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Online Learning of Centroidal Angular Momentum Towards
Enhancing DCM-Based Locomotion

Robert Schuller, George Mesesan, Johannes Englsberger, Jinoh Lee, and Christian Ott

Abstract— Gait generation frameworks for humanoid robots
typically assume a constant centroidal angular momentum
(CAM) throughout the walking cycle, which induces undesir-
able contact torques in the feet and results in performance
degradation. In this work, we present a novel algorithm to learn
the CAM online and include the obtained knowledge within the
closed-form solutions of the Divergent Component of Motion
(DCM) locomotion framework. To ensure a reduction of the
contact torques at the desired center of pressure position, a
CAM trajectory is generated and explicitly tracked by a whole-
body controller. Experiments with the humanoid robot TORO
demonstrate that the proposed method substantially increases
the maximum step length and walking speed during locomotion.

I. INTRODUCTION

Legged locomotion of robotic systems is a complex prob-
lem due to the nonlinear and underactuated characteristics of
the corresponding multibody dynamics and the constraints on
applicable contact forces. To handle the complexity, reduced
models focusing on the center of mass (CoM) dynamics
were introduced, one prominent example being the Linear
Inverted Pendulum (LIP) model [1]. Based on the LIP model
and the Zero-Moment Point (ZMP) [2], several methods for
generating CoM trajectories were developed, e.g., [3], [4].
The Divergent Component of Motion (DCM) [5], [6], also re-
ferred to as instantaneous Capture Point [7], was introduced
to simplify three-dimensional gait generation by focusing on
the unstable part of the CoM dynamics. Based on the DCM
concept, closed-form CoM trajectories can be generated
efficiently using matrix-vector computation [8]–[10].

When using the DCM framework for gait generation, it
is usually assumed that the rate of change of the centroidal
angular momentum (CAM) is zero [5]. Consequently, the
enhanced Centroidal Momentum Pivot (eCMP) is chosen to
coincide with the desired center of pressure (CoP) position,
as shown in Fig. 1. However, this assumption does not hold
for the multibody dynamics of a humanoid robot, where a
substantial CAM is generated through swing leg and pelvis
motions. The induced CAM, if not adequately controlled,
leads to a deviation of the actual CoP from its desired
position. If the CoP approaches the edge of the support area,
foot tilting can occur, which may cause the robot to fall over.

The inclusion of the multibody CAM in online gait
generation is still an ongoing research problem due to its
nonlinear and nonholonomic properties. In [11], a centroidal
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Fig. 1. The left diagram depicts the humanoid robot TORO walking with
constant CAM assumption, while the right diagram shows it walking with
the proposed method of online learning of CAM. The following quantities
are presented: CoM (x), eCMP (e), CoP (p), rate of change of CAM (l̇c),
external force vector (fgrf ), and contact torque (τgrf ).

momentum trajectory, including linear and angular momenta,
is optimized based on a kino-dynamic planning procedure.
Nonetheless, this method is computationally heavy and per-
formed offline. Other approaches provide extensions of the
LIP model to give a better approximation of the multibody
CAM [12]–[14]. In [15], the CAM is approximated by a
simplified three-mass model and integrated within the DCM
planning framework of [5]. However, these approximations
still cannot cover the entire complexity of the CAM of a
humanoid.

Other methods do not explicitly account for the rotational
dynamics during planning but compensate for unmodeled
effects which result from the discrepancy between the LIP
and the multibody model. A common approach is to use a
preview controller in combination with a dynamic filter [16].
An expected ZMP error is computed for a given preview
horizon from the multibody dynamics, and a second stage
preview controller is applied to account for the deviation.
This method is extended in [17] to adapt online the CoM
and ZMP trajectories within a shorter reaction time. By
exploiting the periodicity of walking motions, ZMP tracking
can also be ensured by applying a model-free iterative
learning controller (ILC) in combination with a preview
controller [18].

More recently, the authors in [19] presented a DCM-
based ILC approach to increase the robustness of the walking
motions through an online adapted Virtual Repellent Point



(VRP) trajectory. This method improves the VRP tracking,
but since the desired VRP trajectory is planned with a
constant CAM assumption, the actual CoP is still deviating
from its desired position during walking.

The presented methods [15]–[18] focus only on the ZMP
tracking, which corresponds to a reduction of the horizontal
(xy-direction) contact torques in the desired ZMP position
for flat-ground walking [20]. Moreover, another highly lim-
iting factor for robust and dynamic walking is the contact
torque constraints about the vertical axis w.r.t. the contact
surface (z-axis). Substantial torques about the z-axis can
result in rotational slippage that destabilizes the walking. The
approaches in [21]–[23] tackle this problem by canceling out
the CAM about the z-axis; however, these methods do not
provide explicit ZMP tracking.

In this work, we present a unified solution that ensures a
contact torque reduction at the desired CoP position about all
three axes by considering the multibody CAM during DCM-
based gait generation. Similar to [15], we express the CAM
as a polynomial function, but instead of using a simplified
approximation, the CAM trajectory is learned online by
exploiting the cyclic walking motions. After each walking
phase, a polynomial function is fit online to the learned
CAM, and the corresponding polynomial coefficients are
used within the next walking phase to replan the CoM trajec-
tory. Additionally, we provide an online updating scheme for
the DCM trajectory to ensure continuity. Complementing the
CoM reference, we generate a desired CAM trajectory, which
is tracked by the whole-body controller introduced in [24]
with an additional CAM-based motion optimization [25].
Fig. 2 overviews the proposed system architecture.

II. FUNDAMENTALS

This section provides the fundamentals of the DCM frame-
work [5], [8]–[10]. Moreover, insights from our previous
work [25] about the CAM in humanoid locomotion and its
relation to the DCM framework are provided.

A. DCM Framework
The DCM ξ ∈ R3 is defined as

ξ = x+ bẋ (1)

with the CoM position x ∈ R3 and velocity ẋ ∈ R3. The
DCM time constant is given by b =

√
∆z
g , where ∆z is the

nominal CoM height above the ground surface, and g is the
gravitational constant. The unstable first-order dynamics of
the DCM is given by

ξ̇ =
1

b
(ξ − v), (2)

where v ∈ R3 is the VRP which encodes the effects of ex-
ternal force and gravity. The VRP itself is located above the
eCMP e ∈ R3, with a constant height offset corresponding
to the gravitational force, i.e., v = e + (0, 0, ∆z)T . The
eCMP itself encodes the external forces1 fgrf ∈ R3 via

fgrf =
m

b2
(x− e) (3)

1Here, we only consider ground reaction forces as external forces.

with m being the total mass of the robot. The corresponding
Centroidal Momentum Pivot (CMP) [26] is defined as the
point where a line connecting the CoM and eCMP passes
through the ground surface.

B. DCM Reference Trajectory Generation

The overall motion is split into a sequence of nϕ transi-
tion phases, e.g., single support or double support phases,
for which reference trajectories are computed. We provide
closed-form DCM trajectory solutions for each transition
phase based on an arbitrary polynomial eCMP reference
trajectory given as

e(t) =

nv∑

j=0

av,jt
j . (4)

Here, nv is the degree and av,j ∈ R3 are the coefficients
of the polynomial function representing the eCMP trajec-
tory. The local time of the transition phase ϕ is given
by t ∈ [0, Tϕ], with Tϕ denoting the phase duration. By
grouping the coefficients of (4) and considering the constant
vertical offset to the eCMP, the VRP reference trajectory can
be expressed as a polynomial of the following form:

v(t) = Pv t(t). (5)

The time is vectorized to t(t) = (1, t, t2, ..., tnv )T and the
polynomial parameter matrix is denoted by Pv ∈ R3×(nv+1).

Inserting (5) into (2) and solving the differential equation
using the mathematical insights from [10], we get

ξ(t) = e
t−Tϕ
b ξT + PvC

T
(
t(t)− e

t−Tϕ
b t(Tϕ)

)
, (6)

where ξT is the given terminal DCM. The coefficient matrix
C ∈ R(nv+1)×(nv+1) is solely a function of the parameter b.
The corresponding CoM trajectory can be obtained by solv-
ing (1) after inserting (6). For further details please refer
to [10].

We obtain a continuous multi-step preview for the closed-
form CoM trajectory by linking the single transition phases
together. To bring the robot to a halt at the end of the
trajectory, the terminal DCM of the last transition phase is
chosen to coincide with the final VRP position [8], [9].

C. Multibody Dynamics and Centroidal Angular Momentum

The CAM lc ∈ R3 of a system depends linearly on the
task space velocity vector

lc = Ā

(
ẋ
χ̇

)
, (7)

where Ā ∈ R3×n is the rotational part of the centroidal
momentum matrix (CMM) [27] transformed into the n-
dimensional task space. The task velocities besides the CoM
velocity are represented by χ̇ ∈ Rn−3. One possible choice
for χ̇ may include the angular velocity of the base, the feet
velocities in Cartesian space, as well as the joint velocities of
the upper body. The rate of change of the CAM corresponds
to the total torque acting about the CoM, i.e. l̇c = τc. The



contact torque at the desired CoP position pd ∈ R3 is given
by

τgrf = (x− pd)× fgrf + l̇c. (8)

Consequently, the offset between the actual and desired CoP
is a function of the contact torque

p− pd =
1

m(g + z̈)




τgrf,y
−τgrf,x

0


 . (9)

Here, z̈ represents the vertical CoM acceleration.

III. PROBLEM STATEMENT

To ensure that the desired and actual CoP positions in (9)
coincide, the contact torque at the desired CoP position needs
to be zero. However, if constant CAM is assumed during
planning, i.e., τ c = 0, and the eCMP is chosen to coincide
with the desired CoP, the cross product on the right-hand side
of (8) vanishes. This can be shown by inserting the external
force vector from (3) into (8). In this case, the entire rate of
change of CAM, which is induced through swing leg motion,
should be regulated to be zero by a whole-body controller
to ensure zero contact torque. However, this typically leads
to extensive and inefficient upper-body motions.

Our goal is to circumvent this problem by appropriately
designing the external force vector in (8) so that the first
and second terms on the right-hand side of (8) cancel out
each other. This ensures CoP tracking without the need for
extensive controller action, as depicted in Fig. 1. The idea is
to abandon the constant CAM assumption and plan the eCMP
trajectory, and thus the external force vector (3), based on
the actual multibody CAM.

As reported in [28], the eCMP is given by the CoP position
and an offset depending on the horizontal torque about the
CoM2

e = p +
1

m(g + z̈)




τc,y
−τc,x

0


 . (10)

To provide explicit solutions, the eCMP trajectory needs to
be expressed as a polynomial function, as introduced in (4).
Inspired by the approach in [15], we combine (4) and (10)
and represent the desired CoP and the torque about the CoM
by individual polynomial functions. This yields

e(t) =

np∑

j=0

ap,jt
j +

1

mg

nτ∑

j=0

aτ,jt
j , (11)

where np, nτ , ap,j ∈ R3 and aτ,j ∈ R3 are the degrees
and the coefficients of the CoP and CoM torque polynomial,
respectively. The derivation of the coefficients in (11) is
discussed in the following section. Note that hereafter, flat-
ground walking with z̈ = 0 is assumed. Alternatively, for
walking with a non-constant CoM height, the term 1

m(g+z̈)
can be expressed by an additional polynomial function.

2In this work, the eCMP coincides with the CMP since the DCM time
constant is computed based on the average CoM height above the ground.
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Fig. 2. Overview of the system architecture. For brevity, time derivatives
of system states are omitted.

IV. POLYNOMIAL VRP REFERENCE

The VRP reference is generated based on a sequence of
footsteps given as foot centers and a learned CAM trajectory
expressed as polynomials. The corresponding polynomial
coefficients ap and aτ are grouped into Pv and used in
Section II-B to compute the CoM trajectory.

A. CoP Coefficients

The CoP reference is obtained from a spatial linear inter-
polation between a sequence of desired CoP positions, which
are designed to coincide with the foot centers of the planned
footsteps

pd(t) = (1− f(t))pd,0 + f(t)pd,T . (12)

The start point of the current transition phase is given by
pd,0, while the end point pd,T is chosen to be the start point
of the following transition phase. The temporal interpolation
function f(t) is a polynomial of degree np and designed to
ensure continuity of the CoP reference at phase transitions.
For example, a temporal linear interpolation (np = 1) in
vectorized form yields

pd(t) =
[
pd,0,

1
Tϕ

(pd,T − pd,0)
]

︸ ︷︷ ︸
ap

(
1
t

)
. (13)

An additional heel-to-toe motion can be implemented by
adding further CoP waypoints.

B. CAM Coefficients

The goal is to incorporate the rate of change of CAM,
induced by the multibody dynamics of the robot, in the
closed-form solutions of the DCM framework. Therefore, we
approximate the CAM through polynomial functions, which
can be used straightforwardly in (11) to generate a VRP
reference. In [15], the multibody CAM is approximated with
a simplified three-mass model, which gives only a rough
estimate of the actual dynamics. In contrast to that, we use



an online learned CAM trajectory to obtain a realistic repre-
sentation of the CAM induced by the multibody dynamics of
the robot. For each transition phase, a polynomial function
lc,p(t) of degree nl = nτ + 1 is fit online to a learned CAM
trajectory lc,l(t) that is obtained through online recording of
the CAM of previous walking sequences (see Section V-A).

The polynomial function approximating the CAM has the
form

lc,p(t) =

nl∑

j=0

al,jt
j (14)

with al,j ∈ R3 and the local time t ∈ [0, Tϕ]. The
corresponding rate of change, i.e., the torque about the CoM,
is given by

l̇c,p(t) =

nτ∑

j=0

(j + 1)al,j+1t
j =

nτ∑

j=0

aτ,jt
j . (15)

To obtain the polynomial coefficients al, the given lc,l is
discretized for each transition phase into single data points
with a discretized local time th = h∆t and h ∈ {1, ..., k}.
Here, ∆t is the time interval between individual data points
and needs to be a multiple of the sampling time ∆ts of the
system and k = bTϕ/∆tc is the number of data points. For
each data point, we obtain an equation based on (14). Finally,
we can write a linear system of k equations for the entire
transition phase as follows:



tnlk tnl−1
k . . . 1

tnlk−1 tnl−1
k−1 . . . 1

...
tnl1 tnl−1

1 . . . 1




︸ ︷︷ ︸
V̄




aTl,nl
aTl,nl−1

...
aTl,0




︸ ︷︷ ︸
aTl

=




lTc,l(tk)

lTc,l(tk−1)
...

lTc,l(t1)




︸ ︷︷ ︸
l̄Tc,l

.

(16)
Here, V̄ ∈ Rk×(nl+1) is a so-called Vandermonde matrix.
The following boundary conditions are chosen to ensure
continuity between transition phases: lc,p(0) = lc,l(0),
l̇c,p(0) = l̇c,l(0), lc,p(Tϕ) = lc,l(Tϕ), l̇c,p(Tϕ) = l̇c,l(Tϕ).
We insert the boundary conditions into (16) and obtain a
relationship for al,4:nl , the nl − 3 last elements of the
unknown polynomial coefficient matrix

V̄1a
T
l,4:nl

+ V̄2 = l̄Tc,l. (17)

The matrices V̄1 ∈ Rk×(nl−3) and V̄2 ∈ Rk×3 are only a
function of the local time of each data point, the total dura-
tion of the transition phase, and the boundary conditions. We
are interested in a good approximation of lc,l over the entire
transition phase and therefore chose to have considerably
more data points than unknown polynomial coefficients in
al,4:nl , i.e., k > nl−3. Formulating the least-square solution
of the overdetermined set of equations in (17) yields:

aTl,4:nl
= (V̄ T

1 V̄1)−1V̄ T
1 (l̄Tc,l − V̄2). (18)

To reduce the computational cost, the matrix (V̄ T
1 V̄1)−1V̄ T

1

can be precomputed offline for given values of ∆t
and Tϕ. The remaining unknown polynomial coefficients

al,0:3 = [aTl,3, ...,a
T
l,0]T are computed based on al,4:nl and

the boundary conditions.
Finally, Pv is obtained by grouping the coefficient matri-

ces ap and al and adding the constant vertical offset ∆z.
Notice from (10) that only the CoM torque within the plane
parallel to the support surface (xy-direction) is needed, and
thus only the corresponding coefficients are computed. The
coefficients for the CoM torque about the z-axis are set to
zero.

V. ONLINE LEARNING OF CAM AND TRAJECTORY
UPDATING SCHEME

This section presents a method for online learning of the
nominal CAM lc,n, which is used to obtain the polynomial
coefficient matrix al in Section IV-B. Moreover, a desired
CAM trajectory lc,d is generated, which is explicitly tracked
by the whole-body controller.

A. Online Learning of the Nominal CAM Trajectory
We aim to learn a CAM trajectory lc,l based on online

recorded CAM values. Since walking is a repetitive process,
our proposed method iteratively records the model-based
computed nominal CAM over successive iterations. One
iteration consists of four transition phases, i.e., two single
and two double support phases. The nominal CAM lc,n,i
of iteration i is obtained from (7) using the CoM velocity,
the CMM, and the reference task-space velocity vector
obtained from the planner of the corresponding iteration. The
following iterative scheme is introduced to update the learned
CAM:

lc,l,i+1(t) = (1− kl) lc,p,i(t) + kl lc,n,i(t). (19)

Here, 0 < kl ≤ 1 is the learning factor and lc,p,i is the
polynomial function approximating the learned CAM lc,l,i
during the ith iteration.

At the end of each transition phase within one iteration,
lc,p,i+1 is obtained by applying the polynomial fitting algo-
rithm of Section IV-B to lc,l,i+1 for the respective transition
phase. The updating procedure is inspired by a Run by
Run controller [29], which updates input parameters between
iterations based on measurements made while the iteration
is running.

Note that learning the nominal CAM only during the first
iteration is not sufficient since the updated CoM trajectory
leads to changes in the robot configuration, affecting the
CAM of the following iteration. An exemplary convergence
behavior between the nominal and polynomial approximated
CAM is shown in Fig. 6a. Larger values of kl in (19) lead to
faster convergence, while smaller values lead to more robust
convergence. In particular, if the robot deviates strongly from
its reference configuration in the first iterations due to model
uncertainties or tracking errors, a smaller learning factor is
beneficial to avoid overcompensation.

The learned polynomial coefficients al are always associ-
ated with a certain set of walking parameters. As presented
in [18], the obtained knowledge can be used to build up a
coefficient database of typical walking parameters, which can
also be pre-trained in simulation.



B. Online Updating of the DCM Trajectory

In the initial iteration (iteration 0©), the polynomial coef-
ficient matrix al is initialized with zero, and the entire DCM
reference trajectory is computed. This is equivalent to gener-
ating the DCM trajectory with a constant CAM assumption.
Note that if values for al from previous runs are available in
the coefficient database, these can be used instead to speed
up convergence. The DCM backward computation scheme
is applied at the end of each transition phase ϕ, starting
from the end of transition phase ϕ+4 and using the updated
polynomial coefficients of iteration i+ 1. As terminal DCM
constraint for the backward computation, the terminal DCM
at the end of phase ϕ + 4 of the initial iteration (ξT,ϕ+4,0)
is used. The CAM knowledge obtained during the current
iteration is directly applied in the following one.

To ensure continuity of the updated DCM reference at the
start of phase ϕ+1, the final DCM of phase ϕ+1 is linearly
interpolated between its values during the current and next
iteration

ξT,ϕ+1(t) =
(

1− t

Tϕ+1

)
ξT,ϕ+1,i+

t

Tϕ+1
ξT,ϕ+1,i+1. (20)

C. Generating a Desired CAM Trajectory

In this section, we generate a desired CAM trajectory
which is commanded to the whole-body controller to ensure
contact torque tracking. For the xy-direction, CoP tracking
can be achieved by choosing the desired CAM equal to
the polynomial approximated CAM used within CoM trajec-
tory generation lc,d,xy = lc,p,xy . However, during transition
phases where al and thus lc,p is zero, e.g., in the initial
iteration, starting or stopping phase, the desired CAM is
chosen as the nominal CAM lc,d,xy = lc,n,xy . Otherwise,
the whole-body controller needs to regulate the entire CAM
induced through the swing leg motion to zero, resulting in
extensive upper-body motion.

Recalling (8), we obtain for the contact torque about the
z-axis

τgrf,z = m(x− pd,x)ÿ −m(y − pd,y)ẍ+ l̇c,z (21)

with x = (x, y, z)T and ẍ = (ẍ, ÿ, z̈)T being the CoM
position and acceleration, respectively. A pure regulation of
l̇c,z , as put forward in [21]–[23], is not sufficient here since
the terms resulting from the cross product are not vanishing
because the external force vector is not planned to intersect
the desired CoP and CoM position. To compensate the cross
product terms and ensure τgrf,z = 0, the desired rate of
change of CAM about the z-axis is defined as

l̇c,d,z = −m(x− pd,x)ÿ +m(y − pd,y)ẍ+ l̇corc,z . (22)

The corresponding CAM can be obtained by numerical
integration. To ensure a symmetrical motion of the robot,
e.g., after the transition between different walking speeds,
a correction term l̇corc,z is added. This term is introduced to
bring the mean value of lc,d,z over an iteration to zero. It is
computed based on the mean value of lc,d,z of the previous
iteration.
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Fig. 3. Results of the experiment #1: Nominal (lc,n), polynomial approxi-
mated (lc,p) and desired (lc,d) CAM trajectories. The vertical dashed lines
indicate iteration 0© to 4©.

VI. EXPERIMENTAL EVALUATION

The proposed algorithm is validated through experiments
with the torque-controlled humanoid robot TORO [30]. The
robot has 27 degrees of freedom, a height of 1.74 m, a total
weight of 79.2 kg, and an inertial measurement unit (IMU)
in the torso. Footage of the presented experiments can be
found in the supplementary video.

We present two scenarios to evaluate the performance
of our algorithm. In the first experiment, the robot walks
12 steps with a step length of 15 cm, which corresponds
to a stride length of 30 cm. The single support time is
TSS = 0.7 s and the double support time is TDS = 0.2 s.
These walking parameters correspond to five complete iter-
ations with an iteration time of Titer = 1.8 s. It is assumed
that no learned polynomial coefficients of previous runs are
available, i.e., al = 0.

Fig. 3 shows the nominal CAM obtained from (7), the
polynomial approximated CAM used for the CoM trajectory
generation, and the desired CAM, which is commanded to
the whole-body controller. During iteration 0©, lc,p,xy is zero
and convergences to lc,n,xy in the following iterations. A
polynomial of 9th-order (nl = 9) is used for the approxima-
tion of lc,n,xy . A discretization time interval of ∆t = 50 ms
is chosen, while the sampling frequency of the system is
∆ts = 1 ms. The learning factor is set to kl = 1, and the
corresponding convergence behavior is plotted in Fig. 6a.
The nominal CAM varies from iteration to iteration since the
updated CoM trajectory influences the robot configuration
and thus the resulting CAM.

Starting from iteration 1©, the influence of the online
learned CAM on the VRP trajectory can be observed
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in Fig. 4. The corresponding DCM and CoM trajectories are
computed following the updating scheme from Section V-B.
The darker variants of the respective color show the desired
values, while the lighter ones represent the measured values.

The resulting contact torques at the desired CoP position
are depicted in Fig. 5. Iteration 0© can be seen as base-
line behavior for walking without our presented approach
since no CAM knowledge is available during this iteration.
Through the updated VRP reference and the appropriate
design of the desired CAM trajectory, the contact torques are
substantially reduced from iteration 1© onwards. Without real
world imperfections, the contact torques would be reduced
to zero; however, model uncertainties and tracking errors
degrade the result. The torque limits in xy-direction are
computed based on the CoP constraint. Since the whole-body
controller uses a wrench formulation, the torque limits about
the z-axis are approximated by upper and lower values, for
further details please refer to [24].

The reduced contact torques about all three axes lead to
a more robust walking behavior, which can be observed in
the supplementary video. During iteration 0©, the feet of the
robot tilt and twist slightly since the CoP reaches the edge of
the support area in x- and y-direction and the torque limits
about the z-axis are activated. In the following iterations,
no violation of the contact constraints occurs, confirming
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Fig. 6. Results of the experiment #1: a) Average approximation er-
ror per iteration between nominal and polynomial CAM, i.e., erri=

1
Titer

∫ Titer
0 |lc,n,i(t) − lc,p,i(t)| dt; b) average control input power

per iteration, i.e., powi= 1
Titer

∫ Titer
0 q̇i(t)

T τi(t) dt. The control input
power is the product of joint velocities and torques.

the increased contact robustness. Starting from iteration 1©,
upper-body motions are induced by explicitly tracking the
desired CAM trajectory.

As the contact torques reach their limits during itera-
tion 0©, the whole-body controller cannot fully generate the
desired CoM wrench, which degrades the tracking of the
CoM dynamics. As shown in Fig. 4, the tracking of the CoM
dynamics improves due to the reduced contact torques from
iteration 1© onwards.

In addition to a more robust walking motion, the inclusion
of CAM during the CoM trajectory generation also leads
to more efficient locomotion. As presented in Fig. 6b, the
average control input power per iteration is considerably
reduced after the initial iteration.

In the second experiment, shown in the supplementary
video, the step length is increased to 22 cm while the
other walking parameters remain unchanged. This improved
performance can only be achieved by using polynomial co-
efficients pre-trained in simulation. As also reported in [19],
TORO does not walk reliably with a step length of 15 cm and
the timing parameters of experiment #1 without additional
features like toe-off motions. Our approach enables flat foot
walking with a step length of 22 cm, which is an increase of
more than 50%, while using the identical walking parameters
and whole-body controller.

VII. CONCLUSION

This work presented a method to reduce the contact
torques at the desired CoP position through online learning of
the CAM induced by the multibody dynamics. A polynomial
function was fit to the learned data, and the corresponding
coefficients were used to generate CoM trajectories in closed-
form based on the concept of DCM. In addition, we intro-
duced an online updating scheme to ensure the continuity
of all references. Finally, a desired CAM trajectory was
generated and tracked by the whole-body controller of the
robot. The proposed method was validated in experiments.
We demonstrated a more robust and efficient walking motion
by enabling increased step length and faster walking speed.

As part of future research, the presented method will
be extended to model-free learning of the CAM based on
measurement data.
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