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Abstract: Over the years, researchers have been studying the effect of weather and context data
on the transport mode choice. The majority of these works are based on survey data, however the
accuracy of their findings relies on how respondents give accurate and honest answers. In this paper,
the potential of using GPS trajectories as an alternative to travel surveys in studying the impact of
weather and context data on transport mode choices is investigated in Beijing city. In the analysis,
we apply both descriptive and statistical models such as the MNL and MNP models. Our findings
indicate that temperature has the most prominent effect among weather conditions. For instance,
for temperatures greater than 25 C, the walking share increases by 27% and the bike share reduces
by 21%, which is line with the results from several survey studies. In addition, the evidence of
government policy on transport regulation is revealed when the air quality becomes hazardous as
people are encouraged to use environmentally friendly travel mode choices such as the bike instead
of the bus and car, which are known CO2 emitters. Moreover, due to a series of traffic restrictions
introduced by the Beijing government during the 2008 summer Olympics, a decrease of 17.5% in the
car share and an increase of 13% and 10% in the walking and bus shares, respectively are observed.
These findings provide a scientific basis for effective transport regulation and planning purposes.
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1. Introduction

At present, the transport sector accounts for 29% of all world greenhouse gas emissions,
and 23% of global carbon dioxide (CO2) emissions, consequently contributing towards the
global climate change [1]. Climate change mitigation requires finding ways of achieving
sustainable mobility options without compromising economic growth and social inclu-
sion, which necessitates effective government planning and regulation of the transport
sector. Therefore, it is crucial to investigate the scientific evidence which shows how
changes in climate conditions, transport planning, and transport regulation are intrinsically
interrelated.

With climate change, weather is now an important topic in transportation research.
Over the years, researchers have been studying the effect of weather and context on the
transport mode choice. We define context data as information that can provide perspective
into a person or an event such as culture and habits. These studies relate context information
such as individual characteristics [2], temporal factors [3], transportation supply [4], travel
demands [5], and weather conditions [6] to existing or self-gathered travel behaviour data.
Most of the works focus on weather effects on transport mode decisions across different
cities [6–8].

The existing literature on weather and daily mobility focus particularly on precip-
itation [9–13], temperature[14–16], humidity [17,18], wind speed[18], air quality [16,18],
seasons [19]. The findings of these studies give insights into the separate roles of not only
weather parameters, but also the geographical context, cultures and habits in influencing
transport mode choices. For instance, the authors in [15,20] indicate that in the Netherlands,
higher but not too high temperature favours walking and biking over motorised transport,
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hence, temperature is more important than precipitation. In contrast, researchers in [9,10]
conclude that precipitation creates more significant ridership fluctuations than temperature
in Nanjing, China and Flanders, Belgium.

In search for a better understanding of how the geographical context and habits affect
mobility decisions, Böcker et al. [12] investigates weather and daily mobility across Dutch,
Norwegian and Swedish cities. The authors find that biking is favoured by dry and warm
conditions and the use of the car is favored during wet and windy weather. The authors
also highlight the presence of dierences in the eects of weather on mobility across the
different cities and countries.

With respect to seasonality, Hyland et al. [19] reports that it is highly likely for the
car to be the chosen mode of transport during bad weather for commuters in Chicago. In
fact, the authors show that millennials are inclined to choose the car in winter than the
summer, while for non-millennials, seasonality had little impact on the choice of mode of
transport. In [21], Ton et al. further highlights that apart from seasonality and weather
characteristics, other categories of context information such as work conditions, trip and
household characteristics, built environment do also influence the transport mode choices.
In [22], Böcker et al. investigates how emotional travel experiences influence transport
mode choices and finds that biking is influenced by sunny dry, calm, and warm but not too
hot weather conditions, hence leading to more satisfying emotions.

While the aforementioned studies improve our understanding of weather and context
data effects on daily mobility choices, one key issue standouts, many of the studies are based
on survey or diary travel for characterising individual travel behaviour. The disadvantage
of surveys is that the accuracy of their findings relies on how respondents give accurate and
honest answers. However, information sources such as smartphones which can log satellite
positioning data can now be used as an alternative to the surveys in transportation research.
To the best of our knowledge, there is no study that analyses the relationship among
weather conditions, context information, and different transport modes using satellite
positioning data.

The goal of this paper is to show the possibility of using GPS trajectories in investigat-
ing the impact of weather and context data on transport mode choices in Beijing city. In
this paper, not only do we study the impact of weather conditions such as temperature,
precipitation, relative humidity, wind speed, and air quality on on transport mode choices,
but also the effect of context information such as rush hours, holidays, day/night, an event
such as the Olympics, and trip distance on individual travel behaviour is presented. We
apply both descriptive and statistical models such as the multinomial logit (MNL) and
probit (MNP) models. The specific contribution of this paper is two fold:

1. The potential of using GPS trajectories to analyse and model the relationship between
transport mode choices, weather and context information is investigated.

2. The relationship among weather and context information, transport planning, and
transport regulation is analysed.

The structure of the remainder of this paper is as follows. Section 2 presents the
databases applied in this work. The statistical analysis and models are described in Section
3 and Section 4, respectively. The results are discussed in Section 5 while the conclusions
and future work are presented in Section 6.

2. Databases

The case study is Beijing [see – Figure 1], which is the capital of the People’s Republic of
China. With a population of over 21 million residents, it is regarded as the most populated
capital city in the world. Due to its high population density, rapid urbanization and
motorization, Beijing faces severe congestion and air quality problems.

Beijing is an interesting case study due to the sheer number of solutions that have
been adopted to overcome its transport related problems such as the development of bus
rapid transit corridors, new extensive bus lanes, policies like congestion charging, among
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Figure 1. Geographical location and demarcation of Beijing. Also shown is the distribution of points
corresponding to the start of each trajectory from the Geolife dataset.

others. In this section, we describe the three databases with the GPS trajectories, weather
and context information in Beijing.

2.1. GPS trajectories

The dataset adopted in this study has GPS trajectories of 182 users collected during the
GeoLife project conducted between April 2007 and August 2012 [23]. The GPS trajectories
were recorded by GPS loggers and phones and are described by a sequence of time-stamped
points, with each containing longitude, latitude, altitude, and transportation mode label.
Although the dataset contains trajectories distributed in over 30 cities worldwide, in this
work, we use a total of 2,671 labeled trajectories from Beijing. The total traveled trip
distance and duration is 21350 km and 1296.6 h, respectively. Each traveler has an average
of 74 trips, with an average distance and duration of 5.75 km and 0.5 h, respectively. In
Figure 1, we show the geographical location and demarcation of Beijing and the starting
point of the trajectories.

The transport modes considered in this work include: walk, bike, car, bus, and train.
The percentage of the transport mode in the dataset is shown in Figure 2. During the period
in which the data was collected, walking accounts for 46% of the transport mode labels in
Beijing. This result is expected given that travel guides recommend getting around Beijing
on foot as the best and most efficient commuting mode [24].

It is worth noting that the Geolife trajectory dataset is natural since it was recorded
while the users performed their life routines [25]. For instance, trajectories were recorded
as users made trips from home to work and vice-versa, to entertainment and sports venues,
shopping, sightseeing.

The Geolife trajectory dataset has been used in different research fields such as in
privacy preserving location data [26], measuring trajectory stops and moves [27], user
identification [28], trajectory completion [29], and transport mode detection [30].
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Figure 2. Modal share per transport mode in the dataset. A total of 2,671 trajectories were recorded
from which the modal share of each transport mode was computed.

2.2. Weather information

The weather conditions considered include, temperature, precipitation, wind speed,
air quality, and relative humidity, collected from a meteorological station located within
the city of Beijing. This database can be accessed from the National Aeronautics and Space
Administration (NASA) website [31].

Thanks to its continental climate, Beijing has hot, sultry, and rainy summers, cold and
sunny winters, and a precipitation of about 545 mm annually [32]. However, a summary of
the conditions in Table 1 shows that during the period of study: i) average temperature was
about 19C, ii) the rains were not abundant with a mean of 0.083 mm/h, iii) the air was less
humid with a mean relative humidity of 53%, iv) the wind speed was very light according
to Beaufort scale given the mean wind speed is 3 m/s, and v) the air quality was unhealthy
given that the mean air quality was 153 µg/m3.

Table 1. Descriptive characteristics of continuous observable variables

Mean Std.dev Min Max
Temperature (C) 19.153 8.477 -9.22 38.45
Precipitation (mm/h) 0.083 0.307 0 5
Relative Humidity (%) 53.837 22.076 6.25 100
Wind speed (m/s) 3.064 1.742 0.05 12.37
Air quality (µg/m3) 153.016 64.545 13 547
Distance (km) 7.993 12.341 0 117.216

2.3. Context information

This study also includes the impact of context information such as the Beijing 2008
summer Olympics event held from 8th to 24th August on transport mode choices. This
event was awarded to Beijing in the year 2001, thereafter its leaders embarked on mas-
sive projects to transform the city’s transport system. For instance, the rail network was
expanded from 50 km to 200 km and there was an introduction of 286 km of dedicated
on-road lanes [33]. In fact, a new set of restrictions were passed months leading to the
games. For instance, in some parts of the city, people were not allowed to use their private
vehicles, trucks from outside Beijing were to avoid the city, flexible retail and shopping
hours were also introduced to spread traffic loads.
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Other context information attributes we look at include, rush hour or off-rush hour,
holiday or non-holidays, day time or night time, and trip distance. In Beijing, morning and
evening rush hour traffic demand is from about 7AM to 9AM and 4PM to 8PM, respectively
according to the studies made by [33], which has been applied during our analysis. As for
the holidays, there are 10 public holidays spread throughout the year, which include: New
Year’s, Chinese New Year, Lunar New Year, Qingming Festival, Labour Day, Dragon Boat
Festival, Mid-Autumn Festival, Golden Week, and Christmas [34]. In total, our analysis
considers 28 days of the year as public holidays. Day time in Beijing is considered as the
period between sunrise, i.e. 6AM and sunset, i.e. 6PM compared to night time, which is
between sunset and sunrise.

2.4. Matching weather and context information with GPS trajectories

As mentioned earlier, the GPS trajectories from the Geolife dataset contain the loca-
tion, date, time, and the mode of transport chosen by the traveler. The starting point of
the recorded trajectory provides the departure information of the traveler such as their
departure location, date, and time.

In matching the weather data to the GPS trajectories, the starting point of each trajec-
tory is linked to the hourly historical weather data from the nearest meteorological station.
The result generates weather-related variables corresponding to the departure time of each
trip. It is worth noting that hourly weather data are preferred over daily weather data
because the former generates higher temporal accuracy, given the constantly changing
weather.

Similarly, the timing corresponding to each of context information attributes is linked
to the departure time of each trip. From the combined datasets, we analyse the impact of
weather and context data on transport mode choices by considering weather and context
information as input and modal choices as output conditions.

3. Statistical analysis

In this section, the weather conditions, context information and GPS trajectories are
analysed statistically. We apply two main statistical methods which are commonly used in
data analysis: i) descriptive statistics, where we summarize the findings using bar graphs,
and ii) statistical interference, where we apply the MNL and MNP models.

In order to track the weather changes, we classify the weather conditions into different
levels according to their rating generated from published weather knowledge. For instance,
the temperature scales with seven levels observed in Figure 3a are adopted from [35,36],
precipitation with five levels in Figure 3b from [37,38], wind speed with six levels of
classification in Figure 3c – are adopted according to Beaufort number [39], air quality
yardstick with six levels that run from 0 to 500 in Figure 3d adopted from monitoring the
fine particulate matter concentrations (PM2.5) [40], and relative humidity in Figure 3e falls
into four levels adopted from [41]. These classifications as well as the timing corresponding
to the context information are used to compute the share for each transport mode in Figure 3
and Figure 4 due to the effects of weather and context data, respectively.

3.1. Influence of the weather condition on the transport mode choices

In Figure 3a, it is observed that during snowfall, cars have a higher share compared
to other transport modes. However, walking becomes the most preferred transport as the
temperature increases. At temperatures greater than 25C, the bike and walking shares
reduce and the bus share increases. In Figure 3b, we see that the share of the transport
modes is similar across the precipitation levels except when precipitation is greater than 2
mm/h, i.e, little rain hardly impacts passengers’ travel choices, which is in line with the
observations of Junlong Li et al. [9].

In Figure 3c, it observed that as the intensity of the wind increases from calm, greater
than 0.27 m/s to strong wind, greater than 7.8 m/s, the bike and walk share reduce, while
the car share increases. In Figure 3d, it is noticeable that as the air quality turns from good
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Figure 3. Impact of weather conditions on transport mode choices.

(0-50) µg/m3 to unhealthy (201-300) µg/m3, the transport mode share remains constant.
The potential explanation is that Beijing averages an air quality of 150 µg/m3 [see – Table 1],
so it is highly likely that most of the time the air quality is unhealthy as people carry on
with their daily lives. However, when the air quality becomes hazardous (300+) µg/m3,
bike and walk have a larger share and there is a reduction in the car and bus shares in
order to reduce the (CO2) emissions. In Figure 3e, the share of transport mode is the same
regardless of the relative humidity, which is in line with the findings in Aultman-Hall et al.
[36], who found that humidity has a limited effect on transport choices.

3.2. Influence of context information on the transport mode choices

During the Olympics, an increase in the bus share and a reduction in the car share is
shown in Figure 4a. Its intuitive that during international events of this magnitude some
roads are closed off or restricted to the public. Our findings show that the alternative travel
means is by public transport, the bus in particular. In Figure 4b, an increase in the bus
share and a reduction in the train and car shares is noticeable at rush hours in comparison
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Figure 4. Impact of context information on transport mode choices.

with non-rush hours. This finding is in line with the study made by the Asian development
bank in [33] in which it is shown that during rush hours passengers prefer taking the bus
than the train.

In Figure 4c, we see that there is an increase in the car share and a reduction in the bus
share during holidays perhaps because people are choosing to travel by car on holidays. In
Figure 4e, it can be observed that trip distance has a tremendous influence on the transport
mode choice. For instance for shorter distances (0-6 km), walk and bike have a larger share
but between (6-12 km) the bus share is larger. However between 12-20 km, the bus share
reduces as the car and train shares increase. Beyond 20 km, train share reduces and car
share increases.

4. Statistical Modelling

Given that the transport mode choices are a typical example of discrete outcomes, in
order to link the probabilities of choosing a given mode of transport to the weather and
context information, in this study, we adopt MNL and MNP models. These are among the
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most popular models in analysing and predicting travel decisions. These models analyse
simultaneous effects of meteorological and context information on transport decisions in
one integrated model, which is important in understanding mobility decisions.

4.1. Methods

According to Ben-Akiva et al. [42], the framework of these models is based on four
general assumptions: i) decision maker who is the individual or group of people making
the choice, ii) alternatives, which are the available choices to choose from, iii) attributes,
which are parameters that characterise each alternative, iv) decision rule, which is the
process used by the decision maker evaluates the alternatives.

The decision rule in models used in travel behavior analysis is based on the Utility
model, Uin, and takes the form

Uin = Vin + εin

(1)

The alternative with the highest utility is chosen, therefore the probability that alter-
native i is chosen by an individual n from a choice set Cn = {1, 2, ..., i, ..., jn} takes on the
general form

Pin = P[Vin + εin > Vjn + εjn, ∀j ∈ Cn]

= P[(Vin + εin) = maxj∈Cn(Vjn + εjn)]

= P[εjn − εin ≤ Vin −Vjn, ∀j ∈ Cn]

(2)

Vin is the deterministic or systematic part of the utility function. It is defined in (3) by
a vector of observable variables zn and their corresponding coefficients γi:

Vin = γT
i zn (3)

To identify the model, one set of coefficients of the systematic term needs to be
normalized to zero e.g (γ1 = 0), which makes the corresponding transport mode choice
(i = 1) to become the base mode. The coefficients of other alternatives are interpreted in
reference to the base outcome.

εin is the random term which expresses the errors of the utility function. Its distribution
is often known and makes the problem more reasonable to empirically characterise. If
the error terms assumes an independent and identically distributed ”Extreme Value”, i.e,
Gumbel, the model is MNL, hence Pin takes on the form

Pin =
eVin

∑j∈Cn eVjn
(4)

However, when the error terms assume a multivariate normal distribution, the model
is MNP and Pin takes on the form

∫ ∞

ξ1n

...
∫ ∞

ξ(i−1)n

∫ ∞

ξ(i+1)n

...
∫ ∞

ξ jn

φ(ε̃1n, ..., ε̃(i−1)n, ε̃(i+1)n, ..., ε̃jn) dε̃1n...dε̃(i−1)ndε̃(i+1)n...dε̃jn (5)

where φ() is the density function which follows a multivariate normal distribution
with means 0 and a covariance matrix with a size of JnXJn, ξ1n = Vin − Vjn and ε̃in =
εjn − εin as also seen in (2) are the difference between the systematic and error terms,
respectively.

The difficulty of estimation of these models grows with the number of discrete choices,
so dedicated commercial software packages are recommended for their estimation. In our
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multivariate analysis, MNL and MPL models have been implemented via the software
package Stata. We refer the reader to Stata base manual [43] for a detailed discussion of
estimation procedure.

Note that during the analysis, five modes of transports are used as the dependent
variable [see Figure 2], and two groups of individual level variables: weather and context
information attributes are used as the independent (explanatory) variables [see Table 1].
However, in the model, we excluded the use of relative humidity, precipitation, and holi-
days information because as seen previously have a limited impact on the transport mode
decisions. In fact, the categories of the remaining weather conditions such as temperature,
wind speed, and air quality were adjusted according to relationships and patterns observed
during the statistical analysis.

Table 2. MNL and MNP model results of the impact of weather and context data on transport mode
choices

Explanatory variables Multinomial logit (MNL) Multinomial probit (MNP)

Bike Car Bus Train Bike Car Bus Train

Intercept 0.4154 −2.560∗∗ −1.265∗∗ −2.928∗∗ 0.320 −1.607∗∗ −0.788∗ −1.701∗∗

Temperature (C)

< 0 ref ref ref ref ref ref ref ref

0-15 −1.122∗∗ −1.068 −2.292∗∗ −1.349∗ −0.974∗∗ −0.823∗ −1.685∗∗ −0.981∗

15-25 −1.628∗∗ −1.371∗ −2.152∗∗ −2.068∗∗ −1.335∗∗ −0.998∗ −1.642∗∗ −1.464∗∗

> 25 −1.969∗∗ −1.558∗∗ −1.331∗ −1.338∗ −1.585∗∗ −1.144∗ −1.103∗∗ −1.013∗

Wind speed (m/s)

0-3 ref ref ref ref ref ref ref ref

3-7.8 0.013 0.311 0.256 0.554∗ 0.020 0.177 0.160 0.320∗∗

> 7.8 0.280 0.621 -0.018 0.228 0.200 0.400 -0.004 0.069

Air quality (µg/m3)

< 300 ref ref ref ref ref ref ref ref

> 300 0.921∗∗ -1.333 -0.564 0.405 0.735∗ -0.524 -0.270 0.315

Trip distance (km)

0-4 ref ref ref ref ref ref ref ref

4-8 2.143∗∗ 2.875∗∗ 2.588∗∗ 2.829∗∗ 1.741∗∗ 1.964∗∗ 1.890∗∗ 1.890∗∗

8-12 1.912∗∗ 4.222∗∗ 4.305∗∗ 4.926∗∗ 1.480∗∗ 2.829∗∗ 3.082∗∗ 3.150∗∗

12-20 0.872∗ 5.211∗∗ 4.319∗∗ 6.381∗∗ 0.838∗∗ 3.444∗∗ 2.992∗∗ 4.091∗∗

> 20 3.609∗∗ 9.380∗∗ 7.094∗∗ 7.912∗∗ 2.150∗∗ 5.862∗∗ 4.293∗∗ 4.553∗∗

Olympics (ref. non Olympics) -0.471 −2.347∗∗ 0.2617 −0.432 −0.380 −1.635∗∗ 0.210 −0.353

Rush hour (ref. non rush hour) 0.022 −0.999∗∗ −0.259 −1.351∗∗ −0.005 −0.624∗∗ −0.146 −0.827∗∗

Day (ref. night) −0.140 0.355 0.515∗∗ 0.059 0.102 0.211 0.330∗ 0.0382

Modelling performance

Log likelihood -2498.486 -2505.669

AIC 5108.971 5123.339

BIC 5438.823 5453.19

McFadden R-squared 0.3289 0.012

∗∗ Significant at α < 0.01 ∗ Significant at α < 0.05

4.2. Results

Table 2 shows the results of the both models with a summary of the relationships
between the transport mode choices, weather, and the context information. The modelling
performance shows that MNL model performs better than MNP because it has a larger
McFadden R-squared and smaller AIC and BIC values, which shows that results will be in
favor of the MNL model. The values in the tables represent the standardised regression
coefficients, with the star indicating their respective statistical significance. Note that the
coefficients are a relative measure of transport choice compared to walking, which was
reference mode. For instance our findings indicate that a negative temperature effect on the
bike, car, bus, and train make them less likely to be used as transport modes than walking.
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However, this means that other than the sign, the coefficients don’t have a lot of useful
interpretation since the magnitude of the coefficients cannot be interpreted or quantified.
Thus the marginal effects of the observatory variables zn on the dependent variable i is
required. Marginal effects are defined in (6) as the amount of change in dependent variable
due to one unit change of the observatory variable in the model system.

∂Pin
∂zn

= Pin(γi − γi) (6)

Table 3 reports the marginal effects for each variable according to the MNP and
MNL models. The positive values represent an increase in the probability of selecting an
alternative by the marginal effect expressed as a percentage while the negatives indicate
the opposite. It should be noted that qualitative results are consistent between the MNP
and MNL.

Table 3. Marginal Effects of MNL and MNP models of the impact of weather and context data on
transport mode choices

Explanatory

variables Multinomial logit (MNL) Multinomial probit (MNP)

Walk Bike Car Bus Train Walk Bike Car Bus Train

Temperature (C)

< 0 ref ref ref ref ref ref ref ref ref ref

0-15 0.234∗∗ −0.006 0.003 −0.219∗∗ −0.013 0.273∗∗ −0.050 0.077 −0.218∗∗ −0.011

15-25 0.320∗∗ −0.107 −0.004 −0.177∗∗ −0.031 0.351∗∗ −0.135 0.004 −0.183∗∗ −0.037

> 25 0.279∗∗ −0.216∗∗ −0.026 −0.030 −0.006 0.319∗∗ −0.234∗∗ −0.025 −0.053 −0.005

Wind speed (m/s)

0-3 ref ref ref ref ref ref ref ref ref ref

3-7.8 -0.039 -0.024 0.018 0.027 0.018∗ -0.037 -0.018 0.0158 0.020 0.020∗

> 7.8 -0.062 0.039 0.046 -0.025 0.002 -0.057 0.0342 0.05 -0.024 -0.002

Air quality (µg/m3)

< 300 ref ref ref ref ref ref ref ref ref ref

> 300 −0.099 0.312∗∗ −0.125∗∗ −0.096∗ 0.005 −0.100 0.295∗∗ −0.121∗∗ −0.084∗ 0.010

Trip distance (km)

0-4 ref ref ref ref ref ref ref ref ref ref

4-8 −0.517∗∗ 0.303∗∗ 0.061∗∗ 0.125∗∗ 0.027∗∗ −0.518∗∗ 0.298∗∗ 0.062∗∗ 0.128∗∗ 0.028∗∗

8-12 −0.629∗∗ −0.015 0.123∗∗ 0.398∗∗ 0.123∗∗ −0.629∗∗ −0.017 0.125∗∗ 0.394∗∗ 0.126∗∗

12-20 −0.664∗∗ −0.162∗∗ 0.225∗∗ 0.246∗∗ 0.353∗∗ −0.662∗∗ −0.163∗∗ 0.229∗∗ 0.245∗∗ 0.350∗∗

> 20 −0.725∗∗ −0.176∗∗ 0.672∗∗ 0.162∗∗ 0.066∗∗ −0.724∗∗ −0.177∗∗ 0.671∗∗ 0.163∗∗ 0.067∗∗

Olympics (ref. non Olympics) 0.130∗ −0.046 −0.175∗∗ 0.100∗∗ −0.004 0.140∗ −0.040 −0.21∗∗ 0.115∗∗ −0.005

Rush hour (ref. non rush hour) 0.072 0.058∗∗ −0.071∗ −0.014 −0.044∗∗ 0.063 0.0503∗∗ −0.073∗∗ 0.004 −0.052∗

Day (ref. night) −0.031 −0.064∗∗ 0.024 0.073∗ −0.006 −0.029 −0.057∗ 0.023 0.064∗ 0.010

∗∗ Significant at α < 0.01 ∗ Significant at α < 0.05

5. Discussion

In the previous section, we have presented statistical models that help in understand-
ing the relationship between the weather and context information with transport mode
choices. In this section, the results in Section 4.2 are discussed.

5.1. Air Quality

When the air quality changes from the very unhealthy category to hazardous, Table 3
shows that this change would increase the bike share by 31% and reduce the car and bus
shares by 12% and 10%, respectively. The likely explanation is that hazardous air quality
causes serious health concerns such as loss of lung capacity and decreased lung function
according to epidemiological studies. Therefore, the government in Beijing introduces
vehicle controls to reduce C02 emissions to prevent the population from long-term exposure
to polluted air. Consequently, the population is encouraged to use environmentally friendly
transport mode choices, such as the bike, to get to their preferred destinations.
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5.2. Temperature

Among all weather conditions, temperature has the most prominent effect on mobility
choices with strong significant effects on almost all travel behaviour modes. According to
Table 3, when the temperature increases, people walk more, which decreases the relative
likeliness of choosing other transport modes. For instance, we see that with a unit increase
in temperature for 0-15 C and 15-25 C, the probabilities of walking is expected to increase
by 23% and 32%, respectively while the probabilities of choosing the bus is expected to
decrease by 21% and 17%, respectively. However, a unit increase in temperature greater
than 25 C, would reduce the bike share by 21% while the walking share would increase by
27% according to MNL model, which is line with the survey results in [44].

5.3. Wind speed

Table 3 shows that a unit increase in the wind speed between 3-7.8 m/s would result
into an increase of 1.8% in the train modal share according to the MNL model. This result
shows that the wind speed just like relative humidity and precipitation has a very limited
effect on transport mode choices in Beijing. One possible reason is that during the period
in which this study was conducted, the average wind speed was 3 m/s, which is classified
as very light according to the Beaufort scale.

5.4. Trip distance

Trip distances significantly influences all transport choices as shown in Table 3. For
instance, a unit increase in distances of 4-8 km is expected to decease walking and biking by
51% and 30%, respectively, while increase the bus, car, and train shares by 6%, 12.5%, and
2.7%, respectively. A unit increase in distances of 8-12 km is expected to lead to a further
decrease in walking by 62%, while increasing, car, bus, and train shares by 12.3%, 39.8%,
and 12.3%, respectively. For a unit increase in distances of 12-20 km, walking and biking
are expected to decrease by 66% and 16.2%, respectively, while car, bus, and train shares
are expected to increase by 22.5%, 24.6%, 35.3%, respectively.

Beyond 20 km, this trend is similar except that there is a further increase in the car, bus,
and train shares by 67.2%, 16.2%, 6.6%, respectively while a further reduction in walking
and bike shares by 72.5% and 17.6%, respectively is expected. These results are in line with
the findings in survey studies by [16] and [45], whose authors find that shorter distances
are likely to performed by walking and bike, while the longer distances by car, bus, and
trains.

5.5. Olympics

Generally, it is highly likely that different transport modes will be disrupted due to
the magnitude of people that an event like the summer Olympics attracts. This study helps
to analyse how the Olympics influences the transport mode share. During the Olympics,
we see that there is a decrease of 17.5% in the car share and an increase of 13% and 10% in
the walk and bus shares, respectively.

The decrease in the car share can be attributed to the private car restrictions imposed
by the government, and the increase in the bus share is explained by the additional bus lines
put in place as an alternative to accommodate the number of passengers. Our findings are
consistent with the findings of the authors in [33] who mention that during the preparation
for the 2008 summer Olympics, a series of traffic restrictions on private vehicles were
introduced by the Beijing government.

5.6. Rush hour

During rush hours, we see a reduction in the likelihood of traveling by car and train by
7.1% and 4.4%, respectively and an increase in biking by 5.8% . A more general explanation
for this travel behaviour may have to do with the need to reduce or avoid congestion i.e.
traffic jams and congestion of people in trains.
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5.7. Day/Night

During the day, Table 3 shows that the probability of biking would decrease by 6.4%
and the use of the bus would increase by 7.3%. A possible reason is that during the day
there are more buses operating than in the night. During the night there is an increase in
the people biking because transport operators reduce the number of buses.

However, our result is contrary to the findings obtained using survey data in Scandi-
navia cities of Stockholm and Oslo [45], in which during the night there are fewer trips by
active transport modes such as biking than during the day.

6. Conclusions

Our main objective is to provide a better understanding on the possibility of using
GPS data for studying the impact of weather and context data on transport mode choices.
In the methodology, we linked GPS trajectories with weather and context information and
then analysed their relationship by descriptive means and statistical models.

The first conclusion is that trip distances and the transport mode choice were very
much interrelated. In fact, this study highlights that the trip distance is the most significant
factor in choosing a transport mode. Of the five weather conditions, temperature had the
most prominent effect on the transport mode choice.

The second conclusion is that we can observe the effect of governmental regulations
on the choice of transport mode once the air quality becomes hazardous. We observe
that traffic restrictions imposed by the government encourage the population to chose
environmentally friendly transport modes such as the bike instead of the car and bus,
which are greenhouse gas emitters. Moreover, our study concludes that hosting an event
such as the summer Olympics would require transport regulators and operators to provide
additional bus lines to accommodate the number of passengers.

Future studies could include adding more explanatory variables such as income,
gender, occupation, age, trip purpose, to improve the performance of the models. In
addition, it would be interesting to use advanced models such as Structural equation
modelling to reveal potential unobservable heterogeneity of the effects of weather and
context data on transport mode choices.
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