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Abstract—The road surface roughness is an important 

parameter that determines the quality of a road network. It has a 

direct influence on the grip and skid resistance of the vehicles. For 

this reason, this parameter has to be periodically monitored to 

keep track of its changes. Nowadays, road surface roughness is 

measured by driving measurement vehicles equipped with laser 

scanners all over the country. But, this approach is very costly, 

labor-intensive, and time-consuming. This study is done to 

evaluate the potential of high-resolution airborne polarimetric 

synthetic aperture radar (SAR) to remotely estimate the road 

surface roughness on a wide scale. Different SAR backscatter-

based semi-empirical models and SAR polarimetry-based models 

for surface roughness estimation are implemented in this study. 

Also, a new semi-empirical model is proposed in this study which 

is trained specifically for the road surface roughness estimation. 

Additive noise subtraction, upper sigma nought threshold 

masking, and lower signal-to-noise ratio (SNR) threshold masking 

techniques were implemented in this study to improve the 

reliability of road surface roughness estimation. The feasibility of 

this approach is tested using fully polarimetric X-band datasets 

acquired with DLR’s airborne radar sensor F-SAR. The surface 

roughness results estimated using these airborne SAR datasets 

show good agreement with the ground truth surface roughness 

values and the results are discussed in this article. 

 
Index Terms—Additive noise, anisotropy, coherency matrix, 

Dubois model, Oh model, Open Street Map (OSM), SAR, road 

surface roughness 

I. INTRODUCTION 

HE road infrastructure has a major role in the economic 

growth and development of a country. The quality of the 

road network directly influences the safety, health, driving 

comfort, and seamless transport of goods and services [1]–[3]. 

Therefore, periodic monitoring and maintenance of the road 

infrastructure quality is a necessity. The road surface roughness 

is one of the important factors which affect the road surface 

quality [4]–[6]. 

The road surface roughness is responsible for the friction 

between the road and the tires of the vehicles [7], [8]. So, it 

affects the ‘grip’ or ‘skid resistance’ of the vehicle [9], [10]. 

Fig. 1(a) shows an example of the vertical road surface profile. 

This undulated vertical profile of the road provides sufficient 

friction between the road surface and the tires [11]. The Root 
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Mean Square (RMS) height (ℎ𝑟𝑚𝑠) of the vertical profile can be 

considered as a measure of the road surface roughness and it 

can be estimated as in (1) [12], [13]. 
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(c) 

Fig. 1. Road surface roughness visualization. (a) Vertical road surface 

profile. (b) Contact between a rough road surface and tire (road vertical 

profile is exaggerated for better visualization). (c) Contact between a very 

smooth road surface and tire. 
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(1) 

where ℎ𝑖 is the vertical height at location 𝑖 and ℎ̅ represents the 

mean vertical height of the surface for 𝑛 samples. 

Fig. 1(b) shows the contact between a rough road surface and 

tire. In this case, due to the weight acting up on the tire and also 

due to the vertical profile of the road, the vertical rough points 

on the road penetrates the tire rubber. Because of the tire 

rubber’s flexibility, the rubber adapts to the shape of rough 

points on the road surface and in turn, increases the contact 

surface area between the road surface and the tire [14]. This 

behavior results in a better ‘grip’ and the chances of tire skid 

are less [15]. Fig. 1(c) shows the contact between a very smooth 

road surface and tire. In this case, there are no sufficient vertical 

rough points on the road surface and the contact surface area 

between the road surface and the tire is less compared to Fig. 

1(b). Therefore, less friction is offered in this case and the 
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chances of skid are more [14], [15]. From both Fig. 1(b) and 

Fig. 1(c), it can be said that an optimum amount of skid 

resistance is required for performing safe acceleration, 

deceleration, and steering maneuvers. But, too high surface 

roughness can also affect the driving comfort, fuel consumption 

and also leads to high noise [16].  

All the above-mentioned factors point out the requirement of 

periodic monitoring of the road surface quality to ensure that 

the friction provided by the road surface is in the optimum 

range. The friction depends on the road surface roughness and 

the material used for road surface construction. So, the road 

surface roughness can be considered as a measure of the 

friction. But, nowadays, road surface friction is measured using 

measurement vehicles. This measurement process requires 

enormous costs for the entire road network because of its labor-

intensive and time-consuming nature [17].  

This article focuses on evaluating the potential of airborne 

polarimetric synthetic aperture radar (SAR) to remotely 

estimate the road surface conditions on a large scale. So far, 

only a few publications are available for road surface roughness 

estimation using SAR [18], [19]. The main objective of this 

study is to investigate and develop efficient and reliable 

methods for road surface roughness estimation using high-

resolution airborne polarimetric SAR over a wide region.  

II. TEST SITE DESCRIPTION 

Road networks with different surface roughness values are 

required for this study. For this purpose, three different test sites 

were identified. The first test site is the Kaufbeuren airfield in 

Bavaria, Germany. It is a former military airfield that includes 

the runway, taxiways, and parking area composed of different 

materials like asphalt, concrete, etc. The Google Earth image of 

the Kaufbeuren test site is shown in Fig. 2(a). The zoomed view 

on the top left side of the image shows the concrete and asphalt 

sections on the runway. The zoomed view on the bottom right 

side of the image shows the parking area with cracks and 

potholes. The repair works done on the runway are also visible 

in the zoomed view. 

The second site is the “Demonstrations-, Untersuchungs- und 

Referenzareal der BASt (duraBASt)” test site in Cologne, 

Germany. It is located near the motorway intersection Cologne-

East and is maintained by the Federal Highway Research 

Institute of Germany known as “Bundesanstalt für 

Straßenwesen (BASt)” [20]. Fig. 2(b) shows the Google Earth 

image of the Cologne motorway intersection and the zoomed 

view shows the duraBASt test site. The duraBASt test site is the 

area inside the yellow ellipse parallel to the motorway shown in 

the zoomed view. From Fig. 2(b), it can be seen that the regions 

of the duraBASt test site are appearing in different colors and 

this is due to the different materials used for its construction. 

These different materials are having different surface roughness 

values and this makes this site suitable for this study. 

The third test site is the Wolfsburg motorway intersection at 

Braunschweig, Germany. This test site is selected because of 

the long motorway without any disturbance from trees, 

buildings, etc. Fig. 2(c) shows the Google Earth image of this 

test site. Uniform surface roughness is expected at this test site. 

Towards the top right end of the image, it can be seen that there 

is a sudden change in the color shade of the motorway. This 

may be due to repair work done at that region and a change in 

surface roughness can be expected there. 

 
(a) 

 
(b) 

 
(c) 

Fig. 2. Test sites used for this study. (a) Kaufbeuren test site, Bavaria. (b) 

duraBASt test site, Cologne. (c) Wolfsburg motorway intersection, 

Braunschweig. 

III. DATASET DESCRIPTION 

The details about the airborne SAR datasets and the ground 

truth data used for this study are explained in this section. 

A. F-SAR datasets 

Fully polarimetric X-band airborne SAR datasets acquired by 
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DLR’s F-SAR system are used for this study [21], [22]. The F-

SAR system is mounted on a Dornier DO228-212 aircraft and 

it is flown over the Kaufbeuren, Cologne, and Braunschweig 

test sites described in the previous section. The general 

characteristics of the F-SAR datasets used in this study are 

given in Table I. 
TABLE I 

GENERAL CHARACTERISTICS OF THE F-SAR DATASETS 

SAR system F-SAR 

Frequency band X-band (9.60 GHz) 

Polarimetric mode Quad-pol 

Look direction Right 

Spatial resolution 25 cm x 25 cm 

 

The datasets were acquired over the Cologne test site on 10th 

September 2019, over the Braunschweig test site on 31st August 

2020, and finally over the Kaufbeuren test site on 4th September 

2020. At each test site, several datasets were acquired from 

different directions (i.e., with different aspect angles) and also 

with different incidence angles. 

B. Ground truth data collection 

A ground truth (𝐺𝑇) data collection activity has been 

performed at the Kaufbeuren test site on 3rd September 2020 to 

measure the 𝐺𝑇 surface roughness values (𝐺𝑇 ℎ𝑟𝑚𝑠). The 𝐺𝑇 

data collection activity was performed just 1 day before the 

airborne SAR data acquisition to avoid any unexpected changes 

between the airborne SAR datasets and the 𝐺𝑇 data. The 𝐺𝑇 

data were also acquired on a dry sunny day to prevent any 

measurement errors caused due to water filling the voids in 

concrete and asphalt surfaces. 

Ten 𝐺𝑇 spots with each of 1m2 area were identified for the 

ground truth data collection. Fig. 3 shows the location of these 

𝐺𝑇 spots in the Google Earth image and also the photos of the 

𝐺𝑇 spots. From Fig. 3, it can be seen that the 𝐺𝑇 spots were 

distributed over the runway, taxiway, and parking areas 

covering both smooth and rough regions made of concrete and 

asphalt. 

 
Fig. 3. Ground truth spots at Kaufbeuren test site. 

  The 𝐺𝑇 ℎ𝑟𝑚𝑠 values were measured by laser scanning 

using a handheld laser scanner. The handheld laser scanner used 

for this purpose measured the vertical surface undulations of the 

road surface with a measurement resolution of 0.025 mm and 

also with an accuracy of 0.025 mm. 

 

 
(a) 

 
(b) 

Fig. 4. Ground truth data collection at Kaufbeuren test site. (a) 𝐺𝑇 ℎ𝑟𝑚𝑠 

measurement process. (b) Surface undulations image. 

Fig. 4(a) shows the 𝐺𝑇 ℎ𝑟𝑚𝑠 measurement process using the 

handheld laser scanner. Fig. 4(b) shows the surface undulations 

image generated from the laser scanner data for 𝐺𝑇 spot 1. A 

single 𝐺𝑇 ℎ𝑟𝑚𝑠 value was then calculated for each of the 𝐺𝑇 

spots from the surface undulation values using (1). 

 
TABLE II 

GROUND TRUTH SURFACE ROUGHNESS DATA 

𝐺𝑇 

spot 

Surface 

undulation (mm) 

𝐺𝑇 ℎ𝑟𝑚𝑠  

(mm) 

Remarks 

Min Max 

1 -7.09 2.73 2.36 Repeated directional 

grooves 

2 -3.00 2.27 0.99 Concrete, smooth 

3 -2.53 1.70 0.66 Asphalt, smooth 

4 -4.34 1.66 0.88 Maintenance work, 

smooth 

5 -2.45 2.26 0.68 Asphalt, smooth 

6 -4.14 2.01 0.98 Concrete, smooth 

7 -3.03 2.62 1.09 Concrete, smooth 

8 -2.38 1.91 0.61 Concrete, very smooth 

9 -

13.07 

4.25 2.86 Deep, non-oriented 

cracks 

10 -5.82 1.92 0.76 Concrete, very smooth 
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Table II shows the maximum-minimum surface undulations 

and ground truth surface roughness values (𝐺𝑇 ℎ𝑟𝑚𝑠) estimated 

for each of the 𝐺𝑇 spots. These 𝐺𝑇 ℎ𝑟𝑚𝑠 values can be used to 

validate the surface roughness values estimated from the 

polarimetric airborne SAR datasets. 

IV. METHODOLOGY 

As discussed in the introduction section, the Root Mean 

Square (RMS) height (ℎ𝑟𝑚𝑠) can be considered as a measure of 

the road surface roughness (1). So, the ℎ𝑟𝑚𝑠 needs to be 

estimated from the polarimetric SAR data. Several studies were 

done in the past to estimate the soil surface roughness and soil 

moisture using polarimetric SAR (PolSAR) datasets [23]–[25]. 

In these studies, the remotely sensed parameter (𝑘𝑠) was 

derived which represents the effective vertical roughness and it 

is a unitless parameter [12], [13]. The surface roughness (ℎ𝑟𝑚𝑠) 

can be estimated from the (𝑘𝑠) as follows: 

 
ℎ𝑟𝑚𝑠 = 

𝑘𝑠

(2𝜋/𝜆𝑐)
 

 

 

(2) 

 

 
where 𝜆𝑐 is the wavelength corresponding to the center 

frequency of the SAR system. 

In this study also, the effective vertical surface roughness 

(𝑘𝑠) parameter was estimated to derive the road surface 

roughness (ℎ𝑟𝑚𝑠). This section explains the methodology 

adopted in this study for estimating the effective vertical surface 

roughness (𝑘𝑠) parameter. The process flowchart is shown in 

Fig. 5. 

Since the SAR backscatter received from the road surfaces is 

very low, the multiplicative noise and additive noise present in 

the airborne PolSAR data needs to be minimized for the reliable 

estimation of the road surface roughness.  

Speckle is the dominant multiplicative noise present in the SAR 

data [26]. It appears as a granular disturbance and occurs due to 

the coherent imaging of the SAR systems. For this study, the 

speckle present in the PolSAR data was minimized by speckle 

filtering using a Refined-Lee speckle filter with a 3x3 window 

[27].  

The additive noise present in the PolSAR data is caused by the 

thermal/system noise of the SAR system [28]. In addition to the 

speckle filtering, the additive noise present in the PolSAR data 

needs to be minimized for low SNR applications [29]. The 

additive noise estimation algorithm used in this study requires 

the PolSAR data in the 4x4 coherency matrix (𝑇4) form. 

Therefore, the 𝑇4 matrix was generated from the speckle filtered 

dataset [12]. The additive noise estimation and minimization 

procedure were then carried out on 𝑇4 and thereafter the noise 

minimized dataset was used for generating the radiometrically 

calibrated sigma nought images. The sigma nought images were 

then used as the input for the surface roughness estimation 

models to generate the surface roughness images. 

A. Noise estimation and minimization 

The Polarimetric Synthetic Aperture Radar (PolSAR) is an 

advanced imaging radar system that uses the different 

polarization states of an electromagnetic wave of the same 

center frequency to analyze the scattering information from 

different ground targets. From a fully polarimetric SAR system, 

4 polarimetric channels can be obtained: horizontal polarization 

transmitted and horizontal (𝑆𝐻𝐻) and vertical polarization (𝑆𝐻𝑉) 

received simultaneously; vertical polarization transmitted and 

horizontal (𝑆𝑉𝐻) and vertical polarization (𝑆𝑉𝑉) received 

simultaneously. But, the PolSAR datasets are commonly 

affected by the additive noise present in each of the polarimetric 

channels [28]. This additive noise present in the dataset 

adversely affects the accurate estimation of the useful 

parameters from the polarimetric data [29], [30]. So, the 

additive noise present in the polarimetric SAR data must be 

filtered out before using the dataset for any quantitative analysis 

like the road surface roughness estimation. The procedure for 

additive noise removal is described in this section. The 

information obtained from the 4 polarimetric channels can be 

represented in the form of the measured scattering matrix [𝑆′], 
ideal scattering matrix free from additive noise [𝑆] and additive 

noise matrix [𝑁] as follows [28]: 

 

 [𝑆′] =  [𝑆] + [𝑁] (3) 

where 

[𝑆] =  [
𝑆𝐻𝐻 𝑆𝐻𝑉

𝑆𝑉𝐻 𝑆𝑉𝑉
] and [𝑁] =  [

𝑛𝐻𝐻 𝑛𝐻𝑉

𝑛𝑉𝐻 𝑛𝑉𝑉
] 

 

The additive noise present in the data can be considered as a 

zero-mean Gaussian white noise process and the additive noise 

power 𝑁 can be modeled as [28]: 

 

 〈𝑛𝑖𝑗𝑛𝑖𝑗
∗ 〉  =  〈𝑛𝑚𝑛𝑛𝑚𝑛

∗ 〉 = 𝑁 and 〈𝑛𝑖𝑗𝑛𝑚𝑛
∗ 〉 = 0 (4) 

   

where * is the complex conjugate operator. 

The Pauli basis vector corresponding to the measured 

scattering matrix [𝑆′] can be written as [28]: 

 

PolSAR Data 

Noise Estimation & 

Minimization 

Radiometric Calibration & 𝜎𝑜 

Image Generation  

Surface Roughness 

Models 

Surface Roughness 

Image 

Fig. 5. Process flowchart for surface roughness estimation.  
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𝑘3𝑝 = 
1

√2
 [

𝑆𝐻𝐻 + 𝑆𝑉𝑉 + (𝑛𝐻𝐻 + 𝑛𝑉𝑉)

𝑆𝐻𝐻 − 𝑆𝑉𝑉 + (𝑛𝐻𝐻 − 𝑛𝑉𝑉)

𝑆𝐻𝑉 + 𝑆𝑉𝐻 + (𝑛𝐻𝑉 − 𝑛𝑉𝐻)
] 

 

(5) 

   

The noise affected 3x3 coherency matrix corresponding to 

the measured scattering matrix [𝑆′] can be estimated by the 

spatial averaged multiplication of the Pauli basis vector with the 

transpose of its complex conjugate as in (6) [28]. 

 [𝑇3 𝑛𝑜𝑖𝑠𝑒 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑] =  〈𝑘3𝑝 .  𝑘3𝑝
∗𝑇〉

=  
1

2
 [

𝑇11 + 2𝑁 𝑇12 𝑇13

𝑇21 𝑇22 + 2𝑁 𝑇23

𝑇31 𝑇32 𝑇33 + 2𝑁
] 

 

 

(6) 

For a monostatic SAR system, the cross-polarized channels 

are completely correlated in the absence of additive noise 

(𝑆𝐻𝑉 = 𝑆𝑉𝐻) [28]. This is because a monostatic SAR follows 

the scattering reciprocity condition. Since the two cross-

polarized channels are measured independently by the SAR 

system the additive noise level present in the two cross-

polarized channels will be different. So, as the additive noise 

level increases the correlation between the cross-polarized 

channels decreases. This decorrelation between the cross-

polarization channels can be utilized to estimate the additive 

noise power 𝑁.  Since the scattering reciprocity condition is not 

valid for noisy data, the 4-dimensional Pauli basis vector is 

required and it can be written as follows [28]: 

 

 

𝑘4𝑝 = 
1

√2
 

[
 
 
 
 

𝑆𝐻𝐻 + 𝑆𝑉𝑉 + (𝑛𝐻𝐻 + 𝑛𝑉𝑉)

𝑆𝐻𝐻 − 𝑆𝑉𝑉 + (𝑛𝐻𝐻 − 𝑛𝑉𝑉)

𝑆𝐻𝑉 + 𝑆𝑉𝐻 + (𝑛𝐻𝑉 − 𝑛𝑉𝐻)

𝑖(𝑆𝐻𝑉 − 𝑆𝑉𝐻 + (𝑛𝐻𝑉 − 𝑛𝑉𝐻))]
 
 
 
 

 

 

 

(7) 

 

This 𝑘4𝑝 vector can be used to estimate the noise affected 4x4 

coherency matrix as [28]: 

 

 [𝑇4 𝑛𝑜𝑖𝑠𝑒 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑] =  〈𝑘4𝑝 .  𝑘4𝑝
∗𝑇〉 (8) 

 

The diagonalization of the 4x4 coherency matrix 

([𝑇4 𝑛𝑜𝑖𝑠𝑒 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑]) leads to the following form [28]: 

 

 [Λ4] =  [𝑈4] [𝑇4 𝑛𝑜𝑖𝑠𝑒 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑] [𝑈4]
−1   

 

[Λ4] = [

𝜆1 + 𝑁 0 0 0
0 𝜆2 + 𝑁 0 0
0 0 𝜆3 + 𝑁 0
0 0 0 𝑁

] 

 

 

 

(9) 

 

 

 

where 𝜆1, 𝜆2, 𝜆3 are the first three eigenvalues of the 4x4 

coherency matrix and 𝑁 is the additive noise present in the data. 

In the absence of noise, the 4x4 coherency matrix has a rank 

of 3, and only the first three eigenvalues 𝜆1, 𝜆2 and 𝜆3 have 

non-zero values. But, the presence of noise makes the 4x4 

coherency matrix be of rank 4 and the 4th eigenvalue 𝜆4 

represents the additive noise present in the data (𝜆4 =  𝑁). So, 

the additive noise can be filtered out by subtracting the additive 

noise power 𝑁 from the first three eigenvalues of the coherency 

matrix or by subtracting 𝑁 from the diagonal elements of the 

[𝑇3 𝑛𝑜𝑖𝑠𝑒 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑] as follows [28]: 

 

 
[𝑇3] =  [𝑇3 𝑛𝑜𝑖𝑠𝑒 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑] − 𝑁 [

1 0 0
0 1 0
0 0 1

] 
 

(10) 

 

where [𝑇3] is the noise filtered 3x3 coherency matrix. 

From the noise filtered 3x3 coherency matrix [𝑇3], the 

scattering matrix elements can be estimated as in (11). 

 

 
|𝑆𝐻𝐻|2 = 

(𝑇11 + 2 ∗ 𝑅𝑒{𝑇12} + 𝑇22)

2
 

 

|𝑆𝐻𝑉|2 = 
𝑇33

2
 

 

|𝑆𝑉𝑉|2 = 
(𝑇11 − 2 ∗ 𝑅𝑒{𝑇12} +  𝑇22)

2
 

 

 

 

 

(11) 

The radiometrically calibrated sigma nought (𝜎𝑜) images can 

be generated as [22]: 

 

 𝜎𝐻𝐻
𝑜 = 𝑠𝑖𝑛 𝜃 ∗  |𝑆𝐻𝐻|2 

 

𝜎𝐻𝑉
𝑜 = sin 𝜃 ∗ |𝑆𝐻𝑉|2 

 

𝜎𝑉𝑉
𝑜 = 𝑠𝑖𝑛 𝜃 ∗  |𝑆𝑉𝑉|2 

 

 

 

(12) 

where 𝜃 is the local incidence angle. 

B. Description of the SAR polarimetry-based models 

This sub-section describes the SAR polarimetry-based 

models implemented in this study for estimating the effective 

vertical surface roughness parameter (𝑘𝑠). The SAR 

polarimetry-based models utilize both the amplitude and phase 

information of the co-polarization and cross-polarization 

channels for the 𝑘𝑠 estimation. The anisotropy-based model and 

coherency matrix-based model were implemented in this study. 

The description of these models is given below: 

1) Anisotropy-based model 

In the anisotropy-based model, the polarimetric anisotropy 

parameter (𝐴) is utilized to estimate  𝑘𝑠 [12]. The anisotropy 

parameter is derived from the minor eigenvalues of the additive 

noise removed 3x3 coherency matrix as in (13) [31], [32]: 

 

 
𝐴 = 

𝜆2 − 𝜆3

𝜆2 + 𝜆3

 

 

(13) 

where 𝜆2 and 𝜆3 are the 2nd and 3rd largest eigenvalues of the 

coherency matrix. 

The effective vertical surface roughness (𝑘𝑠) can be estimated 

as follows [12], [13]: 

 

 𝑘𝑠 = 1 − 𝐴 (14) 
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2) Coherency matrix-based model 

 

In the coherency matrix-based model, the 𝑇22 and 𝑇33 

elements of the additive noise removed coherency matrix is 

used to estimate the effective vertical surface roughness (𝑘𝑠) 

[12], [13]: 

 

 
𝑘𝑠 = 1 −

𝑇22 − 𝑇33

𝑇22 + 𝑇33

 
 

(15) 

C. Description of the semi-empirical models 

This sub-section describes the semi-empirical models used in 

this study for estimating the effective vertical surface roughness 

(𝑘𝑠). In contrast to the SAR polarimetry-based models, the 

semi-empirical models require only the SAR backscatter values 

(𝜎𝑜) instead of the amplitude and phase information. The Oh 

models and the Dubois model were implemented in this study. 

1) Oh models 

The Oh models developed in 1992 and 2004 were originally 

developed for soil roughness and soil moisture estimation. In 

the Oh 1992 model, the Fresnel reflectivity (Γ𝑜) is estimated to 

derive the 𝑘𝑠. Γ𝑜 is estimated by solving the non-linear equation 

given in (16) using an iterative root-finding algorithm [33]. 

 

 

(
2𝜃

𝜋
)

1
Γ𝑜

[1 −  
𝑞

0.23√Γ𝑜
] +  √𝑝 − 1 = 0 

 

 

(16) 

After estimating Γ𝑜, 𝑘𝑠 can be estimated as follows [33]: 

 

 

𝑘𝑠 = ln

(

 
 (√𝑝 + 1)

(
2𝜃
𝜋

)

1
3Γ𝑜

)

 
 

 

 

 

(17) 

 

 

 

where 𝜃 is the local incidence angle, 𝑝 is the co-polarization 

ratio given by 𝑝 =  
𝜎𝐻𝐻

𝑜

𝜎𝑉𝑉
𝑜  and 𝑞 is the cross-polarization ratio 

given by 𝑞 =  
𝜎𝐻𝑉

𝑜

𝜎𝑉𝑉
𝑜  , 𝜎𝐻𝐻

0  and 𝜎𝑉𝑉
0  are the co-polar sigma nought 

values for HH and VV polarization channels, respectively. 

  In the Oh 2004 model, the surface moisture 𝑚𝑣 is estimated 

instead of the Fresnel reflectivity Γ𝑜 to derive the 𝑘𝑠. Similar to 

the estimation of Γ𝑜, 𝑚𝑣 is also estimated by solving the non-

linear equation (18) using an iterative root-finding algorithm 

[34]: 

 

 
1 − (

𝜃

90
)

0.35𝑚𝑣−0.65

𝑒−0.65 [[−3.125 ln {1

−
𝜎𝑉𝐻

𝑜

0.11𝑚𝑣0.7cos2.2𝜃
}]

0.556

]

1.4

− 𝑝 = 0 

 

 

 

 

(18) 

After estimating 𝑚𝑣, 𝑘𝑠 can be estimated as follows [34]: 

 

 
𝑘𝑠 = [−3.125 ln {1 −

𝜎𝑉𝐻
𝑜

0.11𝑚𝑣0.7cos2.2𝜃
}]

0.556

 
 

(19) 

 

where 𝜃 is the local incidence angle. 

The 𝑘𝑠 values estimated from both Oh models have a validity 

range of 0.1 < 𝑘𝑠 < 6.0. The 𝑘𝑠 values outside this validity 

range should be discarded. For the X-band SAR used in this 

study with 9.60 GHz center frequency, this corresponds to an 

ℎ𝑟𝑚𝑠 validity range of 0.14 mm <  ℎ𝑟𝑚𝑠 < 8.17 mm. 

2) Dubois model 

The Dubois model developed in 1995 is a semi-empirical 

model developed for soil roughness and soil moisture 

estimation. The inversion of 𝑘𝑠 using the Dubois model is a 

two-step non-iterative process. The 1st step is to estimate the 

dielectric constant (𝜀′) as follows [35]: 

 
𝜀′

=  

(log10(
(𝜎𝐻𝐻

𝑜 )0.7857

𝜎𝑉𝑉
𝑜 ) 10−0.19cos1.82𝜃 sin0.93𝜃 𝜆0.15)

−0.024 tan 𝜃
 

 

 

 

(20) 

where 𝜎𝐻𝐻
0  and 𝜎𝑉𝑉

0  are the co-polar sigma nought values for 

the HH and VV channels, respectively. 

The 2nd step is to derive the 𝑘𝑠 from the estimated dielectric 

constant ( 𝜀′) as [35]: 

 

𝑘𝑠 =  𝜎𝐻𝐻
𝑜 1/1.4

102.75/1.4
sin2.57𝜃

cos1.07𝜃
10−0.02𝜀′tan𝜃𝜆−0.5 

 

 

(21) 

where 𝜃 is the local incidence angle and 𝜆 is the wavelength of 

the radar. 

The 𝑘𝑠 values estimated using the Dubois model are valid only 

when 𝑘𝑠 < 2.5 and 𝜃 > 30𝑜. The 𝑘𝑠 values that do not satisfy 

both conditions should be discarded. For the X-band SAR used 

in this study with 9.60 GHz center frequency, this corresponds 

to an ℎ𝑟𝑚𝑠 validity range of ℎ𝑟𝑚𝑠 < 12.43 mm. 

D. Development of a new semi-empirical model 

This sub-section explains the development of a new semi-

empirical model suitable for reliable road surface roughness 

estimation. The new model was developed based on the Dubois 

model. According to the assumptions from the Dubois model, a 

radar signal in 𝑝𝑞 polarization can be written as a function of 

incidence angle, surface roughness, and surface moisture [36]. 

But, for a dry asphalt or concrete surface, the contribution from 

the surface moisture component to the radar signal is negligible. 

So, for the new model formulation, the radar signal can be 

written as a function of incidence angle and surface roughness 

after neglecting the surface moisture component. The 

relationship can be written as follows [37]: 

 

 𝜎𝑝𝑞
𝑜 = 𝛿(cos(𝜃))𝛽 (𝑘𝑠)𝜀 sin(𝜃) (22) 

 

In the above equation, 𝜎𝑝𝑞
𝑜  is the sigma nought backscatter value 

for the 𝑝 transmitted and 𝑞 received polarization. The term 

𝛿(cos (𝜃))𝛽 denotes the relationship between 𝜎𝑝𝑞
𝑜  and the local 

incidence angle (𝜃). From this relationship, it can be understood 

that the 𝜎𝑝𝑞
𝑜  decreases as the incidence angle (𝜃) increases and 

this decrease in 𝜎𝑝𝑞
𝑜  is higher at low incidence angles and lower 

at high incidence angles [37]–[39]. 
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The second term (𝑘𝑠)𝜀 sin(𝜃) indicates the relationship between 

𝜎𝑝𝑞
𝑜  and the effective surface roughness (𝑘𝑠). 𝜎𝑝𝑞

𝑜  and 𝑘𝑠 have 

a power law relationship and the sensitivity of 𝜎𝑝𝑞
𝑜  to 𝑘𝑠 is 

higher at high incidence angles than at low incidence angles 

[37], [40], [41]. The sin(𝜃) term is added to the relationship to 

minimize this incidence angle dependency [37]. 

The equation in (22) can be inverted to estimate 𝑘𝑠 as a function 

of 𝜎𝑝𝑞
𝑜  and incidence angle (𝜃) as follows: 

 

 

𝑘𝑠 =  10
[
log(𝜎𝑝𝑞

𝑜 ) − log(𝛿(cos (𝜃))𝛽)

𝜀 𝑠𝑖𝑛(𝜃)
]

. 

 

(23) 

  

In (23),  𝛿, 𝛽, and 𝜀 are the unknown coefficients that need to 

be estimated to solve the equation. The coefficients can be 

estimated using the 𝐺𝑇 ℎ𝑟𝑚𝑠 values, 𝜎𝑝𝑞
𝑜  values and incidence 

angle values (𝜃) at the ground truth spots using the method of 

least square-based curve fitting.  

 
Fig. 6. Acquisition geometry of the F-SAR datasets over the Kaufbeuren 

test site. 

TABLE III 

METADATA OF TRAINING AND TESTING DATASETS 

 

Three F-SAR datasets (PS 04 dataset, PS 05 dataset, and PS 12 

dataset) acquired over the Kaufbeuren test site were taken to 

estimate the 𝛿, 𝛽, and 𝜀 coefficients. The datasets were acquired 

from three different sides of the Kaufbeuren runway (cf. Fig. 

6). The PS 03 dataset shown in Fig. 6 was used to test the new 

model after coefficient estimation because it has a different 

acquisition geometry compared to the other three datasets used 

to estimate the model coefficients. 

The flight heading direction, aspect angle, and incidence angle 

values at the runway are shown in Table III. The aspect angle is 

the SAR look direction towards the runway measured from the 

north direction. From Table III, it can be understood that the 

three training datasets have completely different aspect angles 

and incidence angles for the runway and this can help in the 

unbiased estimation of the model coefficients. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7. Correlation between 𝐺𝑇 ℎ𝑟𝑚𝑠 and 𝜎𝑜 values. (a)  𝐺𝑇 ℎ𝑟𝑚𝑠 plot. (b) 

𝜎𝐻𝐻
𝑜  and 𝜎𝑉𝑉

𝑜  plots for PS 04 dataset. (c)  𝜎𝐻𝐻
𝑜  and 𝜎𝑉𝑉

𝑜  plots for PS 05 dataset. 

(d) 𝜎𝐻𝐻
𝑜  and 𝜎𝑉𝑉

𝑜  plots for PS 12 dataset. 

Data 

ID 

Flight 

heading 

direction 

(deg) 

Aspect 

angle 

(deg) 

Incidence 

angle at the 

runway (deg) 

Used for 

PS 03 91.20 181.20 28.67 to 55.06 Testing 

PS 04 201.71 291.71 28.72 to 32.09 Training 

PS 05 291.68 21.68 32.04 to 55.46 Training 

PS 12 21.70 111.70 38.96 to 41.89 Training 
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Fig. 7(a) shows the 𝐺𝑇 ℎ𝑟𝑚𝑠 plot for the ground truth spots 1-8. 

Figs. 7(b-d) show the 𝜎𝐻𝐻
𝑜  and 𝜎𝑉𝑉

𝑜  plots for the PS 04, PS 05, 

and PS 12 datasets, respectively. The 𝜎𝐻𝐻
𝑜  and 𝜎𝑉𝑉

𝑜  plots are 

shown for the ground truth spots 1-8. By comparing Fig. 7 (a) 

with Figs. 7(b-d), it can be seen that the 𝜎𝐻𝐻
𝑜  and 𝜎𝑉𝑉

𝑜  plots are 

following the same trend as the 𝐺𝑇 ℎ𝑟𝑚𝑠 plot. This indicates 

that the 𝐺𝑇 ℎ𝑟𝑚𝑠 changes are correlated with the 𝜎𝐻𝐻
𝑜  and 𝜎𝑉𝑉

𝑜  

magnitude changes. This correlation between the 𝐺𝑇 ℎ𝑟𝑚𝑠, 𝜎𝐻𝐻
𝑜  

and 𝜎𝑉𝑉
𝑜  was utilized to estimate the model coefficients for the 

new model. For this purpose, the 𝐺𝑇 ℎ𝑟𝑚𝑠, 𝜎𝐻𝐻
𝑜 , 𝜎𝑉𝑉

𝑜  and 

incidence angle (𝜃) values of these three datasets for the ground 

truth spots 1-8 were used as inputs for the least square-based 

curve fitting algorithm and the model coefficients were 

estimated. 

The model coefficients were estimated for the HH and VV 

polarizations separately and the values are shown in Table IV. 

 
TABLE IV 

COEFFICIENTS ESTIMATED FOR THE NEW MODEL 

Coefficients Polarization 

HH VV 

𝛿 0.06782502 0.06792563 

𝛽 -0.9301637 -2.46489793 

𝜀 2.23988886 2.27478606 

 

Using the model coefficient values from Table IV, (23) can 

be written as: 

 

 𝑘𝑠𝐻𝐻

=  10
[
log(𝜎𝑝𝑞

𝑜 ) − log(0.06782502(cos(𝜃))−0.9301637)

2.23988886 𝑠𝑖𝑛(𝜃)
]
 

 

𝑘𝑠𝑉𝑉

=  10
[
log(𝜎𝑝𝑞

𝑜 ) − log(0.06792563(cos (𝜃))−2.46489793)

2.27478606 𝑠𝑖𝑛(𝜃)
]
 

 

 

 

(24) 

 

 

 

 

where 𝑘𝑠𝐻𝐻 is the 𝑘𝑠 value estimated for the HH polarization 

and 𝑘𝑠𝑉𝑉 is the 𝑘𝑠 value estimated for the VV polarization. 

As an additional step, the mean 𝑘𝑠 (𝑘𝑠𝑚𝑒𝑎𝑛) can be estimated 

from the 𝑘𝑠𝐻𝐻 and 𝑘𝑠𝑉𝑉 as follows: 

 

 
𝑘𝑠𝑚𝑒𝑎𝑛 = 

𝑘𝑠𝐻𝐻 + 𝑘𝑠𝑉𝑉

2
 

(25) 

 

 
Fig. 8. 𝐺𝑇 ℎ𝑟𝑚𝑠 vs model estimated surface roughness 

Fig. 8. shows the 𝐺𝑇 ℎ𝑟𝑚𝑠 vs. model-estimated surface 

roughness plots generated using the 𝑘𝑠𝐻𝐻 values, 𝑘𝑠𝑉𝑉 values 

and the 𝑘𝑠𝑚𝑒𝑎𝑛  values after estimating the model coefficients 

using the least square-based curve fitting method. By analyzing 

Fig. 8, it can be understood that the deviation between the 

𝐺𝑇 ℎ𝑟𝑚𝑠 and the model-estimated surface roughness are not so 

high, the Root Mean Square Error (RMSE) obtained for the HH 

polarization is 0.30 mm, for the VV polarization the RMSE is 

0.27 mm and for the HH-VV average, the RMSE obtained is 

also 0.27 mm. This low RMSE indicates that the model 

coefficients given in Table IV are reliable and can be used in 

the new model for an accurate estimation of the road surface 

roughness. From Fig. 8, it can also be observed that the RMSE 

obtained for the VV polarization is slightly better compared to 

the RMSE obtained for the HH polarization. Also, the RMSE 

obtained from the HH-VV average is the same as the RMSE 

obtained for the VV polarization alone (0.27 mm). So, 

averaging the 𝑘𝑠 values obtained from the HH and VV 

polarizations does not provide a better RMSE than using the 

VV polarization alone. But, the real performance of the new 

model can only be assessed by estimating the road surface 

roughness using different datasets acquired from multiple test 

sites with different acquisition geometries. These results are 

explained in Section V. 

 

 
(a) 

 
(b) 

Fig. 9. Model dynamics of the new model. (a) HH polarization. (b) VV 

polarization 

Fig. 9(a) and Fig. 9(b) show the model dynamics of the new 

model for HH and VV polarization, respectively. The change in 
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surface roughness values with respect to different incidence 

angles (𝜃) and sigma nought (𝜎𝑜) combinations can be 

observed in the plots. In both Fig. 9(a) and Fig. 9(b), each 

surface roughness line represents the change in surface 

roughness with respect to the incidence angle variations when 

the sigma nought remains constant. From both the plots, it can 

be observed the changes in surface roughness is small with 

respect to the incidence angle when the 𝜎𝑜 magnitudes are 

small (for, e.g., -27 dB and -32 dB). The change in surface 

roughness is higher as the incidence angle changes when the 𝜎𝑜 

magnitude is larger (for, e.g., -12 dB).  

E. Sigma nought and SNR masking 

High sigma nought values not corresponding to the road surface 

can cause errors in the road surface roughness estimation. Fig. 

10(a) shows the 𝜎𝑉𝑉
𝑜  image for the Cologne motorway 

intersection. By analyzing the image, it can be observed that the 

strong reflection from the lane dividers present in between the 

roads and also the strong reflection from the flyover walls are 

visible in yellow color. These strong reflections cause invalid 

high surface roughness values which need to be eliminated. For 

this purpose, an upper sigma nought threshold masking 

technique was implemented. Fig. 10(b) shows the 𝜎𝑉𝑉
𝑜  image 

with sigma nought values higher than -10.96 dB. From Fig. 

10(b), it can be understood that all the pixels on the road surface 

with 𝜎𝑉𝑉
𝑜  higher than -10.96 dB corresponds to strong 

reflections from lane dividers and flyover walls. So, all the 

pixels with 𝜎𝑉𝑉
𝑜  greater than -10.96 dB were masked out from 

the final surface roughness image. 

 

 
(a) 

 
(b) 

Fig. 10. 𝜎𝑉𝑉
𝑜  images. (a) 𝜎𝑉𝑉

𝑜  image for Cologne motorway intersection. (b) 

𝜎𝑉𝑉
𝑜  image showing reflections from lane divider and flyover walls. 

Similar to the high sigma nought values not corresponding to 

the road surface, the very low signal-to-noise ratio (SNR) pixels 

can also result in unreliable surface roughness estimation. The 

sigma nought values obtained from the low SNR pixels are 

more dominated by the noise than the actual radar signal. The 

surface roughness values obtained from these pixels are 

unreliable and do not correspond to the actual ground truth 

surface roughness. Therefore, the surface roughness values 

obtained from the low SNR pixels should be discarded. The 

SNR of the dataset can be estimated as follows [42]: 

 

 
𝑆𝑁𝑅𝑝𝑞 =  

𝜎𝑝𝑞
𝑜 − 𝜆4

𝜆4

 
(26) 

 

where 𝑆𝑁𝑅𝑝𝑞 is the SNR estimated for the 𝑝𝑞 polarization. 𝜎𝑝𝑞
𝑜  

is the sigma nought value for the 𝑝𝑞 polarization and 𝜆4 is the 

4th eigenvalue of the 4x4 coherency matrix which is used for 

the additive noise removal. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 11. Surface roughness vs. SNR plots. (a) for anisotropy and coherency 

matrix methods. (b) for Dubois model. (c) for new model. 

An SNR vs. surface roughness analysis was carried out to 

estimate the changes in the model-estimated surface roughness 
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as the SNR decreases. For this purpose, a region was identified 

on the road surface. The actual SNR and the surface roughness 

for that region were computed using different surface roughness 

models. After that, simulated complex random Gaussian noise 

was added to the four polarization channels independently and 

the SNR was varied from the actual value to lower values and 

the corresponding changes in the surface roughness were 

plotted. 

The red plot in Fig. 11(a) shows the SNR vs. surface roughness 

plot for the anisotropy method. By analyzing the plot, it can be 

observed that the model estimated surface roughness has only 

small variations for SNR larger than 8.45 dB and when the SNR 

falls below 8.45 dB, the surface roughness increases. The green 

plot in Fig. 11(a) shows the SNR vs. surface roughness plot for 

the coherency matrix-based method for surface roughness 

estimation. In this plot also, it can be found that the surface 

roughness is almost constant (around 2.78 mm) for SNR larger 

than 9.45 dB. Fig. 11(b) shows the SNR vs. surface roughness 

plot for the Dubois model. Here, the surface roughness is stable 

around 0.3 mm for SNR larger than 7.7 dB and then increases 

as the SNR value drops below 7.7 dB. Fig. 11(c) shows a similar 

analysis for the new model. From the plot, it can be seen that 

the surface roughness remains constant at 1.45 mm as long as 

the SNR is equal to or larger than 8.43 dB. But, only very small 

deviations are observed for an SNR higher than 5.98 dB. From 

Fig. 11, it can be generalized that the lowest value of SNR till 

the surface roughness remains constant indicates the minimum 

SNR required for each model for a reliable and non-biased 

estimation of surface roughness. The surface roughness values 

of the regions where the SNR is less than these minimum 

thresholds for each model are invalid and can be neglected to 

minimize the measurement biases/errors. 

F. Geocoding and Google Earth visualization 

The analysis of the road surface condition can be better 

evaluated by visualizing the surface roughness images in 

Google Earth. This can help to compare the surface roughness 

values with the recent high-resolution optical view of the same 

regions (if available). The block diagram showing the detailed 

processing scheme for the road surface roughness estimation 

after performing the pre-processing steps is shown in Fig. 12. 

By comparing the overall block diagram for surface roughness 

estimation shown in Fig. 5 with the detailed block diagram of 

the processing scheme shown in Fig. 12, it can be seen that the 

SNR estimation, sigma nought, and SNR masking were 

performed before generating the surface roughness image as 

explained in the previous section. After that, the surface 

roughness image was further processed to extract the roads and 

to generate the Google Earth keyhole markup language (KML) 

files. 

To visualize the surface roughness in Google Earth, the surface 

roughness images generated were geocoded from the slant-

range coordinate system to a geographic coordinate system with 

a grid spacing of 0.25 m. The roads were then extracted from 

the surface roughness images with the help of the Open Street 

Map (OSM) road layer [43]. The OSMnx python package was 

used to download the road layers and all the surface roughness 

values outside the road layer were masked out from the final 

surface roughness image [44]. Google Earth KML files were 

then generated which show the surface roughness results and 

the road boundaries. In this method, KML files representing 

surface roughness values of specific roads of interest can be 

generated by filtering using the type and names of the roads of 

interest. E.g., the filtering key “Motorway-A4” generates the 

surface roughness KML file for the motorway with the name 

A4. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

The surface roughness results obtained using the methods 

described in the previous section are discussed here.  

A. Evaluation of the surface roughness estimation models 

This sub-section contains the road surface roughness (ℎ𝑟𝑚𝑠) 

results obtained from the anisotropy method, coherency matrix 

method, Dubois model, Oh model, and new model.  

 

 
Fig. 13. Google Earth image of duraBASt test site and nearby motorway 

showing smooth and rough road surfaces 

 

Fig. 13 shows the Google Earth image of the duraBASt test site 

near the Cologne motorway intersection. By observing the 

Surface Roughness 

Models 

𝜎𝑜 Image 

𝜎𝑜 & SNR Masking 

SNR Estimation 

Surface Roughness 

Image 

Geocoding & Road 

Surface Extraction 

Google Earth KML 

Image  

OSM Road 

Layer 

Fig. 12. Block diagram showing the detailed processing scheme 
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image, it can be seen that the duraBASt test site is composed of 

different road materials having different surface roughness. The 

smooth and rough regions identified at the duraBASt test site 

are shown in Fig. 13. Also, a change in road surface color can 

be observed on the motorway near the duraBASt test site. This 

can be due to maintenance work done in that region. 

Fig. 14(a) shows the surface roughness image generated for 

the duraBASt test site and the nearby motorway using the 

anisotropy method without removing the additive noise and Fig. 

14(b) shows the surface roughness image generated using the 

anisotropy method after removing the additive noise. By 

comparing both Fig. 14(a) and Fig. 14(b) with the Google Earth 

image of the same region shown in Fig. 13, it can be observed 

that the smooth and rough regions are appearing in the same 

color. The anisotropy method is unable to differentiate between 

the smooth and rough road sections even after additive noise 

removal. Fig. 14 (c) and Fig. 14(d) show the surface roughness 

images generated using the coherency matrix method before 

and after removing the additive noise, respectively. From Fig. 

14(c), it can be observed that before removing the additive noise 

the coherency matrix method is unable to differentiate between 

the smooth and rough sections of the road. After removing the 

additive noise, in Fig 14(d) it can be observed that the result got 

slightly improved, but, still, the smooth and rough road sections 

cannot be identified. Even after additive noise removal, the 

surface roughness image is noisy. Fig. 14(e) and Fig. 14(f) show 

the surface roughness results estimated using the Oh 2004 

model before and after additive noise removal, respectively. By 

comparing both Fig. 14(e) and Fig. 14(f) with the Google Earth 

image of the same region shown in Fig. 13, it can be observed 

that the smooth and rough regions are appearing in the same 

color. The Oh 2004 method is unable to differentiate between 

the smooth and rough road sections even after additive noise 

removal. The surface roughness images generated by the 

Dubois model before and after additive noise subtraction is 

shown in Fig. 14(g) and Fig. 14(h) respectively. The effect of 

additive noise subtraction is not considerably noticeable at this 

zoom level. In both images, the surface roughness changes 

shown in Fig. 13 at the duraBASt test site and the motorway 

can be identified. Fig. 14(i) shows the surface roughness image 

generated using the new model before additive noise 

subtraction. By comparing Fig. 14 (i) with the Google Earth 

image shown in Fig. 13 and also with the surface roughness 

images generated by the Dubois model shown in Fig. 14 (g) and 

Fig. 14(h), it can be found that much smaller changes in the 

surface roughness variations at the duraBASt test site and also 

at the motorway are visible in the surface roughness image 

generated by the new model which are not visible in the surface 

roughness image generated by the Dubois model. Fig. 14(j) 

shows the surface roughness image generated by the new model 

after additive noise subtraction. By comparing Fig. 14(j) with 

Fig. 14(i), it can be seen that some of the high surface value 

pixels with yellow color got reduced in Fig. 14 (j) after 

subtracting additive noise. From Fig. 14(a-j), it can be found 

that the Dubois model and the new model produced the best 

surface roughness results, the surface roughness images 

generated by the other models were either noisy or were unable 

to differentiate between smooth and rough road sections. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

  

(i) (j) 

Fig. 14. ℎ𝑟𝑚𝑠 images. (a) ℎ𝑟𝑚𝑠 image generated using the anisotropy method 

before additive noise removal. (b) ℎ𝑟𝑚𝑠 image generated using the 

anisotropy method after additive noise removal. (c) ℎ𝑟𝑚𝑠 image generated 

using the coherency matrix method before additive noise removal. (d) ℎ𝑟𝑚𝑠 

image generated using the coherency matrix method after additive noise 

removal. (e) ℎ𝑟𝑚𝑠 image generated using the Oh 2004 model before additive 

noise removal. (f) ℎ𝑟𝑚𝑠 image generated using the Oh 2004 model after 

additive noise removal. (g) ℎ𝑟𝑚𝑠 image generated using the Dubois model 

before additive noise removal. (h) ℎ𝑟𝑚𝑠 image generated using the Dubois 

model after additive noise removal. (i) ℎ𝑟𝑚𝑠 image generated using the new 

model before additive noise removal. (j) ℎ𝑟𝑚𝑠 image generated using the 

new model after additive noise removal. 
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In Fig. 15, the surface roughness values generated for the 

ground truth spots at the Kaufbeuren test site by different 

models are compared with the ground truth surface roughness 

values obtained by laser scanning. The surface roughness plots 

were generated using the PS 03, PS 04, PS 05, and PS 12 

datasets (cf. Fig. 6). Fig. 15(a) shows the surface roughness 

plots for the ground truth surface roughness values and the 

surface roughness values estimated from the anisotropy method 

and coherency matrix method. By analyzing Fig. 15(a), it can 

be seen that the surface roughness values estimated by the 

anisotropy model at the smooth ground truth spots (low surface 

roughness spots) were highly overestimated and the model 

estimated surface roughness values at the rough ground truth 

spots (high surface roughness spots) were underestimated. For 

the coherency matrix method, the surface roughness values 

obtained at both the rough and smooth spots were highly 

overestimated. Table V shows the comparison between the 

ground truth surface roughness values and the model estimated 

surface roughness values for the PS 03 dataset. From Table V, 

it can be found that the RMSE obtained for the anisotropy 

method is 0.88 mm and 1.99 mm for the coherency matrix 

method. Fig. 15(b) shows the surface roughness plots generated 

using Oh 1992 model and Oh 2004 model. By observing the 

plots, it can be understood that the surface roughness values 

estimated by both the Oh 1992 model and Oh 2004 model were 

overestimated at both the smooth and rough ground truth spots. 

From Table V it can also be seen that the RMSE obtained for 

the Oh 1992 model is 1.96 mm and 2.44 mm for the Oh 2004 

model. From Fig. 15(a) and Fig. 15(b), it can be understood that 

the model estimated surface roughness plots are not correlated 

with the ground truth surface roughness plots. 

 
TABLE V 

 COMPARISON OF SURFACE ROUGHNESS RESULTS AT GT SPOTS OBTAINED 

USING DIFFERENT SURFACE ROUGHNESS ESTIMATION MODELS 
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1 2.36 2.14 4.27 3.19 2.01 1.05 1.60 

2 0.99 1.50 2.61 2.65 3.92 0.72 1.12 

3 0.66 1.22 1.38 3.06 2.54 0.66 0.60 

4 0.88 2.33 5.32 3.31 1.45 1.99 1.37 

5 0.68 1.78 2.04 2.82 3.43 1.16 0.74 

6 0.98 1.50 0.37 2.90 4.01 1.03 0.61 

7 1.09 1.86 1.35 2.39 4.75 1.31 0.78 

8 0.61 1.79 2.29 2.97 2.80 0.49 0.46 

R
M

S
E

 

(m
m

)  0.88 1.99 1.96 2.44 0.65 0.37 

 

By comparing the Dubois model estimated surface roughness 

plots with the ground truth plot it can be seen that some of the 

datasets show an underestimation at the ground truth spots and 

some other datasets show an overestimation. But, it can be seen 

that the plots are correlated and follow the same trend of the 

ground truth surface roughness plot. From Table V, it can be 

seen that the RMSE obtained for the Dubois model using the 

PS 03 dataset is 0.65 mm which is lower compared to the above-

mentioned models. By comparing the surface roughness plots 

estimated using the new model with the ground truth surface 

roughness plot, it can be seen that the deviations are the lowest 

between the plots. From Table V also, it can be seen that the 

RMSE obtained for the new model using the PS 03 dataset is 

0.37 mm, which is the lowest RMSE obtained from all the 

models. The PS 03 is used for Table V because this dataset was 

not used for estimating the new model coefficients. 

Sigma nought values of the road surface for different 

polarizations were compared with the Noise Equivalent Sigma 

 
(a) 

 
(b) 

 
(c) 

Fig. 15. 𝐺𝑇 ℎ𝑟𝑚𝑠 and model estimated surface roughness comparison plots. 

(a) anisotropy and coherency matrix method. (b) Oh 1992 and Oh 2004 

method. (c) Dubois model and new model. 
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Zero (NESZ) of the SAR system to understand the performance 

differences of different surface roughness estimation models. 

 

 
Fig. 16. Sigma nought vs incidence angle plot 

 Fig. 16 shows the sigma nought vs. incidence angle plot 

along the range direction. The sigma nought values were 

extracted from the linear Kaufbeuren runway. In Fig. 16, the 

blue line represents the sigma nought magnitude plot for the HH 

polarization, the orange line represents the sigma nought 

magnitude plot for the VV polarization, the green line 

represents the sigma nought magnitude plot for the cross-

polarization and the red line shows the NESZ threshold plot 

along the range direction. From Fig. 16, it can be observed that 

the sigma nought magnitude plots for the HH and VV 

polarization stay above the NESZ threshold from near range to 

far range. But, the sigma nought magnitude for the cross-

polarization falls below the NESZ as the incidence angle 

increases. Since the sigma nought magnitude for the cross-

polarization falls below the NESZ threshold for the road 

surface, the cross-polarization channels are not reliable for the 

road surface roughness estimation. The anisotropy method, 

coherency matrix method, Oh 1992 model, and the Oh 2004 

models require the cross-polarization channels for the surface 

roughness estimation. This is the reason for the unreliable 

surface roughness estimation from these models. On the other 

hand, the Dubois model and the new model require only the co-

polarization channels for the surface roughness estimation. This 

is the reason for the better performance of the Dubois model 

and the new model for surface roughness estimation.  

B. Performance of the new model 

From the results discussed in the previous section, it can be 

understood that the Dubois model and the new model 

performed better compared to the other models. But, the surface 

roughness values estimated by the Dubois model have an 

incidence angle dependency which led to the development of a 

new semi-empirical model based on the assumptions from the 

Dubois model.  

Fig. 17(a) shows the surface roughness image of the 

Kaufbeuren test site estimated using the Dubois model. The 

surface roughness image is visualized in Google Earth after 

geocoding and masking out the regions outside the runway, 

taxiway, and parking areas. The near range and far range are 

marked in the image. As discussed in the study area section, 

both ends of the runway are made of concrete and the middle 

region is made of asphalt. But in Fig. 17(a), it can be observed 

that at the near range the Dubois model is unable to differentiate 

between concrete and asphalt. Both concrete and asphalt appear 

in blue indicating similar surface roughness. But, at the far 

range, the Dubois model can clearly distinguish between 

asphalt and concrete. The asphalt regions are appearing mainly 

in blue color and the concrete regions are appearing in yellow 

and red color. The red color is due to the rugged surface present 

at the end of the runway to provide better braking for the 

aircraft. Also, a gradient increase in the surface roughness can 

be observed from near range to far range at the asphalt regions. 

 
(a) 

 
(b) 

 
(c) 

Fig. 17.  Surface roughness images of the Kaufbeuren test site. (a) Dubois 
model. (b) new model using training data. (c) new model using testing data.  
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All these observations point out that the surface roughness 

values estimated by the Dubois model are influenced by the 

incidence angle and the model sensitivity to surface roughness 

is less at the near range. 

The new model is developed based on the Dubois model 

assumptions to minimize this incidence angle dependency 

problem and also to improve the overall accuracy of the road 

surface roughness estimation. Since the new model coefficients 

are estimated using the ground truth data obtained from the road 

surface itself, it is expected to perform better compared to the 

other models which are originally trained for the soil roughness 

estimation. Fig. 17(b) shows the surface roughness image 

generated for the Kaufbeuren test site using the new model. 

Both Fig. 17(a) and Fig. 17(b) were generated using the PS 05 

dataset. The acquisition geometry of the PS 05 dataset is shown 

in Fig. 6. This dataset was one of the three datasets used for 

estimating the new model coefficients. So, for the new model, 

the PS 05 dataset can be considered as a training dataset. By 

comparing Fig. 17(b) with the surface roughness image 

generated using the Dubois model shown in Fig. 17(a), it can 

be seen that in the surface roughness image generated using the 

new model, the concrete regions at both ends of the runway are 

showing a high value of surface roughness indicated by the 

yellow color and the asphalt regions are showing a low value of 

surface roughness indicated by the blue color. From this result, 

it can be clearly understood that the new model can distinguish 

between concrete and asphalt at both near range and far range 

which may also have different surface roughness. Also, if we 

look at the asphalt regions from near range to far range, it can 

be observed that the influence of incidence angle on surface 

roughness variations has reduced considerably. Fig. 17(c) 

shows the surface roughness image generated using the new 

model using the PS 03 dataset which was not part of the model 

coefficients estimation and has a different acquisition geometry 

(cf. Fig. 6). So, this dataset can be considered as a testing 

dataset. By comparing Fig. 17(c) with Fig. 17(b), it can be 

found that both the images look very similar with asphalt 

appearing in blue color and concrete appearing in yellow color. 

So, the new model performs satisfactorily with both the training 

and testing data. 

 
TABLE VI 

COMPARISON OF SURFACE ROUGHNESS RESULTS AT GT SPOTS OBTAINED 

USING DUBOIS MODEL AND NEW MODEL 

GT 

spot 

𝐺𝑇 ℎ𝑟𝑚𝑠 

(mm) 

Dubois 

model 

New model 

(training 

data) 

New model 

(testing 

data) 

1 2.36 4.06 2.33 1.60 

2 0.99 1.61 0.93 1.13 

3 0.66 0.81 0.54 0.60 

4 0.88 1.77 1.17 1.37 

5 0.68 0.69 0.64 0.75 

6 0.98 0.64 0.71 0.61 

7 1.09 0.94 1.58 0.78 

8 0.61 0.75 0.62 0.46 

RMSE 

(mm) 

 0.73 0.23 0.37 

 

 Table VI shows the comparison between the ground truth 

surface roughness values and the surface roughness values 

obtained using the Dubois model and the new model. By 

analyzing the table, it can be understood that the Dubois model 

has an RMSE of 0.73 mm. The new model has an RMSE of 

0.23 mm for the training data and the testing data, the RMSE is 

0.37 mm. So, in both cases, the new model can provide a better 

surface roughness estimate compared to the Dubois model. 

 

  
                (a)                            (b) 

Fig. 18. Surface roughness images of the Kaufbeuren test site (PS 05 

dataset). (a) new model without sin(𝜃) term. (b) new model with sin(𝜃) 

term. 

The sin(𝜃) term is added in the new model (22) to counter its 

sensitivity to the incidence angle. Fig. 18(a) shows the surface 

roughness image generated using the new model without 

considering the sin(𝜃) term. The incidence angle sensitivity on 

the surface roughness can be clearly seen in Fig. 18(a). The 

concrete regions of the runway at the near range are appearing 

in red and magenta color indicating higher values of surface 

roughness and the concrete regions of the runway at the far 

range are appearing in green color indicating comparatively 

lower values of surface roughness. The smooth asphalt regions 

of the runway are also showing higher values of surface 

roughness at the near range that gradually decrease towards far 

range. Fig. 18(b) shows the surface roughness image generated 

using the new model after including the sin(𝜃) term. By 

comparing Fig. 18(b) with Fig. 18(a), it can be seen that the 

sensitivity of surface roughness to the incidence angle is 

considerably reduced in Fig. 18(b). The concrete regions of the 

runway at both near and far range are appearing in yellow color 

indicating a smilar range of surface roughness values. The 

smooth asphalt regions of the runway are also appearing in blue 

color and the gradient change in surface roughness from near to 

far range is considerably reduced. The addition of the sin(𝜃) 

term has a crucial role in the superior performance of the new 

model and it can be verified by comparing the results shown in 

both Fig. 17 and Fig. 18. 

C. Influence of SNR and sigma nought 

As discussed in the methodology section, an upper sigma 

nought threshold masking and a lower SNR threshold masking 

are required to remove the unreliable surface roughness values 

from the surface roughness images. 
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Fig. 19(a) shows the surface roughness image generated using 

the new model for the Wolfsburg motorway intersection at  

Braunschweig, Germany, without performing sigma nought 

and SNR masking. The zoomed view in the figure shows a 

portion of the motorway where a change in surface roughness 

can be observed.  This sudden change in surface roughness at 

the motorway may be due to a maintenance work done in that 

region. In the zoomed view, it can be seen that two red stripes 

are present across the road indicating high surface roughness 

values. These red stripes are caused due to the strong 

backscatter signal from the overhead signboard present there 

and do not correspond to the actual surface roughness of that 

location. Also, the green color present in between the two lanes 

of the motorway is caused due to the strong reflection from the 

lane dividers separating the two roads. An upper sigma nought 

threshold masking can be done to remove this kind of anomalies 

from the surface roughness image. Fig. 19(b) shows the surface 

roughness image generated after performing the upper sigma 

nought threshold masking. In Fig. 19(b), all the pixels with 

sigma nought values higher than -10.96 dB were masked out to 

remove strong reflections from signboards, lane dividers, etc. If 

we compare the zoomed view shown in Fig. 19(b) with the 

zoomed view shown in Fig. 19(a), it can be observed that the 

two red stripes present in Fig. 19(a) due to the strong reflection 

from the signboards are not visible in Fig. 19(b) after upper 

sigma nought threshold masking. Also, it can be seen that the 

green color present in between the lanes due to the reflection 

from the lane dividers is also removed in Fig. 19(b). So, the 

upper sigma nought masking technique is an effective way to 

mask out unreliable pixels from the surface roughness image 

caused due to strong reflecting targets. Even after upper sigma 

nought threshold masking, the low SNR pixels can still lead to 

unreliable surface roughness values. So, all the pixels with SNR 

less than 5.98 dB were masked out from the surface roughness 

image. Fig. 19(c) shows the surface roughness image after 

performing both upper sigma nought threshold masking and 

lower SNR threshold masking. By comparing Fig. 19(b) with 

Fig. 19(c), it can be seen that some of the pixels corresponding 

to the blue color got removed in Fig. 19(c). These pixels were 

having an SNR of less than 5.98 dB. Both upper sigma nought  

threshold masking and low SNR threshold masking can be 

applied together to minimize the unreliable values from the 

surface roughness images. 

D. Single surface roughness image from multiple datasets 

The surface roughness images generated from a single dataset 

can contain unreliable surface roughness values caused due to 

shadow areas, speckle, low SNR regions, and incidence angle. 

To minimize these errors, the surface roughness images 

generated from multiple datasets having different acquisition 

geometries can be combined to generate a single surface 

roughness image. The highest SNR method or multi dataset 

averaging method can be used to generate a single surface 

roughness image from multiple datasets. 

In the highest SNR method, the geocoded surface roughness 

matrices and SNR matrices were generated for all the available 

datasets. A pixel-wise SNR search is then done through all the 

available SNR matrices to identify the highest SNR dataset for 

that particular pixel in the matrix. The surface roughness value 

estimated from this highest SNR dataset is then used for that 

particular pixel. This process is then repeated for all the pixels 

in the geocoded grid. In this method, each pixel of the final 

surface roughness matrix will be filled with the value from the 

highest SNR dataset. In the multi dataset averaging method, the 

 
(a) 

 
(b) 

 
(c) 

Fig. 19. Surface roughness images of the Wolfsburg motorway intersection 
at Braunschweig. (a) without sigma nought and SNR masking. (b) with 

sigma nought masking. (c) with both sigma nought and SNR masking. 
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single surface roughness image is generated by performing 

pixel-wise averaging of the surface roughness results generated 

from multi-aspect angle datasets. The multi dataset averaging is 

performed after upper threshold sigma nought masking and 

lower SNR threshold masking.  

 Fig. 20(a) shows the surface roughness image generated using 

the new model from a single dataset which was not used for 

training the new model (PS 03 dataset). The concrete regions 

present at both ends of the runway can be clearly distinguished 

from the asphalt regions. The concrete regions at the ends of the 

runway can be seen in yellow color while the asphalt regions 

mainly appear in blue. The two zoomed views in the image 

show the portions of the runway where some repair works were 

carried out. The regions where the repairs were done are 

appearing in yellow color indicating higher surface roughness.  

Fig. 20(b) shows the single surface image generated from 

multiple datasets using the highest SNR method. By comparing 

Fig. 20(b) with Fig. 20(a), it can be observed that much finer 

details are visible in Fig. 20(b) than in Fig. 20(a). More details 

of the runway can be seen in the zoomed view shown in Fig. 

20(b) than in the zoomed view shown in Fig. 20(a). But, the 

effect of local backscatter variations seems to be more dominant 

in the single surface image generated using the highest SNR 

method. These local backscatter variations are caused due to the 

oriented features on the road surface which can lead to high 

backscattering only from certain aspect angles.  

Fig. 20(c) shows the single surface roughness image generated 

from multiple datasets using the multi dataset averaging 

method. By comparing Fig. 20(c) with Fig. 20(b) and Fig. 20(a), 

it can be seen that the multi dataset averaging image looks much 

smoother compared to the other two images. All the local 

variabilities present in the first two images were smoothed out 

due to this multi dataset averaging. From the zoomed view 

shown in Fig. 20(c), it can be found that the result looks much 

better than the results shown in Fig. 20(a) & Fig. 20(b). The 

repair works done on the runway can be seen in yellow color 

and the surrounding regions are appearing in blue color without 

many variations. The multi dataset averaging procedure has 

reduced the effect of speckle in the surface roughness image. 

 
TABLE VII 

COMPARISON OF SURFACE ROUGHNESS RESULTS AT GT SPOTS OBTAINED 

USING NEW MODEL AND MULTI DATASET METHODS 

GT 

spot 

𝐺𝑇 ℎ𝑟𝑚𝑠 

(mm) 

Surface 

roughness 

from a 

single 

dataset 

Highest 

SNR 

method 

Multi 

dataset 

averaging 

method 

1 2.36 1.60 1.76 1.78 

2 0.99 1.13 1.60 1.14 

3 0.66 0.60 0.75 0.60 

4 0.88 1.37 1.73 1.40 

5 0.68 0.75 1.02 0.80 

6 0.98 0.61 0.79 0.79 

7 1.09 0.78 1.74 1.28 

8 0.61 0.46 0.58 0.59 

RMSE 

(mm) 

 0.37 0.43 0.29 

 

Table VII shows the comparison between the ground truth 

surface roughness, surface roughness estimated from a single 

dataset using the new model, single surface roughness image 

generated using the highest SNR method, and the single surface 

roughness image generated using the multi dataset averaging 

method. The RMSE obtained from the new model for the GT 

spots is 0.37 mm. For the highest SNR method, the RMSE 

obtained is 0.43 mm. So, the single surface image generated 

 
(a) 

 
(b) 

 
(c) 

Fig. 20. Surface roughness images of the Kaufbeuren test site. (a)  surface 
roughness image generated using the new model. (b)  single surface image 

generated from multiple datasets using the highest SNR method. (c)  single 

surface roughness image generated from multiple datasets using the multi 
dataset averaging method. 
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from multiple datasets using the highest SNR method has a 

higher RMSE than the surface roughness image generated from 

a single dataset. This is because the highest SNR method is very 

sensitive to the speckle and local variations in the datasets. For 

the multi dataset averaging method, the RMSE obtained is 0.29 

mm. In this case, RMSE is much lower compared to the highest 

SNR method and single dataset method. From Fig. 20 and Table 

VII, it can be clearly understood that generating a single surface 

roughness image from multiple datasets using the multi dataset 

averaging technique can generate surface roughness images 

with fewer local variations and low RMSE.  

VI. CONCLUSION 

 This article proposes a novel approach for the periodic 

monitoring of road surface roughness using high-resolution 

airborne polarimetric SAR datasets. Compared to the 

conventional methods, the road surface roughness estimation 

using airborne polarimetric SAR datasets is efficient, less time 

consuming and cost-effective for a country-wide scale 

application. The X-band airborne polarimetric SAR datasets 

used in this study show very good sensitivity to the road surface 

roughness and thus show great potential for wide-area road 

surface roughness estimation. But, the estimation of road 

surface roughness from the SAR datasets is challenging due to 

the low radar backscatter obtained from the smooth road 

surface. Because of this reason, the additive noise present in the 

datasets should be minimized before estimating the road surface 

roughness. In this study, the additive noise is minimized using 

the eigenvalue-based coherency matrix method. The existing 

polarimetric anisotropy-based model, coherency matrix-based 

model, and the semi-empirical Oh models were found to be not 

reliable for road surface roughness estimation because of their 

dependency on noise dominant cross-polarization channels. 

The Dubois model is found to provide a better estimate of the 

road surface roughness because of its dependency only on co-

polarization channels. But, the Dubois model is biased due to 

its sensitivity to incidence angle variations. A new semi-

empirical model is proposed in this article for the HH and VV 

polarizations based on the assumptions from the Dubois model. 

The road surface roughness results obtained from the new 

model show a very good correlation with ground truth surface 

roughness data. Upper sigma nought threshold masking and 

lower SNR threshold masking were implemented to eliminate 

unreliable surface roughness values. Finally, the surface 

roughness images were generated only for the road surfaces and 

visualized in Google Earth with the help of the road layers from 

the Open Street Map (OSM). Also, it is interesting to note that 

the new model requires only HH or VV polarization for the road 

surface roughness estimation. The principle of PolSAR was 

required only for additive noise attenuation. So, it is possible to 

estimate the road surface roughness using a cheaper and less 

complex single-pol SAR system. In this case, a different noise 

attenuation method that requires only single-pol data needs to 

be used. In the next phase of this study, further experiments are 

planned using an airborne polarimetric Ka-band SAR which, 

due to the smaller wavelength, will be more sensitive to the 

surface roughness differences. The upcoming Ka-band datasets 

can potentially also be used to monitor the unevenness of the 

road surfaces and possibly estimate the International Roughness 

Index (IRI) parameter. It is also planned to test the applicability 

of the new model on spaceborne SAR data, especially on high-

resolution staring spotlight data acquired with TerraSAR-X 

and/or TanDEM-X. But, in the case of spaceborne SAR datasets 

there can occur additional difficulties in the road surface 

roughness estimation due to the possibility of large radar 

shadow regions at certain locations and the opportunities to 

acquire datasets from multiple aspect angles are typically also 

limited. Therefore, the study area should be limited to regions 

where radar shadowing is minimal. Also, the lower SNR 

threshold masking technique discussed in this paper can still be 

applied on the spaceborne SAR datasets to filter out the 

unreliable surface roughness estimates from the shadow 

regions. Even though there are some additional challenges, the 

use of the spaceborne SAR datasets can help in wide-area road 

surface roughness estimation in the future. 
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