of all levels are merged and a non-maximum
suppression with a threshold of 0.5 on the class probability is applied to yield final outputs.

3.2. Applied tracking algorithms

This section will describe how the two conventional methods, MOG and CSRDCF, can be
combined to build an object tracker. Furthermore, it will be stated how a RetinaNet object
detector can be used in the setting of this thesis to achieve tracking of ARDEA.

3.2.1. Conventional Tracker based on MOG and CFT
The idea of combining a CFT and a background subtraction for the task of object tracking
is adapted from [53]. There, a background subtraction method called LOBSTER [54] is used
together with a Kernelized Correlation Filter (KCF) tracker. In this thesis, we will build a
combined tracker from the previously introduced methods, the Mixture of Gaussians (MOG)
and the Discriminative Correlation Filter with Channel and Spatial Reliability (CSRDCF).
The background subtraction algorithm mainly is used for object detection and the filter based
tracker can support in data association between detection of subsequent frames.
The tracking approach that is implemented can be mainly divided into three stages:

• Background Learning Stage:
Initially, given an image sequence, in the first frame, no information of the background is
known. Thus, in the first stage of the tracker, a background of the current scene needs to
be learned. Therefore, the first nBG frames, only the MOG model is updated in every
step.

• Object Initialization Stage:
After having learnt a model of the background in the first stage, that model can be used
to obtain the thresholded foreground mask. Morphological operations, like dilatation, are
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3.2. Applied tracking algorithms

(a) Foreground Mask (b) Object Detections

Figure 3.4.: Visualization of object detections for a given foreground mask resulting from
background subtraction

applied to this foreground mask to suppress artefacts. Foreground objects are detected
by finding contours in the dilated foreground mask. Each object is described by the
rectangular bounding box enclosing the contour and the trajectory is described by its
center point. The objects which can be found in an exemplary frame from its foreground
mask are visualized in Figure 3.4. Note that, here no mechanism is implemented to
identify objects. As it can be seen in the example, not only ARDEA is detected, but
also the hinge which ARDEA is fixed to. For each of the objects detected that way, a
CSRDCF tracker is initialized using the object’s bounding box.

• Object Tracking Stage:
With the initialized objects and the corresponding trackers, the goal now is to track these
objects in the remaining frames of the video. This is, where the combination of MOG
and CSRDCF really comes into play.
First, in every frame, the background model as well as the tracker are updated. Using the
background model, new Candidate Object Regions (COR) can be identified applying the
same steps as during object detection. Similarly the CFT update yields Tracker Outputs
(TO) for every tracked object. The overlap of a CORi and a TOj can be computed using
the Intersection over Union (IoU).

IoUij “
CORi X TOj
CORi Y TOj

(3.15)

Using the definition of the IoU, every TOj is assigned its best matching CORi meaning
the candidate region with the highest IoU value. The association is accepted if it exceeds
a certain threshold value cIoU , i.e.

IoUij ą cIoU (3.16)

. Based on this assignment, several states of the tracking target are defined.
1. Tracked: 1 TO is matched to 1 COR

This defines the most simple case. Every object can be uniquely assigned to a
corresponding candidate region from background subtraction. The COR is used
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(a) State: Tracked (b) State: Occlusion

Figure 3.5.: Visualization of the tracking target states. TOs are indicated by green bounding
boxes, CORs by blue bounding boxes. Left: Both TOs representing foreground
objects can be assigned to distinct CORs. Right: Both TOs would be assigned to
the same COR due to occlusion.

to update the track and the tracker is re-initialized. The re-initialization is done
to address the issue of long-term drift of the CFT and to prevent the CFT from
learning background information. For clarity, this state is shown in Figure 3.5a.

2. Occlusion: ą 1 TOs are matched to 1 COR
This case occurs when two objects are occluding each other. In that case, the
background subtraction algorithm will not be able to distinguish the two objects
and the TO is used to update the track. Figure 3.5b shows an example for the case
of occlusion.

3. Target Lost: 1 TO is not matched to any COR
If the TO can not be matched to any COR, the track ends and the target is assumed
to be lost. Up to this point, the implementation does not enable any re-identification
mechanism.

One could extend the approach by the detection of new objects. New objects might be identified
from CORs that are not overlapping any TO. Nevertheless, in the context of this thesis, the
presence of the target to be tracked (ARDEA) is assumed from the beginning. The overall
described approach for tracking using conventional methods is summarized as Algorithm 1.

3.2.2. Tracking-by-detection using a RetinaNet Detector
The previously introduced tracking approach is able to achieve satisfactory results for very
simple scenarios. Prerequisites are a static camera, relatively static backgrounds, a low number
of moving objects and relatively constant lighting conditions. If these conditions hold, tuning
the hyperparameters of the two conventional tracking approaches can lead to a reliable tracker.
Nevertheless, in realistic use cases, these prerequisites cannot be always guaranteed and it is
desirable to have a tracking approach that has good generalization capabilities. That means that
the tracker is able to perform reliably in arbitrary environments with a minimum of required
manual input. That is why in this thesis, it will also be tested whether a learning-based detector
can be used for the purpose of tracking. The conventional tracking approach is therefore applied
to generate labeled training data (images and corresponding bounding boxes) from simple
scenarios. A RetinaNet detector is trained on detection of a single class (ARDEA) using these
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labeled images. Additionally, data augmentation has been applied to create additional training
data of varying shape and size. So far, only a method for detection of ARDEA is described.
However, for the task of tracking one single instance, the problem simplifies drastically as data
association can be neglected. It is safe to assume, that the object of interest will only appear
once in the scene. That means, if the detection is accurate and fast enough, no tracking would
be needed.

Algorithm 1 Conventional Tracker based on MOG and CSRDCF
MOGÐ Initialize background subtraction model

for Frame ft in Image Sequence do

if t ă nBG then Ź Background Learning Stage
MOGÐ update background model with ft

else if t “ nBG then Ź Object Initialization Stage
MOGÐ update background model with ft
ObjectsÐ detect objects using BG subtraction
for every active object in Objects do

object.Tracker Ð initialize CSRDCF tracker for every object
object.Track Ð r object.center s

end for

else if t ą nBG then Ź Object Tracking Stage
MOGÐ update background model with ft
CORÐ detect candidate regions using BG subtraction

for every active object in Objects do
TOj Ð update object.Tracker
CORi Ð determine candidate region with maximum IoU
StateÐ determine target state based on IoU assignment

if State “ "Tracked" then
object.Track Ð append center of CORi
object.Tracker Ð re-initialize tracker

else if State “ "Occlusion" then
object.Track Ð append center of TOj

else if State “ "Lost" then
object Ð set inactive

end if

end for

end if

end for
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4
Pose Estimation

In this chapter, a novel approach for solving a modified PnP Problem is introduced that
explicitly incorporates 2D image uncertainties as well as 3D model uncertainties. Instead of
correspondences within one frame, 3D and 2D observations are obtained as trajectories over
several frames. Assuming visual odometry readings and image observations as inputs, a problem
formulation will be derived and it is shown how corresponding uncertainties can be propagated.
Based on [8], the problem will then be transformed into a reduced observation space which
is given by the vector tangent space on the unit sphere in the camera frame. Finally, the
pose estimation is formulated as a minimization problem and different solution techniques are
presented. The overall algorithm is summarized in Algorithm 3.

4.1. Problem Formulation

The main goal is to estimate the current position and orientation of ARDEA relative to the
LRU where at a time i the current position is given by the translation vector cti P R3 and the
orientation can be represented by a rotation matrix cRi P R3ˆ3. As an input the following
quantities are given:

• Delta Poses from Visual Odometry

– Sequence of n odometry readings
`

i´j´1Ri´j ,
i´j´1ti´j

˘

for j “ 0, . . . , n´ 1

˛ Relative translation i´j´1ti´j P R3: position of ARDEA at time i ´ j with
respect to previous frame i´ j ´ 1

˛ Relative orientation i´j´1Ri´j P R3ˆ3: orientation of ARDEA at time i ´ j
with respect to previous frame i´ j ´ 1

– Corresponding uncertainties as covariance matrices Σδui´jδui´j
P R6ˆ6 (translation

and rotation error per axis)

• 2D Observations from Tracking

– n` 1 corresponding 2D image observations x1i´j P R2 for j “ 0, . . . , n

– Corresponding uncertainties as covariance matrices Σx1i´jx
1
i´j
P R2ˆ2

• Camera intrinsics matrix K P R3ˆ3

The pose estimation problem and the involved geometric transformations are visualized in
Figure 4.1.
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Figure 4.1.: Visualization of the geometric transformations occuring in the pose estimation
problem.

4.1.1. Integration of Odometry Readings
At a specific time step t “ i, the current position of ARDEA in the camera frame cpi is simply
given by cti. Based on the known sequence of n odometry readings, the previous positions of
ARDEA can be calculated by

cpi “
cti

cpi´1 “
cti `

cRi
iti´1

cpi´2 “
cti `

cRi
iti´1 `

cRi
iRi´1

i´1ti´2
...

cpi´n “
cti `

cRi
iti´1 ` . . .`

cRi

n´1
ź

k“1

´

i´k`1Ri´k
i´n`1ti´n

¯

(4.1)

One can observe, that not the odometry readings i´j´1Ri´j , i´j´1ti´j itself occur in these
equations but its reversed versions which can be easily converted into one another by

i´jRi´j´1 “
i´j´1Ri´j

T

i´jti´j´1 “ ´
i´jRi´j´1

i´j´1ti´j
(4.2)

using the fact that the rotation matrix is an orthonormal matrix.
Equation (4.1) can be generalized such that at a time step i, a previous position of ARDEA
from j time steps ago can be written as

cpi´j “
cRi

ip̂j `
c ti (4.3)

with the newly introduced ip̂j being constructed only from odometry readings as follows:

ip̂j “
j
ÿ

m“1

˜

m´1
ź

n“1

i´m`n`1Ri´m`n

¸

i´m`1ti´m (4.4)
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Figure 4.2.: Simplified model of the pinhole projection assuming equivalent focal length in both
directions and no skew. A point x in the camera frame is projected onto x1 in the
image plane.

For efficient computations, this new quantity can also be computed iteratively when sequentially
processing odometry readings. This iterative update is given by

ip̂j “
ip̂j´1 `

˜

j´1
ź

n“1

i´j`n`1Ri´j`n

¸

i´j`1ti´j

“ ip̂j´1 `
iRi´j`1

i´j`1ti´j

“ ip̂j´1 `∆p̂j´1,j

(4.5)

4.1.2. Application of the Camera Model
In the context of this thesis, the camera is assumed to be calibrated and thus, camera intrinsic
parameters are known from calibration. Using the pinhole camera model, 3D points xi´j P R3

in the camera coordinate frame corresponding to 2D image observations x1i´j P R2 can be
obtained up to an unknown distance Zi´j by the inverse pinhole projection. Therefore, the
representation of the camera intrinsics as projection matrix K is used.

Zi´jxi´j “ K´1
„

x1i´j
1



(4.6)

The model of the projective transformation used in the pinhole camera model is shown in
Figure 4.2 and the corresponding projection matrix can be formed from the camera parameters
including the focal lengths fx and fy in x- respectively y-direction, the optical center coordinates
cx and cy and a skew parameter s [55].

K “

»

–

fx s cx
0 fy cy
0 0 1

fi

fl (4.7)

A subsequent spherical normalization yields general observations lying on the surface of the
unit sphere in the camera frame. The resulting observations are denoted as vi´j P R3 with
||vi´j || “ 1.

vi´j “
xi´j
||xi´j ||

(4.8)

Plugging the inverse projection (4.6) and spherical normalization (4.8) into equation (4.3) for
the calculation of the position of ARDEA at an arbitrary time j, yields a general observation
equation with unknown scale factors λi´j .

λi´jvi´j “
cRi

ip̂j `
c ti (4.9)

21



4. Pose Estimation

4.1.3. Covariance Propagation
This section shows how covariances corresponding to 2D and 3D observations can be propa-
gated during transformation of the problem to the camera frame and the following spherical
normalization.
A general formula for linear propagation of uncertainties undergoing arbitrary transformations
π : xÑ y “ π pxq is using the Jacobian Jπ of the transformation and is often referred to as
error propagation formula. It is given by

Σyy “ JπΣxxJTπ (4.10)

2D Covariances
For the inverse projection of 2D observations into the camera frame, the Jacobian of (4.6) for
covariance propagation is given by the inverse of the camera matrix. The resulting camera
frame covariances are obtained as

Σxi´jxi´j “ K´1

«

Σx1i´jx
1
i´j

0
0T 0

ff

K´T (4.11)

For the following spherical normalization, covariances can be propagated using [47]:

Σvi´jvi´j “ Jvi´j Σxi´jxi´j JTvi´j
Jvi´j “

1
||xi´j ||

`

I´ vi´jvTi´j
˘

(4.12)

An overall covariance matrix p2DqΣvv can be formed as a block diagonal matrix with elements
Σvi´jvi´j on the main diagonal.

p2DqΣvv “

»

—

–

Σvivi 0
. . .

0 Σvi´nvi´n

fi

ffi

fl

(4.13)

The covariance matrices Σvivi propagated in the described way will be singular and thus,
also p2DqΣvv will be singular. That is the reason why in the original work [8], the reduced
observation space is used which will be derived later.

3D Covariances
In the case of 3D pose uncertainties, covariance propagation becomes more complex. This is
due to the fact that subsequent measurement errors are not any longer independent. In fact,
the errors are summing up over time. Thus, we cannot construct separate covariances matrices
Σvivi P R3ˆ3 per observation. Instead, for n ` 1 observations, an overall covariance matrix
Σvv P R3pn`1qˆ3pn`1q needs to be constructed to appropriately model the dependency between
measurements. Therefore, the following error model for translational and rotational errors is
introduced

cRi “
cR̂i

cδRi

cti “
ct̂i ´

cδti
(4.14)

where cRi,
cti are true, but unknown quantities, cR̂i,

ct̂i are estimated and cδRi,
cδti are

corresponding error quantities. The rotational errors are locally defined and represented in the
matrix cδRi.

cδRi “ et cδφi uˆ “ I ` t cδφi uˆ `
1
2 t cδφi u2

ˆ `
1
3! t cδφi u3

ˆ ` . . . (4.15)
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The rotation vector cδφi P R3 encodes rotation errors. A linear approximation of the matrix
cδRi is used for covariance propagation.

cδRi « I` t cδφi uˆ (4.16)

After substituting the error model into the equation for ARDEA’s position over time (4.1), one
obtains the following linear error propagation:

cδpi “
cδti

cδpi´1 “
cδti `

cR̂it
it̂i´1 ucˆδφi `

cR̂i
iδti´1

cδpi´2 “
cδti `

cR̂it
it̂i´1 `

iR̂i´1
i´1t̂i´2 uˆ

cδφi `
cR̂i

iδti´1

` cR̂i
iR̂i´1t i´1t̂i´2 uiˆδφi´1 `

cR̂i
iR̂i´1

i´1δti´2
...

cδpi´n “ . . .

(4.17)

A detailed derivation of the error propagation can be found in Appendix A.1.
This can be rewritten in Matrix-Vector form as:

»

—

—

—

—

—

–

cδpi
cδpi´1
cδpi´2

...
cδpi´n

fi

ffi

ffi

ffi

ffi

ffi

fl

“ C
„

cδti
cδφi



` B

»

—

—

—

—

—

—

—

—

—

–

iδti´1
iδφi´1
i´1δti´2
i´1δφi´2

...
i´n`1δti´n
i´n`1δφi´n

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

δp “ Cδx ` Bδu

(4.18)

with C P R3pn`1qˆ6 and B P R3pn`1qˆ6n. The construction of the matrices C and B are shown
in Appendix A.2.
Using this result, the covariance matrices can be propagated according to the following equation:

Σδpδp “ CΣδxδxCT `BΣδuδuBT (4.19)
In a filtering approach, equation (4.19) can be used directly. For the pose estimation, assuming
only delta pose uncertainties given, it reduces to

Σδpδp “ BΣδuδuBT (4.20)

where the overall pose covariance matrix Σδuδu P R6nˆ6n is a block-diagonal matrix containing
single pose covariance matrices Σδuiδui

P R6ˆ6 on the main diagonal. Due to the dependency of
errors on the whole sequence of measurements, the resulting covariance matrix Σδpδp P R6nˆ6n

will be fully occupied. Similarly to the 2D case, a subsequent normalization has to be applied.
Therefore, it helps to investigate the iterative structure of the position equations (4.3) - (4.5).
From that, it follows that any observation vi´j always only depends on more recent observations,
not on older ones. Thus, constructing the Jacobian for the speherical normalization will result
in a lower triangular matrix of the following form:

Jv “

»

—

—

—

—

—

–

Jvi 0
Jvi´1 Jvi´1

Jvi´2 Jvi´2 Jvi´2
...

...
... . . .

Jvi´n . . . . . . . . . Jvi´n

fi

ffi

ffi

ffi

ffi

ffi

fl

(4.21)
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4. Pose Estimation

Figure 4.3.: Illustration of the reduced observation space. A point in the camera frame cpi is
projected onto the unit sphere. The tangential plane corresponding to projected
observation vi is spanned by its nullspace vectors ri and si.

using the Jacobians for single observations from (4.12). A detailed derivation of this result can
be found in Appendix A.3.
The resulting overall covariance matrix for 3D observations after normalization is obtained as

p3DqΣvv “ JvΣδpδpJTv (4.22)
Combined Covariance Matrix
Now, after all given uncertainties have been propagated to the unit sphere in the camera frame,
we can add the resulting covariance matrices p3DqΣvv, derived from ARDEA’s delta pose inputs,
and p2DqΣvv, derived from image observations, to construct a combined, overall covariance
matrix for all observations Σvv.

Σvv “
p3DqΣvv `

p2DqΣvv (4.23)

4.1.4. Reduced Observation Space
Finally, following [8] and [47], the problem is now transformed to a two-dimensional reduced
observation space, which is given by tangent planes on the unit sphere. Figure 4.3 illustrates this
reduced observation space. For every single observation vi´j for j “ 0, . . . , n, the corresponding
subspace is spanned by its null space vectors ri´j and si´j .

Jvr,i´j “ null
`

vTi´j
˘

“
“

ri´j si´j
‰

(4.24)

The function nullp¨q computes the null space of a vector by calculating its Singular Value
Decomposition (SVD) and taking those right singular vectors corresponding to the two zero
singular values. Jvr,i´j can be used to project every observation to its reduced observation
space where its reduced observation vr,i´j should be in the origin of the tangent plane. This
can be formalized as

vr,i´j “

„

dri´j
dsi´j



“ JTvr,i´j
vi´j “ 0 (4.25)

with residual components dri´j and dsi´j . Applying this projection to our pose estimation
problem (4.9) results in

„

dri´j
dsi´j



“

„

rTi´j
sTi´j



λ´1
i´j

`

cRi
ip̂j `

c ti
˘

(4.26)
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4.2. Pose Estimation as Minimization Problem

with depth values λi´j ‰ 0. In (4.26), it is assumed that the projection of ip̂j into the reduced
tangent space results in the same reduced coordinates as the projection of the 2D observation
vi´j and thus, the residual equation should hold.
JTvr,i´j

is also the Jacobian of the nullspace projection and can be used for covariance propagation.
But, as individual observations cannot be considered independent, covariance propagation needs
to take into account all observations in all reduced spaces. Therefore the residuals are stacked
and the propagation can be obtained as

Σvrvr “ JTvr
ΣvvJvr (4.27)

where the overall nullspace Jacobian Jvr is given by the following block matrix:

Jvr “

»

—

—

—

–

Jvr,i 0
Jvr,i´1

. . .
0 Jvr,i´n

fi

ffi

ffi

ffi

fl

(4.28)

Jvr will be of size R3pn`1qˆ2pn`1q with blocks being formed by single observation nullspace
projections Jvr,i´j P R3ˆ2.

4.2. Pose Estimation as Minimization Problem

Using the representation of all quantities in the previously introduced reduced observation
space, the pose estimation can be formulated as a minimization problem. This will be shown in
the following section and linear solutions as well as non-linear estimates will be derived.

4.2.1. Derivation of Minimization Problem
Expanding and stacking the residuals in equation (4.26) yields two equations per observation:

0 “ r1
`

r̂11p1 ` r̂12p2 ` r̂13p3 ` t̂x
˘

`r2
`

r̂21p1 ` r̂22p2 ` r̂23p3 ` t̂y
˘

`r3
`

r̂31p1 ` r̂32p2 ` r̂33p3 ` t̂z
˘

0 “ s1
`

r̂11p1 ` r̂12p2 ` r̂13p3 ` t̂x
˘

`s2
`

r̂21p1 ` r̂22p2 ` r̂23p3 ` t̂y
˘

`s3
`

r̂31p1 ` r̂32p2 ` r̂33p3 ` t̂z
˘

(4.29)

in which r1,2,3 and s1,2,3 are the elements of the nullspace vectors ri´j respectively si´j and
p1,2,3 the elements of ip̂j . Introducing the parameter vector u P R12 containing the components
of the estimated rotation matrix cR̂i and estimated translation vector ct̂i and stacking residuals
for n observations yields a homogeneous system of linear equations:

Au “ 0

u “
“

r̂11, r̂12, r̂13, r̂21, r̂22, r̂23, r̂31, r̂31, r̂32, r̂33, t̂x, t̂y, t̂z
‰T (4.30)

in which A P R2pn`1qˆ12 represents a design matrix constructed from the coefficients in (4.29).
As the parameter vector u includes twelve unknowns, a minimum number of n ` 1 “ 6
observations (for n odometry readings) is required to obtain a solution to the problem.
Alternatively, (4.30) can be reformulated as a minimization problem in a least-squares sense,
finding u˚ such that

u˚ “ arg min
u
||Au||22 subject to ||u||2 “ 1 (4.31)

The constraint ||u||2 “ 1 avoids retrieving the trivial solution u “ 0.
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4. Pose Estimation

4.2.2. Linear Least-Squares Solutions
In this section, different ways to obtain a solution to the previously derived minimization problem
are provided, either including or neglecting weighting by known observation uncertainties. A
general form of the weighted minimization problem can be found as

min
u
||Au||2W (4.32)

with a weighting matrix W. In the unweighted case (W “ I), this reduces to the original
least-squares problem (4.31). In the weighted case, the inverse of the covariance matrix is used
as weighting matrix (W “ Σ´1

vrvr
). For a better readability, we will use Σ´1 “ Σ´1

vrvr
in the

remainder of this section.
Initially, an unweighted solution to the homogeneous problem is derived by the use of normal
equations. Alternatively, it will be shown under which assumption this problem can be trans-
formed into an inhomogeneous problem to apply ordinary least-squares approaches. Including
observation uncertainties, the problem can be extended to a generalized least squares problem.
In the latter case, a weighted residual will be minimized using the inverse of the covariance
matrix as weighting matrix. Note that the parametrization of the rotation by nine elements
in (4.30) is non-minimal. Thus, in the end it will be shown how the final rotation matrix and
translation vector can be retrieved from the linear solutions.

Unweighted Solution to the Homogeneous System
In the unweighted case, the normal equations for the problem (4.31) can be derived as:

ATAu “ Nu “ 0 (4.33)

Following [56, p. 593], a solution to this problem under the constraint ||u||2 “ 1 can be obtained
using the singular value decomposition (SVD) of N.

N “ UDVT (4.34)

The solution to the homogeneous system u˚ is then given by the right singular vector (columns
of V) corresponding to the smallest singular value in D.

Conversion of the Homogeneous Problem
Alternatively, the homogeneous problem can be modified into an inhomogeneous problem as
shown in [56, pp. 90–91]. Therefore, a condition on one parameter is imposed. Here, we set
t̂z “ 1. Then, the resulting inhomogeneous problem can be written as

Ãũ “ b̃
Ã “ rA1, . . . ,A11s

ũ “
“

r̂11, . . . , t̂y
‰T

b̃ “ ´A12

(4.35)

where Ai denotes the i’th column of A. Ã is obtained from truncating A by the last column,
ũ contains the remaining eleven unconstrained parameters and b̃ is given by the negative last
column of A.
This can be treated as an Ordinary Least-Squares (OLS) problem of the form

min
ũ

ˇ

ˇ

ˇ

ˇÃũ´ b̃
ˇ

ˇ

ˇ

ˇ

2
2 (4.36)
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4.2. Pose Estimation as Minimization Problem

For this type of problems, the normal equations can be obtained as [56, p. 591]

ÃT Ãũ “ ÃT b̃ (4.37)

An algebraic solution is given by

ũ˚ “
`

ÃT Ã
˘´1 ÃT b̃ (4.38)

The solution to the original problem is then obtained by u˚ “ rũ˚ 1sT .
One major drawback of the described approach is that it fails if the true value of t̂z is zero or
nearly zero. But as in the context of this thesis, the constrained parameter is the distance of
ARDEA to the camera in z-direction, the assumption of t̂z being sufficiently larger than zero is
valid.
In many applications, ÃT Ã might be poorly conditioned and thus, more stable mehtods are
applied, e.g. by using a QR decomposition [55, p. 653]. In the implementation of the approach,
the Matlab built-in function lscov() is used which is also based on a QR decomposition [57].

Generalized Linear Least-Squares Solution
So far, solutions have been computed only for the unweighted case. In the previous sections, it
has been shown that measurement covariances can be propagated into the reduced observation
space. The resulting covariance matrix Σ implicitly encodes how trustworthy the corresponding
observations are. Hence, it is desirable to integrate this information into the problem formulation.
According to [58, pp. 153–186], for the linear and inhomogeneous problem (4.36) with known
observation covariances, the best linear unbiased estimate (BLUE) is found solving

min
ũ

`

Ãũ´ b̃
˘T Σ´1 `Ãũ´ b̃

˘

(4.39)

which is equivalent of the weighted problem formulated in (4.32). This type of problems is
commonly also referred to as Generalized Least-Squares Problem (GLS).
A common method applied in many GLS problems is using the Cholesky Factorization of the
covariance matrix to transform a GLS into an OLS problem. The Cholesky Factorization is
given as

Σ´1 “ LLT (4.40)

with a lower triangular matrix L.
Using this decomposition, (4.39) is equivalent to

min
ũ

ˇ

ˇ

ˇ

ˇLT
`

Ãũ´ b̃
˘ˇ

ˇ

ˇ

ˇ

2
2 (4.41)

Furthermore, together with the transformations Ā “ LT Ã and b̄ “ LT b̃ we can formulate an
equivalent OLS problem as

min
ũ

ˇ

ˇ

ˇ

ˇ

`

Āũ´ b̄
˘
ˇ

ˇ

ˇ

ˇ

2
2 (4.42)

which can then be solved by the same methods that have been introduced for the ordinary
least-squares problem.
It is important to mention here, that calculating the overall covariance matrix Σ requires an
initial estimate of the orientation. Thus, in practice, first the unweighted problem will be solved
once by SVD to compute the covariance matrix for the GLS problem.
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Retrieving True Pose
The linear solutions u˚ obtained from the various least-squares approaches yield a matrix R̂
and a vector t̂ by rearranging the elements:

R̂ “

»

–

r̂11 r̂12 r̂13
r̂21 r̂22 r̂23
r̂31 r̂32 r̂33

fi

fl t̂ “

»

–

t̂x
t̂y
t̂z

fi

fl (4.43)

This determines the unknown pose cRi, cti up to a scale factor. The translational part already
points into the right direction but still needs to be scaled appropriately. The required scale
factor can be recovered exploting the fact that each column r̂1, r̂2, r̂3 of the rotation matrix
must have a norm equal to one. This condition results in scaling the translation as follows [8]:

ct̂i “
t̂

3
a

||r̂1||2 ||r̂2||2 ||r̂3||2
(4.44)

In addition to the scale error, the non-minimal representation of the orientation by nine
parameters (nine matrix elements) causes R̂ to not define a correct rotation matrix. The
estimated orientation cR̂i can be recovered from the SVD of R̂

R̂ “ URDRVT
R (4.45)

The closest possible rotation matrix is then given by [59]

cR̂i “ UR

»

–

1
1

det
`

URVT
R

˘

fi

flVT
R (4.46)

4.2.3. Non-Linear Optimization
It is very common for many tasks in the field of computer vision to apply a non-linear refinement
after obtaining an initial estimate from solving a linear problem. Specifically in this case, we
want to apply a non-linear refinement to minimize weighted tangent space residuals from (4.26).
The minimization objective function can be formulated as

Epuq “ πnull pp̂,uq
T Σ´1 πnull pp̂,uq (4.47)

where πnull pp̂,uq is the stacked vector of nullspace projections of the integrated odometry
readings tip̂juj“0,...,n using (4.4) and (4.26). A minimal representation of rotations (Rodriguez
parametrization [60]) is used for parametrization of u during non-linear optimization.
Equation (4.47) can be rewritten as a common non-linear least-squares problem:

Epuq “
ˇ

ˇ

ˇ

ˇLT πnull pp̂,uq
ˇ

ˇ

ˇ

ˇ

2
2 (4.48)

where L is retrieved from the Cholesky factorization in (4.40).
In this thesis, minimization of (4.48) is done using Matlab’s function lsqnonlin() which applies
a trust-region method to solve the problem. This is why the basic concept of trust-region
methods will be revised briefly.
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Algorithm 2 Trust-Region Minimization for Non-Linear Least Squares
Problem: minx fpxq with fpxq “ ||rpxq||22
Given: starting point xk
repeat

Formulate trust-region subproblem by Taylor Series expansion around xk (equation (4.50))
Obtain update step s by Gauss-Newton approximation (solve (4.51)
Accept step if fpxk ` sq ă fpxkq
Adjust size of trust-region ∆k

until convergence

Trust-Region Method for Non-Linear Least Squares Problems
The first step of trust-region methods is the same as in the well-known Newton method (or the
related Gauss-Newton and Levenberg-Marquardt algorithms). For a minimization objective
function f : Rn Ñ R, a quadratic approximation is obtained in the proximity of a current point
xk using Taylor series expansion. Assuming the objective function to be twice continuously
differentiable, this approximation is given by

f pxk ` sq « f pxkq `∇f pxkqT s` sTH pxkq s (4.49)

Here, ∇f pxkq and H pxkq denote the gradient respectively the Hessian matrix at the current
point. From now on, the notation will be simplified such that Hk “ H pxkq and ∇fk “ ∇f pxkq.
Trust-region methods then define a region around the current iterate within which they trust
this approximation to be a valid representation of the objective function [61, chapter 4]. The
update step s is then chosen as the minimizer of the approximation in that region. Thus, the
step is a solution to the sub-problem:

min
sPRn

fk `∇fTk s` sTHks s.t. ||Ds||2 ď ∆k (4.50)

where D is a diagonal scaling matrix defining an elliptic trust region with the bound ∆k.
The step is accepted only if it satisfies fpxk ` sq ă fpxkq. Otherwise the size of the trust
region will be decreased. Matlab applies standard rules for the adjustment of the trust-region
dimension ∆k. [62]

For the special case of the objective function being a nonlinear least-squares problem, i.e.
fpxq “ ||rpxq||22, the solution to (4.50) can be obtained by an approximate Gauss-Newton
direction. Therefore the Hessian is approximated using the Jacobian J of the residual r such
that H “ JTJ. Then the step s is obtained as solution to the normal equations

JTJs “ ´JTr (4.51)

A very general summary of the trust-region algorithm is given in algorithm 2.

4.3. Overall Algorithm: PnP with Uncertainties

Having derived all steps in detail in the last sections, now a step-by-step description of the
overall approach is provided in Algorithm 3. It includes all steps from input processing through
spherical normalization, projection into the reduced observation space up to the minimization
of a weighted residual in the tangent vector space.
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4. Pose Estimation

Algorithm 3 PnP with Uncertainties
Input: Camera intrinsics K, 2D image observations x1i´j , 2D uncertainties Σx1i´jx

1
i´j

, delta
poses

`

i´j´1Ri´j ,
i´j´1ti´j

˘

, 3D uncertainties Σδui´jδui´j

Output: Pose cTi “ r
cRi

ctis

# Processing Inputs

for j “ 0 to n do
vi´j Ð Normalized observation using (4.6) and (4.8)
Jvi´j Ð Jacobian element for spherical normalization using (4.12)
Jvr,i´j Ð Nullspace vectors rri´j si´js from (4.24)
Σvi´jvi´j Ð Propagate image uncertainties using (4.11) and (4.12)
ip̂j Ð Integrate odometry readings ip̂j by (4.5)
A Ð Compute entries in design matrix using (4.29)

end for

# Initial Unweighted Estimate

N Ð ATA Solve homogeneous system (4.33) using SVD (4.34)
cR̂i,0 , ct̂i,0 Ð Retrieve pose using (4.46) and (4.44)

# Covariance Propagation

Jv, Jvr , p2DqΣvv Ð Construct overall Jacobian for spherical normalization (4.21), overall
nullspace Jacobian (4.28) and overall propagated image covariances (4.13)
B Ð Compute using cR̂i,0
p3DqΣvv Ð Overall pose covariance matrix according to (4.20) and (4.22)
Σvv Ð

p3DqΣvv `
p2DqΣvv

Σvrvr Ð Propagate covariances to reduced observation space using (4.27)

# Weighted Linear Estimate

cR̂i , ct̂i Ð GLS Minimization of weighted residual (4.39)
B , Σvrvr Ð Update with GLS estimate

# Non-Linear Refinement

cRi , cti Ð Trust-Region Minimization of (4.48) with initial estimates cR̂i , ct̂i
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5
Experimental Validation

The goal of this chapter will be to evaluate the tracking approaches from chapter 3 as well
as the pose estimation approach from chapter 4 in experimental setups. For that purpose,
experimental data has been recorded using ARDEA’s and LRU’s on-board sensors and the
VICON Motion Capture System. First, some prerequisites on type and use of data will be
provided. Following that, both tracking approaches, conventional and learning-based, will be
evaluated on selected data sets in qualitative and quantitative ways. Next, the pose estimation
approach will be evaluated in a simulation with artificially created odometry data. Finally, a
real-world problem will be presented, solving the overall problem of combined tracking and
pose estimation on real data.

5.1. Prerequisites

As prerequisites for an experimental evaluation, brief descriptions of every experimental data set
and the circumstances under which each one has been recorded will be provided. Furthermore,
it will be presented how data was used for training a RetinaNet detector.

5.1.1. Experimental Data Sets
Data has been collected in indoor and outdoor setups. Images have been recorded using the
different cameras of the LRU. Depending on the environment, images have been recorded either
from the tele camera or the navigation (color) camera or both. All systems are extrinsically
calibrated such that transformations between all frames are known. Furthermore, both of the
cameras are calibrated and intrinsics (according to the pinhole projection 4.7) are given by:

Kcolor “

»

–

1328.89 0.066987 627.137
0 1328.78 486.505
0 0 1

fi

fl

Ktele “

»

–

21030.9 ´53.248 1095.24
0 21005.7 923.69
0 0 1

fi

fl

(5.1)

Color camera images are obtained at a frequency of 14 Hz. In contrast, tele camera images
have been taken with different exposure times on different data sets due to changing ambient
lighting. That is why for some of the outdoor data sets, tele camera images are provided at a
frequency of 7 Hz and for others at a frequency of only approximately 1 Hz. While the data
sets that have been recorded outdoor are only used for validation of the tracking algorithms,
indoor data sets will be also used for a validation of the pose estimation approach. Therefore,
in most indoor scenarios, also visual odometry outputs of ARDEA and ground truth positions
from the VICON Motion Capture System are recorded. The ground truth positions are only
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used for a qualitative evaluation of the pose estimation on real data. The recorded positions are
jumping between several points on ARDEA and thus are not reliable enough for a quantitative
evaluation. VO readings are obtained at a rate of 7.8 Hz. Due to safety restrictions, ARDEA
has been attached to a hinge and has been carried around to create flight trajectories. For all
data sets, a brief description of each set will be provided describing the circumstances under
which data has been recorded. Indoor experiments are referred to as Lab XX whereas outdoor
recordings are named Outdoor XX.

• Outdoor 01 - 02: The person carrying ARDEA is hidden behind a pillar. This leads
to a limited range of ARDEA’s movement in the image plane. Tele camera images are
recorded only at 7 Hz while keeping the camera static.

• Outdoor 03 - 05: Color and tele camera images (at a rate of 1 Hz) are recorded.
ARDEA is initially located near the camera (good visibility in the color camera image)
and is moved around in the proximity of the camera. Later, ARDEA is moving away until
it is hardly visible in the color camera image. Cameras are static and the background is
varying.

• Outdoor 06: Color and tele camera images (at a rate of 1 Hz) are recorded. ARDEA
is in an intermediate distance (good visibility in the tele camera image) and moving back
and forth while the camera is moving with ARDEA’s movement.

• Outdoor 07: Color and tele camera images (at a rate of 1 Hz) are recorded. ARDEA
is starting close to the camera and is moving very far away up to a final distance of more
than 200 metres (Outdoor 07).

• Lab 01: Only color camera images are recorded. ARDEA is moving around in the lab
staying within the view of the static camera.

• Lab 02 - 04: Similar to Lab 01, but additionally VO readings and ground truth data
are recorded.

• Lab 05: Similar to Lab 02 - 04 but with a moving camera.

5.1.2. Training a RetinaNet Detector
This section will briefly describe, how training data for the task of detecting ARDEA is
collected from the experimental data sets. After that, important metrics are introduced that
are commonly used to evaluate the results of object detection algorithms. Finally, the training
process will be evaluated.

Training Data Collection
To avoid expensive manual labeling of training data, a tracker following the conventional
approach (chapter 3.2.1) can be tuned on some selected data sets to create labeled training data
(images and bounding boxes) on these sample scenarios. This is done for the sequences Lab
01 and Outdoor 01 - 05. As for most scenes, the tele camera images are recorded at very
low frame rates (1Hz), these are not very well suited for the conventional tracking approach
as displacements between subsequent frames become too large to establish correspondence
between detections by the presented approach. Thus, only for Outdoor 01 and 02, images
from the tele camera are used and color camera images otherwise. To achieve larger variation
in the training images, not every frame is used to extract training data, but every tenth frame
for color camera images and every fifth frame for tele camera images. Dataset augmentation
is applied to produce a larger number of training samples with varying shapes and scales.
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Figure 5.1.: Some examples of augmented training data. Scenes: Outdoor 01 (top left), Outdoor
02 (bottom left), Outdoor 03 (top center), Outdoor 04 (bottom center), Outdoor
05 (top right) and Lab 01 (bottom right).

Operations used for augmentation include random image flips (horizontally and vertically),
random crops, Gaussian blur, linear contrast adjustments, Gaussian noise, brightness changes
and affine transformations (scaling, translation, rotation, shear). Gaussian noise and brightness
changes are sometimes applied channel-wise which might result in changing the color of the
image. Some examples of augmented training images with corresponding bounding boxes are
shown in Figure 5.1. The resulting augmented data sets are then divided into training and
validation data. Bounding boxes extracted for Outdoor 01, 04 and 05 are used for training
only. Outdoor 03 is used for validation only. The remaining Outdoor 02 and Lab 01 are
split (90% training / 10% validation). In total, this procedure results in 1816 images for training
and 241 images for validation.

Evaluation Metrics for Object Detection
For validation purposes, the most common metrics are given by the Mean Average Precision
(mAP) which is based on the definitions of Precision and Recall. For a better understanding,
these quantities are introduced in the following.
Definitions of Precision and Recall can be given in terms of True Positives (TP), False Positives
(FP), True Negatives (TN) and False Negatives (FN). By True Positives, we denote detections
that can be assigned to ground-truth objects. Contrarily, False Positives are detections that
are not assigned to any ground-truth object. Following the same logic, False Negatives are
ground-truth objects that are not detected by the network. True Negatives is the number of
regions that are correctly not assigned to any object. Positive matches between predicted and
ground-truth bounding boxes are defined by the pair of boxes with an IoU ě 0.5. Using these
terms, the Precision can be defined as the ratio of correctly assigned detections divided by the
total number of detections of our network. Formally, this is given by:

Precision “
TP

TP ` FP
(5.2)
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So, the Precision gives a quantitative measure for the reliability of the detections but it does
not take missing detections into account. Opposed to that, the Recall also considers missing
detections and is given by the ratio of correctly classified detections divided by the total number
of instances of that class. This can be expressed by:

Recall “
TP

TP ` FN
(5.3)

Based on Recall and Precision, [63] introduced the Average Precision (AP) as evaluation
metrics combining the expressiveness of both quantities. The AP is given by the area under the
Precision-Recall curve. Usually, the AP would be repeatedly calculated for every class occuring
in the object detection task and the results would be averaged to obtain the Mean Average
Precision (mAP). Note that, in this context only one class of objects is existing and thus, mAP
and AP can be used equivalently.

Evaluation of Training Results
Finally, RetinaNet is trained minimizing the total loss as sum of the focal loss for classification
(equation (3.14)) and the smooth L1 loss for localization (equation (3.10)). The Keras imple-
mentation of RetinaNet is used and an Adams optimization scheme with an initial learning
rate of 1e´ 04 is applied. Training is done on batches of size 4 and a total of 50 epochs. The
model weights have been pre-trained on the COCO benchmark [64]. Loss curves for total loss,
box regression, and classification are plotted in Figure 5.2a.
Results on the validation data is monitored by the development of the mAP score which is
shown in Figure 5.2b.
These results show that after a number of 14 training epochs, the mAP does not improve
significantly for later epochs. Actually, for a very large number of epochs (25 or higher) the
mAP is almost constant. This indicates, that training for a large number of epochs does not
provide a useful learning information and might even degrade the performance of the network
due to overfitting. Moreover, it can be seen that in the range around 20 learning epochs, the
loss of the network has nearly converged. The optimal network has been found evaluating
snapshots of the detector after 15 to 25 epochs on unseen data. The best results have been
achieved by the network after 18 epochs. Hence, the model after training for 18 epochs will be
used for tracking purposes.

0 10 20 30 40 50

Epochs

0

0.5

1

1.5

2

2.5

3

L
o
s
s

Total Loss

Regression Loss

Classification Loss

(a) Loss Curves

0 10 20 30 40 50

Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
A

P

mAP

(b) Validation Results

Figure 5.2.: Loss and Validation Curves (mAP) during training of a RetinaNet Detector for 50
epochs.
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5.2. Validation of Tracking Approaches

This section will evaluate both tracking approaches by different quantitative and qualitative
means. In the beginning, it will be briefly explained by which measures the performance of each
tracking algorithm will be evaluated. Then, each of the tracking approaches will be applied to
some of the previously described data sets and both their performances will be assessed.

Validation Metrics
Assuming that the object of interest, which is supposed to be tracked, can only appear once in
a scene drastically simplifies the tracking problem. For the learning-based approach, only the
best prediction that has a class confidence score larger than 0.5 is considered as a detection
of ARDEA. To evaluate the performance of a tracking approach that is simply built upon
tracking-by-detection without any mechanism of data association, two things are important to
look at. First of all, it is interesting in how many frames, one can actually detect ARDEA. We
measure that by the ratio of the number of frames with a detection of ARDEA divided by the
total number of frames and will refer to this measure as Detection Rate:

Detection Rate “ # of frames with detection
# of total frames (5.4)

Not only the detection rate is of interest, but also the number of frames in a row in which
ARDEA cannot be detected. In fact, not detecting ARDEA in every frame would not harm the
goal of estimating the pose. A bigger problem would be, if ARDEA cannot be detected for a
large number of subsequent frames. This might degrade the performance of the pose estimation
algorithm. Hence, also the length of the longest sequence without detections will be evaluated
and denoted as Lfail.
Another important issue that often arises with object detectors, especially with learning-based
detectors, are False Positives. As no mechanism of data association is implemented so far, the
detection of a FP would lead to a wrong point in the image plane trajectory. Thus, the number
of FPs is also an important indicator to be considered.

As an analogy for the detection rate, we define the Track Rate for evaluation of the tracking
approach based on conventional methods. Therefore we introduce the track length Ltrack which
denotes the number of frames for which the object can be successfully tracked. The Track Rate
is then given by the ratio of the track length and the number of frames in the Object Tracking
Stage. Note that initial frames, which are used for learning of the background model, are not
considered.

Track Rate “ Ltrack
# of frames in Object Tracking Stage (5.5)

Moreover, the number of detected objects will be inspected. The conventional tracking approach
is not able to identify specifically ARDEA, but will detect all moving objects in a scene.
Detecting too many objects limits the computational performance and increases the difficulty
of distinguishing between objects.

Tracking Results on Lab Data Sets
In the first part of the evaluation of both tracking approaches, they will be applied to the data
sets that have been recorded in the laboratory. Note that the sequence Lab 01 has partially
occured in the training data of the learning-based detector. Lab 05 contains images of a
moving camera. In that case, the conventional tracker will fail and only predictions from the
learned RetinaNet Detector are evaluated.
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Lab 01 Lab 02 Lab 03 Lab 04 Lab 05
Track Rate [%] 100 99.21 56.21 97.94 X
nBG 180 180 180 180 X
# of Objects 3 3 3 2 X
# of Frames 419 939 1066 957 X

Table 5.1.: Performance indicators for evaluation of the conventional tracking approach.

The conventional tracker from chapter 3 has been implemented for the Lab data sets using a
number of 180 frames for background learning (nBG “ 180) and a distance threshold of 30 for
the decision whether a pixel is well described by the background model. As a threshold on the
IoU for data association between subsequent frames (equation (3.15)), cIoU “ 0.4 is selected.
The resulting tracking performances for indoor experiments are shown in Table 5.1.
The numbers indicate that for indoor experiments, the conventional tracker usually yields very
reliable tracking results with track rates of nearly 100% for the sequences Lab 01, 02 and 04.
That means, after having detected ARDEA, it can be tracked almost until the end of the video.
Actually, it just fails because it either lands and remains still (Lab 02) or it is occluded by the
operator at the end of the sequence (Lab 04). Due to very difficult circumstanes, the tracker
fails after 56% of the sequence for the set Lab 03. The frame during which ARDEA is lost is
shown in Figure 5.3. One can observe, that even with the human eye it is hard to distinguish
between the back of ARDEA and the background for that specific setup.

Figure 5.3.: Frame of the sequence Lab 03 where ARDEA’s track is lost. Real position indicated
by dashed orange box.

Besides ARDEA, the introduced approach for tracking and detection based on a combination
of background subtraction and a CFT always detects 1 or 2 additional objects in the scene
which correspond to the human operator or the hinge that is used to carry ARDEA.

Now, the RetinaNet detector which has been trained as described in section 5.1.2 is applied
to the same data sets. Table 5.2 summarizes the results on these image sequences. It can be
observed that for all test sequences, detections of ARDEA without any false positive predictions
can be obtained in more than half of the frames. To be more precise, the detection rate ranges
from approximately 55% in the worst case (Lab03) to more than 80% (Lab 03). Lab 01 is
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Lab 01 Lab 02 Lab 03 Lab 04 Lab 05
Detection Rate [%] 100 80.085 63.696 54.859 60.478
Lfail 0 44 103 93 25
# of FPs 0 0 0 0 0
# of Frames 419 939 1066 957 856

Table 5.2.: Performance indicators for evaluation of the learning-based tracking-by-detection
approach.

also listed here but needs to be treated separately as it was partly included in the training
process. Nevertheless, detections are obtained in every frame of the sequence, also the ones
that have been excluded from training.
The longest streak without detection varies widely depending on the data set. In the worst
case, no detection of ARDEA is obtained for a sequence of almost 10% of the total number of
frames. In the best case, this amount reduces to less than 3% (25 out of 856 frames for Lab
05). For the conventional tracking approach, one result was that tracking comes especially
difficult when the back of ARDEA is facing the camera which is harder to distinguish from the
background. This result seems to transfer also to the learning-based case where the longest
streaks without detections can be explained by long sequences in the video where only the
backside of ARDEA can be seen in the image.
The results for Lab 05 indicate that for moving camera setups, the learning-based tracking-by-
detection approach can be applied without any loss in performance.

For a comparison of the tracking results in terms of the trajectory, Figure 5.4 visualizes the
resulting trajectories in the image plane for both approaches. As an exemplary scenario, Lab
02 is chosen here. It can be seen that the trajectories are very similar but still seem to have an
offset. To obtain a quantitative measure by how much the trajectories resulting from the two
tracking approaches differ, an average deviation of the 2D image position is computed as

x̃∆ “
1
NM

ÿ

iPM

||x̃i,pred ´ x̃i,track|| (5.6)

where M is the set of frames that contains only frames for which there exists both, a position
x̃i,pred predicted by the RetinaNet detector, and a position x̃i,track obtained by conventional
tracking. NM denotes the number of such frames and is given by NM “ |M |. This average
deviation is computed for all the indoor data sequences and is listed in Table 5.3. The mean

Lab 01 Lab 02 Lab 03 Lab 04
x̃∆ [pixel] 18.56 13.77 13.58 14.18

Table 5.3.: Average deviation of trajectories in the image plane for Lab Data Sequences with
static camera.

absolute distance between the two resulting trajectories is varying between 13 and 19 pixels.
Considering raw image dimensions of 1292ˆ 964, this represents a deviation of only 1´ 2%
with respect to the image size. Furthermore, in the sample data sets, ARDEA is in a close
range with mean bounding box dimensions of approximately 113ˆ 77 (evaluated for Lab 02 ).
The average pixel error per direction for the example is given by 12 pixels (in x) and 5 pixels
(in y). Relative to the object’s size, this error can be considered quite small.
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Figure 5.4.: Lab 02: Trajectories of ARDEA in the image plane obtained from the two tracking
approaches. Positions for matching timestamps are indicated by dotted lines.

Tracking Results on Outdoor Data Sets
Thus far, it has been shown that both presented approaches for detecting respectively tracking
ARDEA are able to achieve good results on sample data that has been recorded in a static
environment. While in these sample scenarios, ARDEA has been in close distances to the
camera, the goal is to be able to track ARDEA also in larger distances and to estimate relative
orientations and locations even when ARDEA is far away. For that purpose, most outdoor data
sets have been recorded in a way that ARDEA starts close to the LRU and is moving away
from it. For these sets, it will be analyzed how long ARDEA can be successfully tracked. This
will be evaluated by means of the last frame of the track (respectively the last detection) and
the size of the bounding box in that last frame. As the conventional approach is only applicable
to the color camera data due to low frequency of the tele camera, this analysis is done on color
camera data of the sequences Outdoor 03 - 05. All parameters of the conventional tracker
are kept the same as in previous experiments. The only difference is that objects of smaller
sizes are accepted as candidate regions to be able to track ARDEA in smaller appearances.
Table 5.4 summarizes these experiments.
The results prove that the conventional tracker is able to track the object also when it becomes
very small in the image frame. The target bounding box, which is closely related to the object
dimensions due to background subtraction, decreases down to dimensions of around or even less
than 10 pixels in all cases. Opposed to that, in the RetinaNet detector, the target bounding
box is limited by the anchor box dimensions and thus will be larger, even if we still detect
ARDEA in the same frame. Hence, only for the conventional tracker, the box size can be seen
as a measure of the object size in the image.
For these three sequences, the conventional tracker performs at least comparable (Outdoor
04) or even better when the object is becoming very small. This might be due to a lack of
small representations of the object in the training data. Another reason, which has already
been mentioned, is that the choice of anchor boxes and their size limits the detection sizes.
These experiments also reveal one big problem of the learning-based detection approach which
can be especially observed in the sequence Outdoor 03. As Table 5.4 shows, the last true
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Outdoor 03 Outdoor 04 Outdoor 05
Last Frame of Track (Conventional) 422 372 578
Last True Detection (RetinaNet) 108 412 360
Last Detection(RetinaNet) 1274 412 360
Dimensions (Conventional) [pixels] 8ˆ 9 11ˆ 9 6ˆ 10
Dimensions (RetinaNet) [pixels] 42ˆ 31 56ˆ 36 43ˆ 27
# of Frames 1286 1500 1833

Table 5.4.: Comparison of performance indicators of both tracking approaches for tracked
objects becoming small.

detection of ARDEA can be found in frame 108. However, the network still yields detections in
later frames. This is a FP match and an example of such a wrong detection can be seen in
Figure 5.5b.
One drawback of the conventional method is the lack of identification of the object of interest.
As introduced in the theoretical section, all objects being detected are also tracked. We have
seen for the indoor environment, that only a small number of objects is detected. In that case,
efficiency of the algorithm is not harmed too much. That changes in more complex scenes
with more complex illumination conditions. Figure 5.5a illustrates all objects that are detected
exemplary for scene Outdoor 05. Here, the algorithm detects 23 objects. As one can see in
the image, most of them do not correspond to real moving objects but are caused by changing
illumination of the sky or surroundings. Most of these objects are lost by the algorithm after a
very small number of frames.

Another way to detect ARDEA also in farther distances is to use the tele camera. As tele
camera data are mostly only provided at a frame rate of 1Hz, the conventional tracker cannot
be used here. This is why, we will only elaborate the performance of the learning-based detector
on two of the data sets. On the one hand, Outdoor 06 is used with a moving camera setup.
On the other hand, in sequence Outdoor 07, it will be investigated up to which distances, the

(a) Outdoor 05 (b) Outdoor 03

Figure 5.5.: Drawbacks of both tracking approaches: (a) Conventional Approach: Large number
of detected objects (indicated by green bounding boxes) in scenes with changing
illumination. (b) RetinaNet Detector: FP Prediction (indicated by red bounding
box).
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(a) ARDEA in a distance ą 100 m (b) FP Detection of human operator

Figure 5.6.: Farthest Detection (a) and exemplary FP detection (b) by RetinaNet Detector on
sequence Outdoor 07

RetinaNet detector will still find ARDEA in the image.
In the context of a moving camera in sequence Outdoor 06, the size of ARDEA in the image
will be nearly constant. The detector achieves a detection rate of 63.16% and the longest
sequence without detections is 6 frames. But it also detects a number of 2 FPs. It does not
make sense to evaluate these numbers also for Outdoor 07 as with increasing distances and
thus decreasing object sizes, at some point the detector will not be able to find the object in
the image plane. There, the last true detection of ARDEA is obtained in frame 181 (out of 247
total frames). Figure 5.6a shows the last detection. During the image sequence the distance
has increased up to more than 200 metres (measured using Google Maps). Thus, using the tele
camera, reliable RetinaNet predictions for ARDEA’s positions could be obtained for distances
of more than 100 metres. However, especially in latter frames, the learning-based approach
again suffers from detection of FPs (Figure 5.6b).

Concluding Remarks on Tracking Approaches
This section evaluated the performance of both tracking approaches that had been introduced
in chapter 3. In first experiments, it has been shown that both perform quite well in an indoor
and static environment with the object of interest (ARDEA) being in a close range to the
camera. Nevertheless, both still have some significant drawbacks when applied to more complex
setups. The conventional approach mainly suffers from the lack of object identification and
thus has to track a large number of objects that are wrongly detected as moving objects due
to illumination changes in the scene. In contrast, the RetinaNet based tracking-by-detection
approach seems to have better generalization capabilities but its performance degrades due to
FP predictions. It must be mentioned here, that the focus of this thesis has not been on the
training of the network and thus, the training process itself has a big potential for improvement
by e.g. gathering more diverse data.
However, it needs to be stated that with these two approaches, reliable tracking could be
achieved on simple scenarios and tracking respectively detection of ARDEA in very large
distances is enabled.
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5.3. Validation of Pose Estimation Approach

The goal of this section is to validate the novel approach for pose estimation including full
uncertainty information that was introduced in chapter 4. First, validation metrics are defined
to evaluate the performance of the new method compared to other state-of-the-art approaches.
Following that, the approach will be applied in a simulation and its performance will be
evaluated in various settings. In the end, the method will also be applied in a real experiment
with real-world data.

5.3.1. Validation Metrics
The accuracy of the estimated pose of ARDEA with respect to the camera frame is evaluated
separately for translation and orientation. The translational error εt for an estimated translation
vector test and a ground truth translation vector tgt is given by the relative deviation.

εt “
||tgt ´ test||2
||tgt||2

(5.7)

The rotational error εr in degree is measured as the angle of the delta orientation R∆ between
the ground-truth orientation Rgt and the estimated orientation Rest. The angle can be obtained
using the axis-angle representation of a rotation matrix.

εr “ angle pR∆q “ angle
`

R´1
gt Rest

˘

(5.8)

The angle θ of a rotation matrix R can be calculated using its trace and Rodriguez’ Formula [60]
as follows:

θ “ arccos
ˆ

tr pRq ´ 1
2

˙

(5.9)

In this thesis, all results will be compared to MLPnP and its publicly available implementation.
In the original paper [8], an extensive review of state-of-the-art PnP solvers and an evaluation of
their performances compared to MLPnP can be found. The authors have shown MLPnP’s great
performance in presence of 2D observation uncertainties, outperforming most other methods in
terms of accuracy as well as runtime. Thus, only MLPnP will be used as a benchmark here
and other solvers are not considered.

5.3.2. Simulation
For a simulation of the approach, it is necessary to create artificial trajectories and the
corresponding odometry readings and image points. Furthermore, these data have to be
disturbed by a random noise and the corresponding uncertainties need to be modeled. The
procedure of data creation will be described in the following.

Trajectory Generation
An arbitrary starting point of the trajectory in the camera frame can be set (cpi´n with the
notation of chapter 4). Starting from that initial point of the trajectory, a number of n steps is
obtained from a random uniform distribution on the unit sphere. These steps of unit length are
then concatenated to yield the points cpi´j of the trajectory in the camera frame. Odometry
readings i´j´1Ri´j and i´j´1ti´j (delta orientations and translation) between subsequent
frames are computed assuming random relative orientations. Image points corresponding to the
artificial trajectories can be obtained by a simple pinhole projection assuming a known camera
intrinsics matrix K.
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(a) Disturbed trajectory with k “ 3
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(b) Disturbed image observations with σ2D,max “ 5

Figure 5.7.: Example scenario for an artificially created trajectory and corresponding 2D obser-
vations including noises (n “ 10).

Noise Generation
Now, these artificially generated odometry readings and image observations are corrupted by
random noise. For the 2D observations, a maximum standard deviation σ2D,max (in pixel units)
is defined. Within the range of this parameter, for every observation a random factor is drawn
as standard deviation of a Gaussian noise for that observation. For the following experiments,
this parameter is set to σ2D,max “ 5 pixels. The odometry readings are also disturbed by
Gaussian noise with the following standard deviations

σt “ k
“

1ˆ 10´3 5ˆ 10´3 9ˆ 10´3‰

σr “ k
“

1ˆ 10´2 2ˆ 10´2 2ˆ 10´2‰ (5.10)

where k denotes a factor, that will be used to scale the noise in some of the experiments.
Standard deviations are given in meters respectively degrees. The numbers in (5.10) are not
randomly chosen but have been obtained by averaging the errors in a real-world visual odometry
application. In that case, the step size was not necessarily equal to 1 which is why the scale
factor is used here to simulate different conditions.
As an example, Figure 5.7 illustrates an exemplary scenario of the simulation including the
original trajectory, image observations and the perturbed data. The drift of the noisy trajectory
with regard to trajectory length in this case is approximately 3%.

Results
Validation is executed based on a Monte Carlo Simulation. Therefore, the described procedure
for data generation is repeated for 10 different samplings of the 3D points and each of the
trajectories as well as corresponding image observations are perturbed by 50 different Gaussian
noises of the same standard deviation. For each of the 500 resulting setups, the modified PnP
problem is solved once using the original MLPnP and once using the newly proposed method.
The mean of the resulting pose accuracies is computed to compare the two algorithms. Simulat-
ing several different noises and samplings makes the simulation more robust in a statistical sense.

As a first experiment, the influence of the number of points of the trajectory is investigated. For
that purpose, the noise scale factor is set to a fixed value k “ 3. Then, the number of points n
of the trajectory is varied in a range of 6 (minimum number of required correspondences to
obtain an initial solution) to 60 points leading to an average drift of 3´ 5%. The results are

42



5.3. Validation of Pose Estimation Approach

0 10 20 30 40 50 60

n

0

10

20

30

40
Proposed

MLPnP

(a) Mean Translational Error

0 10 20 30 40 50 60

n

0

20

40

60

80
Proposed

MLPnP

(b) Mean Rotational Error

Figure 5.8.: Comparison of mean pose errors for varying number of trajectory points n.

shown in Figure 5.8.
It can be observed that with the proposed new method and for this specific experiment, a

minimum pose error seems to be obtained with a number of only 10 points. Adding more points
does not yield a significant improvement of the pose errors. Instead, results might even degrade
when adding a larger number of points. This result is to some degree expected, as due to the
sampling strategy, an increase in the number of points comes along with longer trajectories. As
subsequent odometry readings are not independent and errors will sum up, longer trajectories
will also have larger errors for points being farther in the past. Hence, the additional points do
not provide any useful information.
The plots clearly show the benefit of integrating 3D covariance information into pose estimation.
The proposed method constantly outperforms the MLPnP approach in terms of translational
and rotational accuracy by a large margin. For estimates of the translation, the error is reduced
by 3´ 5% in absolute percentages. For orientation estimates, the error is reduced by 5´ 10
degrees. To emphasize the benefit of the proposed approach, that means a reduction by up to
50% for both, the translational and rotational error.

In a second experiment, the number of points is kept constant (n “ 10) and the noise scale
factor k will be varied. Varying this factor leads to larger errors of the absolute 3D points while
keeping the trajectory length almost constant. The results of this investigation are presented in
Figure 5.9. It shows the mean pose errors for a variation of the noise factor k between k “ 0.5
to 9 causing an average drift of the trajectories from 0.5% up to almost 10%. This time, also
the results before non-linear optimization are depicted. In the case of the original MLPnP,
the linear solution is obtained from SVD whereas in the proposed method, it is obtained from
solving a GLS problem. For the linear solution, it can be observed that it can be improved
especially for increasing noise magnitudes. If the noise level of the odometry readings is very
low, the GLS solution might even be slightly worse. For large noise levels, the GLS solution
even yields results of the same quality as MLPnP after non-linear refinement.
The full potential of the newly proposed method is demonstrated by the results after non-linear
optimization. It is able to reduce the translational and the rotational errors significantly across
all noise levels. Moreover, it can be observed that the gap between the two approaches increases
with increasing noise level. For the maximum noise level (k “ 9) with a trajectory drift of 10%,
the error in the position can be reduced from 30% to just below 10%. The error of the relative
orientation drops from more than 50 degrees to 28 degrees.
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Figure 5.9.: Comparison of mean pose errors for varying noise levels k.

It has been shown, that integrating 3D covariance information into a PnP problem can
significantly improve solution quality. The results have been evaluated in a statistical sense by
averaging over a number of 500 simulations. In addition to showing the average pose errors, it
might be of interest to examine the robustness of the algorithm. For that purpose, not only
means of the resulting pose errors are computed, but also the corresponding error standard
deviations σ̄t and σ̄r. These standard deviations are depicted in Figure 5.10. It clearly shows
that, not only the resulting mean pose estimates are improved but also the standard deviation
of the pose results is remarkably lower. Thus, the new method for pose estimation including
3D covariances not only yields better results on average, but it also seems more robust to noise.

One outstanding advantage of MLPnP was its real-time capability with an enormous efficiency
which has been able to compete with EPnP, the fastest state-of-the-art PnP solver. In Table 5.5,
runtimes are compared during the experiment with varying number of points. The simulations
are implemented in Matlab and conducted on a Laptop with Intel Dual Core i5@3,1 GHz.
The numbers show that the boost in accuracy comes with a significant loss in efficiency with
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Figure 5.10.: Comparison of standard deviations of the pose errors for varying noise level.
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MLPnP being a lot faster. One major reason is the more expensive optimization that is run in
the newly proposed method. However, with maximum execution times of approximately 36
milliseconds, the new algorithm is still able to operate at more than 20 frames per second which
is still nearly real-time. In the region of 10´ 20 points, where also the minimum pose error was
found in the simulation, the execution time is only 10´ 12 miliseconds. Furthermore, there is a
potential for improvement concerning efficiency as Jacobians are computed numerically in the
current implementation.

n 6 8 10 12 14 16 18 20 30 40 50 60
Proposed 18.1 10.7 12.2 10.4 10.9 11.5 12.0 12.0 17.2 21.4 27.5 35.8
MLPnP 2.2 1.7 2.0 1.9 2.0 2.1 2.2 2.3 3.0 3.5 4.3 4.9

Table 5.5.: Runtime comparison of the two algorithms (average runtimes in milliseconds).

5.3.3. Real-World Experiment
Now, the proposed approach for pose estimation is supposed to be also validated in a real-world
experimental setup. As a qualitative measure of accuracy, resulting pose estimates are compared
to ground truth positions of ARDEA recorded for the image sequence Lab 02.

Ground Truth Measurements
Ground truth (GT) measurements are provided as the positions and orientations of the camera
frame of ARDEA with respect to the frame of the LRU color camera. These ground truth
positions are unfortunately not very precisely determined as the measurements of the position of
ARDEA has been jumping between several markers on ARDEA. This can be seen in Figure 5.11
which exemplary illustrates the measured positions during the sequence Lab 02 split into its
components for every axis direction. Nevertheless, the provided positions still can be assumed
somewhere on ARDEA such that pose estimates for the position still should be in a close range
to these recorded positions.

Visual Odometry Readings
Delta poses and orientations per time step are provided from ARDEA’s VO outputs (VO_01 ).
Before solving the modified PnP problem defined in chapter (4), odometry readings are always
reduced by integrating up a sequence of odometry readings to yield a fewer number of larger
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Figure 5.11.: Measured position of ARDEA’s camera frame in the frame of the LRU color
camera split into x- y- and z-component (Lab 02).
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Figure 5.12.: Raw Odometry Readings are reduced to a lower number of readings yielding a
reduced trajectory.

VO steps. This is shown in Figure 5.12 where the overall odometry readings are reduced from
n “ 520 to a number of nred “ 30.

2D Observations
As 2D observations corresponding to the odometry readings, tracking results are obtained using
the conventional tracking approach presented in chapter 3.2.1. The conventional approach is
chosen over the learning-based approach here because of its excellent tracking rate on the Lab
data sets. Recall, that the average deviation x̃∆ between the 2D tracking position obtained
from conventional and learning-based tracking was roughly 14 pixels (see Table 5.3). We use
this as an assumption for the tracking uncertainty with σx1 “ σy1 “ 14.

Estimating Pose Covariance
In many applications it is desirable to have a measure of reliability about the estimated
pose. The standard deviation of the estimated pose parameters can be such a measure for
intstance. With the Jacobian J of the residual equation (4.48) and the result of the minimization
u “ rr̂, t̂s P R6, the covariance matrix of the estimated rotation and translation parameters can
be obtained as:

Σr̂t̂ “
`

JTJ
˘´1 (5.11)

The vector of standard deviations of the estimated pose can be computed using:

σr̂t̂ “
b

diag
`

Σr̂t̂
˘

(5.12)

Evaluation
Having gathered all components needed for the pose estimation approach, we can use it to
estimate the pose on the recorded data. We want to solve for the pose at different points in
time to compare an estimated trajectory qualitatively to a measured GT trajectory. Therefore,
always an interval of 150 odometry readings is reduced to 12 delta poses and orientations
as well as the corresponding uncertainties. Intervals obtained in that way have an average
traveling distance of 6.5 metres. The corresponding 2D observations are obtained by a basic
nearest neighbor search of the end timestamps of the odometry sequences and the timestamps
of tracking observations. To avoid intervals of very small movements of ARDEA a threshold
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on the distance travelled during the interval is imposed. Then, finally the pose at the end of
each interval is estimated and compared to the GT position. Additionally, pose uncertainties
following equations (5.11)-(5.12) are computed to check if results with a bad accuracy can
be recognized by high pose uncertainties. Figures 5.13-5.15 show the resulting estimates for
the translation components t̂x, t̂y and t̂z of the estimated pose with corresponding estimated
uncertainties σt,x, σt,y and σt,z. Estimates of the translational components are compared
qualitatively to the ground truth trajectory (tx,gt, ty,gt and tz,gt) as well as non-weighted
estimates (t̂x,nw, t̂y,nw and t̂z,nw).
It can be observed that the proposed weighted pose estimation seems to be more stable than the
unweighted version. The unweighted version has very sharp peaks which often correspond to
sign changes which might be caused from different local minima in the optimization. Comparing
the weighted solutions visually to the ground-truth trajectory, it also seems to be more accurate
than the unweighted version. While positions in x-direction can estimated very accurately, the
positions in y-direction and especially in z-direction seem to be worse with larger deviations
and noises in the estimated trajectory components. This result also follows from the fact that
the recorded data have larger movements in x than in the other directions and can thus be
estimated more accurately.
Another beneficial conclusion from these plots is that in time range where the pose estimates seem
to have larger oscillations and errors also the estimated standard deviation of the corresponding
pose parameter is higher. As an example, in the range of ti “ 150 - 200, the estimated t̂x differs
from the ground-truth trajectory by a larger margin than otherwise. This larger error can then
be also observed in the larger value for σt̂,x. Similar trends can be seen for all three directions.
Moreover, also the value of the estimated standard deviations are in the range of the absolute
trajectory error.
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Figure 5.13.: Translational component t̂x of estimated pose and corresponding estimated stan-
dard deviation σt̂,x for pose estimation on Lab02.
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Figure 5.14.: Translational component t̂y of estimated pose and corresponding estimated stan-
dard deviation σt̂,y for pose estimation on Lab02.
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Figure 5.15.: Translational component t̂z of estimated pose and corresponding estimated stan-
dard deviation σt̂,z for pose estimation on Lab02.
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6
Conclusion

This chapter concludes the thesis by summarizing the key achievements of this work and
discusses some important aspects of the previous chapters. In the end, a brief outlook will give
some ideas on potential future research directions for the covered topics.

6.1. Summary

As described in the introduction, the goal of this thesis has been to estimate the relative position
and orientation between a flying robot (ARDEA) and a rover system (LRU) based on visual
odometry outputs of ARDEA and images recorded by the LRU. The problem has been divided
into the two sub-problems of object detection and tracking respectively pose estimation which
have been treated separately in a first step.

Detection and Tracking of ARDEA
For the goal of detecting and tracking ARDEA in an image sequence, two different approaches
have been introduced and compared in different environments. On the one hand, an approach
based on conventional methods has been introduced which combines a background subtraction
algorithm together with a correlation filter based tracker. Assuming a nearly static background
scene with constant illumination and a low number of moving objects in a scene, the presented
approach has been able to achieve very reliable tracking. Furthermore, it has been shown that
it still reliably tracks ARDEA even if the object is becoming very small. However, when applied
to more complex environments, the approach suffered from detecting too many objects which
often are caused by changing illumination. As no mechanism of identifying the object of interest
has been implemented, a very large number of objects has to be tracked which significantly
limits computational performance.

As an alternative, a different approach to tracking-by-detection has been proposed based on a
learned RetinaNet Detector. Therefore a pre-trained network has been re-trained on detecting
only a single class, namely ARDEA. Training data has been extracted from sample scenes
by applying the previous conventional tracker and extracting bounding boxes corresponding
to ARDEA. Additionally, data augmentation has been applied to create training data with
a higher variance in the target’s shape and appearance. A small number of epochs has been
sufficient to achieve convergence. The trained detector was then evaluated on unseen data.
Under the assumption of the target object appearing only once in the scene, only the detection
with maximum confidence score above a threshold (typically 0.5) is taken as predicted location
of ARDEA. Similarly to the conventional approach, it achieved good detection performance
(up to 80% detection rate) on data in simple scenarios where ARDEA is in a close range to the
camera and thus quite large in the image. In that setup, hardly any false positives are detected.
That changed when applied to more complex data and ARDEA moving farther away. The size
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of detected objects is to some degree limited by the size of predefined anchor boxes and thus,
the ability to detect ARDEA in far distances is limited. For these complex scenes, also a larger
number of false positives has been detected. The distance within which ARDEA is detected
can be extended by using tele camera images. Using the tele camera, ARDEA can be detected
in distances widely above one hundred metres.

Pose Estimation
The task of pose estimation has been formulated as a temporal version of a PnP problem
where the pose of the camera is estimated based on 3D-2D correspondences given as points
of a trajectory over time. Furthermore, the PnP formulation has been rewritten in a way
that delta poses and orientations from a VO are used as 3D observations instead of absolute
3D points. Additionally, VO uncertainties are leveraged to improve the pose estimation. All
given quantities and uncertainties are propagated into a reduced observation space given by
tangential planes to the unit sphere in the camera frame. A generalized least squares problem
is derived to obtain an initial linear initial estimate of the camera pose which is then refined in
a non-linear optimization scheme minimizing a weighted residual in the reduced observation
space. Including model uncertainties in the 2D as well as 3D observations allowed to improve
the accuracy of the estimated pose, both for the translational as well as the rotational accuracy.
In a Monte-Carlo simulation, artificial trajectories have been created with various numbers
of points and different Gaussian noises have been applied to perturb the trajectories. In the
described setup, the proposed new algorithm outperformed the existing MLPnP framework by
far in terms of accuracy and robustness. The only drawback compared to MLPnP is its lower
computational efficiency.

Combined Real-World Experiment
In the end, the new approach has been tested on real-world data. Therefore, real VO outputs
of ARDEA have been recorded together with the corresponding image frames. Ground truth
data were only available as a qualitative reference. 2D observations have been obtained using
the conventional tracking approach.
It could be demonstrated that the proposed new approach for pose estimation yielded more
stable and accurate estimates of ARDEA’s position in the camera frame compared to an
unweighted estimation. Moreover, covariance estimates have been derived for the resulting pose
parameters. As a measure of reliability they enabled the identification of estimates which are
obtained at a high degree of uncertainty.

Discussion
The majority of issues that emerged during this work, and especially during experimental
evaluation, are in some way related data quality respectively the way in which data was recorded.
Erroneous ground truth measurements prohibited a quantitative evaluation of the presented
approaches for tracking and the proposed pose estimation algorithm.
Moreover, the setup of ARDEA being attached to the end of a hinge which has to be carried
around to simulate a flight trajectory involved several drawbacks. Especially for the task of
tracking, this setup increases the level of difficulty. The ongoing presence of a human operator
affects both of the aforementioned tracking approaches. For the conventional tracker, there will
always be an additional number of objects (hinge, human) that will be detected as a foreground
object and need to be tracked. In contrast, the performance of the learning-based detector
might be harmed by learning the presence of a human near ARDEA as a feature of ARDEA.
Furthermore, attaching ARDEA to a hinge also results in a couple of problems. First of all, it
is hard to control the yaw angle of ARDEA which leads to potentially large and fast rotations
around the yaw axis. Next, that resulted in a lot of frames where only the back of ARDEA
was visible in the image which is especially for the lab sequences hard to distinguish from the
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Figure 6.1.: Prediction Output of RetinaNet Detector for a distant view of ARDEA for the far
range image from chapter 1.

background. Last, the range of movement was physically restricted by the range of the hinge.
Altogether, with the recorded experimental data sets we have been facing challenges that might
not arise in real scenarios.
Nevertheless, despite all these issues, we were still able to achieve quite reliable tracking for
sample sets and have been able to prove the potential of the proposed uncertainty-aware method
for pose estimation based on tracking and VO results. Besides, another great benefit of the new
approach is that it provides an uncertainty measure of the estimated pose to identify potentially
bad results.

Finally, let us step back to the example (Figure 1.3) in the introduction where we observed that a
reliable feature matching was almost intractable. That was the reason why we solved a temporal
PnP problem using correspondences over time instead of 3D-2D keypoint correspondences in a
single frame. It has been stated that ARDEA in the far range image had an approximate size
of 50ˆ 50 pixels. The results for validation of the tracking approach showed that, in general,
tracking was able down to sizes of ARDEA below 10 pixels. Also, on the very same image,
the trained RetinaNet Detector is still able to predict the correct position of ARDEA (see
Figure 6.1).

6.2. Future Work

Due to the high complexity of the problem including a large variety of influential factors, there
is potential for improvement in a lot of areas.
Especially when it comes to detection and tracking of ARDEA, we have seen that the presented
approaches are able to achieve accurate tracking in simple scenarios but had their limitations
in more complex environments. It has been demonstrated how the conventional approach
supported the learning-based approach by generating labeled training data. But not only by
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generating training data the two could benefit of each other. A combination of both approaches
might overcome some of the challenges, both of the individual tracking approaches were facing.
In particular, on the one hand, the RetinaNet detector could help to identify objects being
detected by the conventional approach. On the other hand, the conventional approach could
overcome frame sequences for which the learning-based detector had a long streak of non-
detections.
Moreover, also the learning-based detector itself has a big potential for improvement. First
of all, training the detector should be enhanced by gathering more diverse data with varying
appearances of ARDEA in various environment. This might lead to a boost in performance.
During prediction phase, one could focus on previous locations of ARDEA. As it is safe to
assume that the movement of ARDEA is fairly small between subsequent frames (depending on
the frame rate), ARDEA should be found in the proximity of the previous location. This would
add a data association process for tracking such that the number of false positives might be
decreased. Additionally it might reduce the loss of information which is caused by downscaling
the images to the default RetinaNet input size.
Concerning the pose estimation, an interesting topic for future research is the selection of
observations. During this work, 3D observations have been chosen by a very simple strategy
condensing odometry outputs of fixed time intervals to a reduced number of observations
thresholded by a minimum traveled distance. Corresponding 2D observations are then obtained
by nearest neighbor time step matching. However, there are probably better ways to select the
observations in a way to find the optimal pose estimate. Another idea towards the same issue
might be to actively generate flight trajectories of ARDEA such that the pose can be estimated
as accurately as possible.
All of these aforementioned ideas arose throughout the course of this thesis. Due to limited
time we have not been able to realize them although they seem very promising and should be
kept in mind for follow-up research.
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A
Derivations for Pose Estimation

A.1. Detailed Covariance Propagation for Static Camera

To obtain the equations for covariance propagation from odometry readings to uncertainties of
the position in the camera frame, the error model (4.14) is plugged into the equations for the
position of ARDEA in the camera frame (4.1). The linear error propagation in equation (4.17)
are here derived in detail.
For cpi, one obtains

cp̂i ´
cδpi “

ct̂i ´
cδti (A.1)

with cp̂i “
ct̂i ñ

cδpi “
cδti.

For cpi´1, one obtains
cp̂i´1 ´

cδpi´1 “
ct̂i ´

cδti `
cR̂i pI` t cδφi uˆq

`

it̂i´1 ´
iδti´1

˘

“ ct̂i ´
cδti `

cR̂i
it̂i´1 ´

cR̂i
iδti´1 `

cR̂it
cδφi uˆ

it̂i´1 ´
cR̂it

cδφi uˆ
iδti´1

(A.2)
With cp̂i´1 “

ct̂i `
cR̂i

it̂i´1 and neglecting quadratic error terms it stays:

´cδpi´1 “ ´
cδti ´

cR̂i
iδti´1 `

cR̂it
cδφi uˆ

it̂i´1

ðñ cδpi´1 “
cδti `

cR̂i
iδti´1 ´

cR̂it
cδφi uˆ

it̂i´1
(A.3)

With aˆ b “ ´bˆ a:
cδpi´1 “

cδti `
cR̂it

it̂i´1 uˆ
cδφi `

cR̂i
iδti´1 (A.4)

This can be anlogously repeated for any cpi´j .

A.2. Construction of Matrices for Covariance Propagation from VO Re-
sults

Construction of the Matrices A and B in equation (4.19) can be obtained by collecting terms
in (4.17). For n odometry readings, they can be computed as follows:

• C P R3pn`1qˆ6 for covariance propagation in a filtering approach:

A “

»

—

—

—

—

—

—

–

I O
I cR̂it

it̂i´1 uˆ

I cR̂it
it̂i´1 `

iR̂i´1
i´1t̂i´2 uˆ

...
...

I cR̂it
řn
k“1

´

śk´1
l“1

´

i´l`1R̂i´l

¯

i´k`1t̂i´k

¯

uˆ

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(A.5)
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A. Derivations for Pose Estimation

• B P R3pn`1qˆ6n for propagation of odometry uncertainties (Remark: matrices written
outside of the brackets are multiplied to each row):

B “ cR̂i

“

b1 b2 b3 b4 . . . bn bn´1
‰

(A.6)

with

b1 “

»

—

—

—

—

—

—

—

–

O
I
I
I
...
I

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, b2 “
iR̂i´1

»

—

—

—

—

—

—

—

—

–

O
O

t i´1t̂i´2 uˆ

t i´1t̂i´2 uˆ `
i´1R̂i´2t i´2t̂i´3 uˆ
...

řn
k“2

´

śk´2
l“1

´

i´lR̂i´l´1

¯

t i´k`1t̂i´k uˆ

¯

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

b3 “
iR̂i´1

»

—

—

—

—

—

—

—

–

O
O
I
I
...
I

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, b4 “
iR̂i´1

i´1R̂i´2

»

—

—

—

—

—

—

—

—

—

—

–

O
O
O

t i´2t̂i´3 uˆ

t i´2t̂i´3 uˆ `
i´2R̂i´3t i´3t̂i´4 uˆ
...

řn
k“3

´

śk´3
l“1

´

i´lR̂i´l´1

¯

t i´k`1t̂i´k uˆ

¯

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

...

b2n´1 “
n
ź

k“1

i´k`1R̂i´k

»

—

—

—

–

O
...
0
I

fi

ffi

ffi

ffi

fl

, b2n “

»

—

–

O
...
0

fi

ffi

fl

(A.7)

A.3. Computation of the Jacobian for Spherical Normalization

In chapter 4, it is stated that the Jacobian of the spherical normalization will have lower
triangular form and is of the following form:

Jv “

»

—

—

—

—

—

–

Jvi 0
Jvi´1 Jvi´1

Jvi´2 Jvi´2 Jvi´2
...

...
... . . .

Jvi´n . . . . . . . . . Jvi´n

fi

ffi

ffi

ffi

ffi

ffi

fl

(A.8)

This result will be derived in detail here.
Considering the observation equation (4.9) and introducing p3Dqxi´j as the 3D observation
before normalization, one obtains:

λivi “
p3Dqxi “

cti

λi´1vi´1 “
p3Dqxi´1 “

cti `
cRi

ip̂1 “
p3Dqxi `

cRi
ip̂1

λi´2vi´2 “
p3Dqxi´2 “

cti `
cRi

ip̂2 “
cti `

cRi

`

ip̂1 `∆p̂1,2
˘

“ p3Dqxi´1 `
cRi∆p̂1,2

...

(A.9)
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A.3. Computation of the Jacobian for Spherical Normalization

From this, we can conclude that every p3Dqxi´j only depends on "previous" p3Dqxi´j ’s. Together
with

vi´j “
p3Dqxi´j

ˇ

ˇ

ˇ

ˇ
p3Dqxi´j

ˇ

ˇ

ˇ

ˇ

(A.10)

we can follow that the Jacobian Jv will have lower triangular form.
Let us construct this Jacobian step by step.

• j = 0
The main diagonal block of size 3ˆ 3 of the first "block row" (corresponding to vi) of the
Jacobian is

J00 “
Bvi

Bp3Dqxi
“

B

Bp3Dqxi

«

p3Dqxi
ˇ

ˇ

ˇ

ˇ
p3Dqxi

ˇ

ˇ

ˇ

ˇ

ff

“
1

ˇ

ˇ

ˇ

ˇ
p3Dqxi

ˇ

ˇ

ˇ

ˇ

`

I3 ´ vivi
T
˘

(A.11)

• j = 1
The main diagonal block of size 3ˆ 3 of the second "block row" (corresponding to vi´1)
of the Jacobian can be obtained analogously as

J11 “
Bvi´1

Bp3Dqxi´1
“

1
ˇ

ˇ

ˇ

ˇ
p3Dqxi´1

ˇ

ˇ

ˇ

ˇ

`

I3 ´ vi´1vi´1
T
˘

(A.12)

The off-diagonal block is obtained (using the chain rule) as

J10 “
Bvi´1
Bp3Dqxi

“
Bvi´1

Bp3Dqxi´1
¨
Bp3Dqxi´1
Bp3Dqxi

“
Bvi´1

Bp3Dqxi´1
¨ I3

“ J11

(A.13)

• arbitrary j
For arbitrary j we can construct the corresponding diagonal block in the Jacobian as

Jjj “
1

ˇ

ˇ

ˇ

ˇ
p3Dqxi´j

ˇ

ˇ

ˇ

ˇ

`

I3 ´ vi´jvi´j
T
˘

(A.14)

The off-diagonal (on lower half) blocks can be calculated by using the chain rule, which
we have seen only multiplies identities. Thus, we have

Jj,p0...j´1q “ Jjj (A.15)

• Overall Jacobian It follows that the overall Jacobian for the spherical normalization
becomes

Jv “

»

—

—

—

—

—

–

J00 0 . . . . . . 0
J10 J11 . . . . . . 0
J20 J21 J22 . . . 0
...

...
...

...
...

Jn0 . . . . . . . . . Jnn

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

–

Jvi 0
Jvi´1 Jvi´1

Jvi´2 Jvi´2 Jvi´2
...

...
... . . .

Jvi´n . . . . . . . . . Jvi´n

fi

ffi

ffi

ffi

ffi

ffi

fl

(A.16)
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