Diniz Dal Molin Junior, Ricardo Simao and Rizzoli, Paola (2022) Deep Learning for Land Cover Classification from Sentinel-1 InSAR Short-Time-Series in the Amazon Forest. ESA Living Planet Symposium, 2022-05-23 - 2022-05-27, Bonn, Germany.
![]() | There is a more recent version of this item available. |
Full text not available from this repository.
Item URL in elib: | https://elib.dlr.de/186249/ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | |||||||||
Title: | Deep Learning for Land Cover Classification from Sentinel-1 InSAR Short-Time-Series in the Amazon Forest | |||||||||
Authors: |
| |||||||||
Date: | 2022 | |||||||||
Refereed publication: | No | |||||||||
Open Access: | No | |||||||||
Gold Open Access: | No | |||||||||
In SCOPUS: | No | |||||||||
In ISI Web of Science: | No | |||||||||
Status: | Accepted | |||||||||
Keywords: | convolutional neural networks; Synthetic Aperture Radar; Sentinel-1; forest mapping; deforestation monitoring; deep learning; | |||||||||
Event Title: | ESA Living Planet Symposium | |||||||||
Event Location: | Bonn, Germany | |||||||||
Event Type: | international Conference | |||||||||
Event Dates: | 2022-05-23 - 2022-05-27 | |||||||||
HGF - Research field: | Aeronautics, Space and Transport | |||||||||
HGF - Program: | Space | |||||||||
HGF - Program Themes: | Earth Observation | |||||||||
DLR - Research area: | Raumfahrt | |||||||||
DLR - Program: | R EO - Earth Observation | |||||||||
DLR - Research theme (Project): | R - AI4SAR | |||||||||
Location: | Oberpfaffenhofen | |||||||||
Institutes and Institutions: | Microwaves and Radar Institute Microwaves and Radar Institute > Spaceborne SAR Systems | |||||||||
Deposited By: | Diniz Dal Molin Junior, Ricardo Simao | |||||||||
Deposited On: | 02 May 2022 14:57 | |||||||||
Last Modified: | 02 May 2022 14:57 |
Available Versions of this Item
- Deep Learning for Land Cover Classification from Sentinel-1 InSAR Short-Time-Series in the Amazon Forest. (deposited 02 May 2022 14:57) [Currently Displayed]
Repository Staff Only: item control page