
Emission of Photon Multiplets by a dc-Biased Superconducting Circuit

G. C. Ménard ,1,†,§ A. Peugeot ,1,§ C. Padurariu ,2 C. Rolland,1 B. Kubala ,2,3 Y. Mukharsky,1 Z. Iftikhar,1

C. Altimiras ,1 P. Roche,1 H. le Sueur,1 P. Joyez ,1 D. Vion ,1 D. Esteve ,1 J. Ankerhold,2,‡ and F. Portier1,*
1DSM/IRAMIS/SPEC, CNRS UMR 3680, CEA, Université Paris-Saclay, 91190 Gif sur Yvette, France

2Institute for Complex Quantum Systems and IQST, University of Ulm, 89069 Ulm, Germany
3Institut of Quantum Techhnologies, German Aerospace Center (DLR), 89069 Ulm, Germany

(Received 19 November 2021; revised 11 February 2022; accepted 14 March 2022; published 8 April 2022)

We observe the emission of bunches of k ≥ 1 photons by a circuit made of a microwave resonator in
series with a voltage-biased tunable Josephson junction. The bunches are emitted at specific values Vk of
the bias voltage, for which each Cooper pair tunneling across the junction creates exactly k photons in the
resonator. The latter is a microfabricated spiral coil which resonates and leaks photons at 4.4 GHz in a
measurement line. Its characteristic impedance of 1.97 kΩ is high enough to reach a strong junction-
resonator coupling and a bright emission of the k-photon bunches. We show that a rotating-wave
approximation treatment of the system accounts quantitatively for the observed radiation intensity, from
k ¼ 1 to 6, and over 3 orders of magnitude when varying the Josephson energy EJ. We also measure the
second-order correlation function of the radiated microwave to determine its Fano factor Fk, which in the
low EJ limit confirms with Fk ≃ k the emission of k-photon bunches. At larger EJ, a more complex
behavior is observed in quantitative agreement with numerical simulations.
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I. INTRODUCTION

The pioneering work of Max Planck on light emission
by hot matter led to the recognition of the granular
character of light and to the concept of photon. The
quantum theory then explained how electrons in atoms
occupy discrete energy eigenstates and how transitions
between these states radiate single photons. The corre-
sponding photon emission rate is governed by the light-
electrical charge coupling strength, measured by the ratio
between the vacuum impedance Z0 and the quantum of
resistance RK ¼ h=e2, namely, the fine structure constant
αQED ¼ Z0=2RK ≃ 1=137 [1]. The smallness of αQED
places usual light emission in a perturbative regime of
quantum electrodynamics (QED).
On the other hand, emission of photon multiplets

(bunches with always the same number k of photons) in
a single event only occurs in special circumstances, as in

atomic cascades, or in nonlinear media able to split single
photons into several photons. For instance, parametric
down-conversion is commonly used to produce pairs of
strongly correlated photons, and emission of photon triplets
has even been achieved [2,3]. Here, we consider multi-
photon emission in the generic context of electrical circuits
with a quantum coherent conductor steadily maintained out
of equilibrium by a dc voltage source, and producing
photons each time this conductor is traversed by a charge
carrier [4–7]. The resulting QED of this type of circuits
with designed light-matter coupling strength [6,8–15] can
provide, e.g., sub-Poissonian photon sources [16–22],
novel types of lasers [23–26], near-quantum-limited ampli-
fiers [27,28], squeezed radiation [9,10,29], and interesting
quantum state engineering resources [30–33].
The particular circuit of this work and the principle of the

experiment are shown in the schematics of Fig. 1(a). A
tunable Josephson junction (JJ) with Josephson energy EJ,
biased at a dc voltage V, is placed in series with a
microwave resonator of frequency νR ¼ ωR=2π and char-
acteristic impedance ZR. In addition, the resonator is
capacitively overcoupled to a measurement line, into which
photons leak at an energy decay rate κ ¼ ωR=Q. By design,
ZR is of the order of RK, thus placing microwave emission
in the nonperturbative regime far away from the conven-
tional QED regime. Note that V is kept much smaller than
the superconducting gap voltage of the JJ electrodes, so that
no electrons can tunnel through the JJ at low temperature.
Only Cooper pairs with charge −2e can thus tunnel,
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provided that the energy 2eV delivered by the source is
entirely converted into an integer number k of photons in
the resonator. These inelastic processes occur only at
particular bias values Vk such that

2eVk ¼ khνR; k ¼ 1; 2; 3;…: ð1Þ

The aim of this experimental work is to obtain these
k-photon bunches with a high brightness, to compare the
photon fluxes to theoretical predictions, and to obtain a
signature of the k granularity.

II. THEORY

The Hamiltonian of the circuit is the sum of the resonator
Hamiltonian ℏωRðâ†âþ 1=2Þ, with âð†Þ the photon annihi-
lation (creation) operator, and of the Josephson Hamiltonian
ĤJ ¼ −EJ cos ϕ̂J with ϕJ the superconducting phase differ-
ence across the JJ. The voltage source imposes a total phase
difference across the circuit increasing linearly with time t,
ϕV ¼ ωJt ¼ ϕ̂J þ ϕ̂R, with νJ ¼ ωJ=2π ¼ 2eV=h the
Josephson frequency, ϕ̂R ¼ ffiffiffi

α
p ðâ† þ âÞ the phase across

the resonator, and α ¼ 4πZR=Rk. The time-dependent
Hamiltonian of the circuit is thus

Ĥ ¼ ℏωRâ†â − EJ cos½ωJt −
ffiffiffi
α

p ðâ† þ âÞ�; ð2Þ
up to the resonator zero-point energy. Note that ϕJ is
conjugate to the number N of Cooper pairs transferred
through the JJ and ĤJ is the sum of the operators e�iϕ̂J that
increase or decrease N by one unit; as a consequence, ĤJ
couples Cooper pair transfer to photonic excitations in the
resonator [7,15]. TheHamiltonian (2) shows that the strength
of this coupling is given by α, which is the charge-radiation
coupling constant [4] of our one-mode circuit, and plays the
same role as the fine structure constant αQED in atomic
physics. This coupling results in inelastic Cooper pair
tunneling and in a dc current flowing through the circuit
in the vicinity of voltages Vk. At ωJ ¼ kωR þ δk, the
effective Hamiltonian obtained within the rotating-wave
approximation takes the form [34,35]

Ĥk ¼ −
EJe−α=2

2
αk=2½e−iδktðiâ†ÞkB̂k þ H:c:�; ð3Þ

where H:c: denotes Hermitian conjugation and

B̂k ¼
X∞
n¼0

n!
ðnþ kÞ!L

ðkÞ
n ðαÞjnihnj ð4Þ

is a diagonal operator in the Fock state basis fjnig involving
the generalized Laguerre polynomials LðkÞ

n ðαÞ [35]. The
Cooper pair translation operators e�iϕ̂J have thus been
transformed into creation and annihilation operators âð†Þk
adding or removing bunches of k photons to or from the
resonator. Under a constant voltage, a steady-state situation is
reached, characterized by an average number of photons in
the resonator, the occupation number hni: Cooper pairs tunnel
across the JJ at a rate γk and produce photons in the resonator;
these photons leak at an average rate Γk ¼ kγk ¼ κhni in the
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FIG. 1. Principle of the experiment and first observation of
multiphoton emission up to k ¼ 5 (run 1). (a) A tunable Josephson
junction (JJ) with energy EJ (green cross) is connected in series
with a dc voltage source V and a microwave resonator (blue) of
frequency νR and characteristic impedance ZR. Current can flow
only at certain values Vk of V for which the energy 2eVk of a
Cooper pair transferred across the circuit is entirely transformed
into an integer number k of photons in the resonator. Is the field
leaking out of the resonator quantitatively understood and does it
display k-photon bunches? (b) Optical micrograph of the sample
showing a SQUID (magnetically tunable JJ,main picture and inset)
connected to a high inductance coil (resonator). The electrical
parameters are indicated and lead to a giant effective fine structure
constant α ∼ 1. The bias and measuring lines are schematized in
Fig. 4. (c) Emitted powermeasured as a function of the bias voltage
V for a Josephson energy EJ large enough to observe emission
peaks up to k ¼ 5. The black and red vertical dotted lines indicate
the offset voltage and the Vk values, respectively. Note that the
small peak visible below V6 is a spurious emission attributed to a
high-frequency mode of the circuit.
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aout modes of the measurement line (see Fig. 4 in the
Appendix A). This photon rate is expected to be proportional
to the square of the prefactor EJe−α=2αk=2=2 in Hamiltonian
(3), and to also depend, through B̂k, on the actual photon
distribution probability inside the resonator.
In the limit of vanishing EJ the situation is simpler since

the resonator has time to empty before a new Cooper pair
tunnels and a new bunch of k photons is emitted. The rate

γk ¼
Γk

k
¼ −

�
EJ

ℏωR

�
2 αke−α

kk!
QωR

1þ ð2Qδk
kωR

Þ2 ð5Þ

is obtained in this case from a standard calculation of the
Purcell relaxation rate for Hamiltonian (3), which holds
when γk ≪ κ, and coincides with the prediction of dynami-
cal Coulomb blockade theory [22]. In this regime of well-
separated tunnel events, the microwave radiation consists
of separated bunches of k photons. This granularity of the
energy flow is naturally measured by the photon Fano
factor Fk, defined as the ratio of the variance to the mean
number Γkt of emitted photons during a time t > Γ−1

k .
Assuming a Poissonian electrical current with a Cooper
pair Fano factor of 1, and k photons per Cooper pair
crossing the circuit, one predicts Fk ¼ k. Now, in the
microwave domain, no wideband photon counters exist and
the emitted photons cannot be counted during a given
period of time. Instead, the field statistics can be charac-
terized by the normalized second-order (intensity-intensity)
correlation function,

gð2ÞðτÞ ¼ hâ†outð0Þâ†outðτÞâoutðτÞâoutð0Þi
hâ†outâouti2

; ð6Þ

which can be interpreted as the probability for two photons
separated by a delay τ to leak in the same electromagnetic
mode. Then, Fk can be computed from gð2Þ [36] as

Fk ¼ 1þ 2Γk

Z þ∞

0

½gð2ÞðτÞ − 1�dτ: ð7Þ

In the strong brightness regime at large EJ, the resonator
population feeds back to the emission dynamics [37]. A
numerical integration of the evolution of the system under
the influence of Hamiltonian (3) and radiative losses with
rate κ is necessary to predict both the emission rate Γk and
the Fano factor Fk.

III. IMPLEMENTATION

The αk factor in Eq. (5) calls for a large value of α to
favor the multiphoton emission beyond the already
observed k ¼ 2 case [7]. Standard on-chip microwave
resonator designs yield a characteristic impedance smaller
than the vacuum impedance ZV ≃ 377 Ω, with typically
α ∼ 0.05. To approach α ∼ 1, we use a spiral coil resonator

[see Fig. 1(b)] etched in a 150-nm-thick niobium film
sputtered onto a quartz substrate (low dielectric constant
ϵr ≃ 3.8), whereas the JJ is a superconducting quantum
interference device (SQUID) with an EJ of a few μeV
magnetically tunable down to almost zero. The resonator
capacitance being the spurious capacitance to ground of its
coil in parallel with the JJ capacitance, its resulting central
frequency and characteristic impedance are νR ¼ 4406 MHz
and ZR ¼ 1.97 kΩ, which corresponds to α ¼ 0.96.
The data reported here were collected over three different

experimental runs by measuring a sample previously used
to demonstrate photon antibunching at k ¼ 1 [22]. Over
these runs that extended over four years, the tunnel
resistance of the SQUID increased from 220 to 330 kΩ
due to aging, leading to a similar decrease of the maximum
reachable EJ value. Runs 1 and 2 were performed in a
dilution refrigerator (DR) with a liquid helium cryostat,
whereas run 3 used a cryo-free DR with a pulse tube. As a
result, the bias voltage noise was ∼4 nV in run 2 and
∼80 nV in run 3, which corresponds to Josephson fre-
quency noises with standard deviations of about 2 and
38 MHz, respectively (see Appendix F). For all runs, the
sample was placed in the same shielded sample holder, and
was thermally anchored to the mixing chamber of the DR.
The sample was connected through the same bias tee to a dc
line with a filtered voltage divider, and to a 50 Ω micro-
wave detection circuit. With such a low-impedance detec-
tion scheme, the quality factorQ of the resonator cannot be
precisely controlled and has to be measured precisely
in situ (see Appendix C; Q ¼ 36.6 and 72 in runs 2 and
3). The detection line is made of a 90° hybrid coupler acting
as a microwave beam splitter toward two nominally
identical amplified lines 1 and 2 (see Appendix A). At
room temperature, the signals v1ðtÞ and v2ðtÞ from the two
lines were measured in different ways: in run 1, their
powers are measured using two quadratic detectors,
whereas in runs 2 and 3, they are bandpass filtered and
down-converted to the 0–625 MHz frequency band using
two mixers sharing the same local oscillator at
νLO ¼ 4.71 GHz. In this latter case, the two output quad-
ratures are then digitized at 1.25 GSamples/s. The relevant
correlation functions are then computed to obtain the
emitted power spectral density, the total emitted power,
the second-order coherence function gð2ÞðτÞ, and the
corresponding Fano factor Fk at the output of the resonator.
As in Ref. [22], this two-line measurement setup à la
Hanbury Brown and Twiss is a convenient way to remove
the contribution of the technical noises from the determined
quantities (see Appendix B).

IV. MEASURED AND SIMULATED
EMITTED POWER

In the first experiment (run 1) we simply sweep the
voltage V and integrate the received power over a band-
width larger than the resonator one. We observe regularly
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spaced peaks [see Fig. 1(c)] that correspond to the k-photon
excitation mechanism described above at V ¼ Vk, for
k ¼ 1–5. In order to observe emission at such large values
of k, we used the external magnetic field to tune our system
to a large Josephson energy EJ=hνR ∼ 0.1–0.2 (which
could not be determined precisely due to the hysteretic
magnetic behavior of the sample; see Appendix E). One
notices in particular that the k ¼ 2 and k ¼ 3 peaks are
stronger than the k ¼ 1 peak, a situation that does not
naturally occur in atomic physics because of the smallness of
the fine structure constant. The last visible peak that appears
below the voltage expected for k ¼ 6 does not correspond to
amultiple order resonance, and results from a spuriousmode
of the setup that could be strongly reduced in run 2.
In order to analyze more in depth the multiphoton

emission process observed, the power spectral densities
(PSDs) of the emitted radiation were measured in run 2,
close to each Vk up to k ¼ 6, and as a function of EJ in a
range EJ=hνR ¼ 0.01–0.142 (see Fig. 2). Spectra for the
highest EJ are displayed in Fig. 2(a) and show a maximum
brightness for k ¼ 3. The applied bias voltages being slightly
offset by δVk, the emission peaks are frequency shifted from
the resonator frequency νR by δk=2π ¼ 2eδVk=hk. The
spectral shapes are well fitted by Lorentzian peaks up to
k ¼ 5. The k ¼ 6 peak is now clearly visible, butwith a small
parasitic contribution on its high-frequency side (which
could be due to the emission of one photon in the resonator
and another one in a 22.1 GHz spurious mode of the circuit).
We then compare the measured spectra with those

predicted from simulations of the master equation of the
circuit with Hamiltonian (3) and rate κ, without including
the ∼2 MHz Josephson frequency noise nor the detunings
δk. These theoretical spectra are shifted by δk and super-
posed to the measured spectra in Fig. 2(a). At k ¼ 1 the
theoretical spectrum is close to a monochromatic line at the
Josephson frequency, so that the width of the measured
spectrum is almost entirely due to the bias voltage noise. At
higher k, energy conservation only imposes the sum of the
k-photon frequencies to be equal to the Josephson fre-
quency, so that the emission width is larger. The simulated
spectra have widths that vary with k in a nontrivial way, and
reproduce reasonably well the measured spectra. The
experimental emission peaks are also slightly widened
by the noise.
The integral of the Lorentzian fit of a PSD yields the

corresponding total photon flux Γk leaking out of the
resonator. Note that the measured flux gives the resonator
occupation hnki ¼ Γk=κ because the resonator population
decays dominantly by the photon emission into the meas-
urement line. These photon fluxes are displayed as dots in
Fig. 2(b), for 12 different values of the coil current and
consequently of EJ. Unfortunately, the magnetic flux
through the SQUID being hysteretic when ramping the
coil current (see Appendix E), we had to use the following
procedure to determine these EJ values and compare the

data to simulations: the six photon fluxes Γk are simulated
over the full EJ=hνR ¼ 0.01–0.15 range. The simulated
curves are then used to fit the whole dataset with the 12 EJ
values as fitting parameters. These fitted EJ are then
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FIG. 2. Multiphoton emission spectra and emitted power for
k ¼ 1–6. (run 2). (a) Examples of measured (dots) power spectral
densities (PSD) taken at EJ=hνR ∼ 0.142 around the resonator
frequency νR, for different bias voltages Vk þ δVk corresponding
to residual frequency detunings δk=2π ¼ 2eδVk=hk ¼ −39.4,
−6.0, −1.2, 1.4, −7.5, and 0.8 MHz for k ¼ 1;…; 6. A vertical
magnification factor with respect to the left axis scale is indicated
for each peak. Cyan filled peaks are Lorentzian fits of the PSDs (for
k ¼ 6, a two-Lorentzian fit gives a second spurious mode in violet).
The cyan areas are the photon rates Γk used for comparison with
simulations in (b). Bare simulations of the discretized spectral
densities at zero detuning (black solid lines) are shown (horizon-
tally shifted) for comparison. (b) Measured (dots) and simulated
(solid lines) reduced emission rates hni ¼ Γk=κ for k ¼ 1–6 and 12
differentEJ values. Dashed curves represent the number of photons
obtained from the Purcell rate γk of departure from the vacuum state
(see text). Because of magnetic flux jumps in the SQUID,
experimental EJ values were not precisely known and were fitted
to minimize the difference between simulation and experiment in
log scale (see text and Fig. 7 in Appendix E). No voltage noise is
included in the simulation and no vertical scaling of the data is
applied after calibration. The �5% systematic relative uncertainty
on calibration plus the uncertainty on k is about the symbol size.
The vertical dashed line corresponds to the dataset in (a).
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validated by the independently characterized hysteretic
behavior of the SQUID (see Appendix E). The simulated
and measured Γk match quantitatively over more than 3
orders of magnitude, with, however, a 25%–30% discrep-
ancy for k ¼ 6. The theoretical predictions of Eq. (5) in the
weak brightness regime are also shown as dotted lines.
They also account for the data at small EJ and occupation
hni, but fail to predict the brightness increase when the
resonator occupation differs significantly from zero and
feeds back on the emission dynamics.

V. GRANULARITY OF THE MICROWAVE
EMISSION

The microwave granularity was measured in run 3 for
k ¼ 1–4, by computing the gð2Þ functions from the digitized
demodulated signals v1 and v2 (see Appendix B), for six
different values of EJ (see Fig. 9 in Appendix G). An
example is also shown in Fig. 3(b). Because of the magnetic
hysteresis of the SQUID already mentioned, these EJ
values and their uncertainties are now inferred from the
comparison of the measured average photon number hni
with simulations. The large ∼80 nV voltage noise observed
in run 3 now has to be included in the simulation (see
Appendix H) for a quantitative agreement. The correspond-
ing Fano factors are shown in Fig. 3(c) and compare
reasonably well with numerical simulations. As expected,
the simulated Fk tend toward k at vanishing brightness but
depart significantly from it when EJ is increased. At the
lowest EJ compatible with a reasonable measuring time
(∼72 h), we measure F1;2;3;4 ¼ 0.7� 0.1, 1.8� 0.1,
3.5� 0.3, and 4.5� 0.6, respectively, close to the expected
bunch sizes k ¼ 1, 2, 3, and 4. This result, together with the
quantitative understanding of the total emitted power, are
the main results of the present work. This k granularity of
the emission at low EJ means that the resonator is prepared
in Fock state jki, at each Cooper pair tunneling event. Note
that other circuit-QED devices can prepare such Fock
states, but in a series of about k successive operations
involving a superconducting qubit coupled resonantly [38]
or dispersively [39] to a resonator. All these devices can
thus be regarded as sources of k-photons multiplets.
Upon increasing EJ, the Fano factors show a complex

behavior with a dip for k ¼ 1 and a peak-dip structure for
k > 1 [see Fig. 3(c)], although the increase in the resonator
occupation hni ≲ 1 remains moderate [see Fig. 3(a)]. In
essence (see Appendix I), these variations are a conse-
quence of two competing nonlinear effects. First, at
moderate occupation, the k-parametric term ∼ðâ†Þk þ âk

of Hamiltonian (3) has matrix elements increasing rapidly
with the number n of photons. This results in an emission
stimulated by the photons already present in the resonator,
an enhanced emission rate, and a superlinear Fano factor
Fk > k that indicates an additional bunching of the k-
photon multiplets [14,15,40]. Second, however, at larger EJ
and occupation hni, the Josephson nonlinearity encoded in

B̂k reduces strongly the drive strength, at different occu-
pation levels that depend on k. For k ¼ 1, this last effect
even leads to a strong antibunching (see Ref. [22] and
gð2Þð0Þ < 1 in Fig. 9 of Appendix G).
Finally, beyond the k granularity of the photon emission,

an interesting point to note is the quantum nature of the
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resonator field â and radiated fields âout: as the emission is
similar to a k-photon spontaneous parametric down-con-
version [see the B̂k-modified ðâ†Þk þ âk term in
Hamiltonian (3)], the Wigner functions of the fields are
expected to be non-Gaussian and squeezed with a k-fold
symmetry, as measured recently in Ref. [3] for k ¼ 3. Our
experiment was designed to measure photon statistics and
does not permit measurement of these Wigner functions.
However, we show an example of simulated Wigner
functions in Appendix J to motivate their measurement
in the future.

VI. CONCLUSION

In conclusion, our work shows that a high-impedance
resonator in series with a voltage-biased Josephson junction
produces, at particular voltages Vk, bunches of k ¼ 1;…; 6
photons per Cooper pair tunneling across the Josephson
junction, with a brightness quantitatively understood. By
measuring both the emitted power and the Fano factor of
the system, we have shown that the photons are indeed
emitted as multiplets in a single event. Note that a similar
emission process was also recently observed in a richer
multimode environment [33]. Our simple system provides
an interesting test bench for quantum optics experiments in
the strong charge-radiation coupling regime provided by
the high-impedance, moreover in a steady-state out-of-
equilibrium situation imposed by the voltage source, a
regime far from atomic physics. Beyond illustrating and
clarifying a new regime of quantum optics, such simple
photon sources complete the quantum microwaves toolbox.
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APPENDIX A: COMPLETE
EXPERIMENTAL SETUP

Figure 4 presents the electrical schematics of our
experimental bias and detection circuits. As explained in
the main text, our sample is anchored at the bottom plate of
a dilution refrigerator and connected to the measurement

chain. The black subcircuit with a bias tee is used to apply a
finite bias to the junction (dark green), which generates the
emission of photons into the resonator (blue). An external
magnetic coil (light green) threads a magnetic flux ϕ
through the SQUID to tune its Josephson energy EJ.
The signal leaking from the resonator (mode aout) goes
through a bandpass filter and a circulator before being split
over two lines in a Hanbury Brown–Twiss-like setup and
then amplified (red). Depending on the experimental run,
we either send each signal to a bandpass filter and a diode
(in orange, run 1) or heterodyne them (purple, runs 2
and 3), before digitizing them.

APPENDIX B: DETERMINATION OF SPECTRAL
DENSITIES, TOTAL POWERS, AND gð2Þ

FUNCTIONS (RUNS 2 AND 3)

1. Model for the detection chain

We describe here the same procedure as the one given in
the Supplemental Material of Ref. [22].
The input-output formalism links the resonator operator

â to the ingoing and outgoing transmission line operators
âin, âout by

ffiffiffi
κ

p
âðtÞ ¼ âinðtÞ þ âoutðtÞ, with κ ¼ ωR=Q the

energy leak rate. In our experimental setup, âin describes
the thermal radiation coming from the 50 Ω load on the
isolator closest to the sample. Because this load is ther-
malized at 15 mK ≪ ℏωR=kB, the modes impinging onto
the resonator can be considered in the ground state and the
contribution of âin to all the correlation functions vanishes.
We thus take âout to be an exact image of â, and all their
normalized correlation functions as being equal.

FIG. 4. Experimental setup. Schematics of the whole measure-
ment circuit used in the different experimental runs (see text).
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As described in the previous Appendix, the emitted
signal is split between two detection chains, filtered,
amplified, and mixed with a local oscillator before digiti-
zation. The beam splitter is implemented as a hybrid
coupler with a cold 50Ω load on its fourth port, and acts
as an “amplifier” of gain 1=2, adding to the signal a noise
mode ĥbs in the vacuum state. The different amplifying
stages are summed up into one effective amplifier for each

channel, with respective noise temperatures Tð1Þ
N ¼ 13.5 K

and Tð2Þ
N ¼ 14.1 K for runs 1 and 2 and Tð1Þ

N ¼ 8.12 K and

Tð2Þ
N ¼ 6.16 K for run 3. The mixer used for heterodyning

the signals also adds to them at least the vacuum noise.
The last step is the linear detection of the voltage viðtÞ on

channel i by the acquisition card. It is classical and does not
have to be modeled at the quantum level. After digitization,
we process chunks of signal of length 1024 samples to
compute the analytical signal SiðtÞ ¼ viðtÞ þHðviÞðtÞ,
where H is here the discrete Hilbert transform. Because
computing the analytical signal SiðtÞ from the heterodyned
viðtÞ is equivalent to measuring its two quadratures, which
are noncommuting observables, quantum mechanics
imposes an additional noise mode. We sum this digitization
noise and the heterodyned noise into a single demodula-
tion noise.
Ultimately, we record measurements of Ŝ1ðtÞ and Ŝ2ðtÞ,

with Ŝi ∝ âi þ ĥ†i and ĥi an effective thermal noise summing
the different detection step contributions (in practice, the
dominant noise contribution stems from the amplifiers
closest to the sample). Note that âiðtÞ ∝ âoutðt − τiÞ with
τi the propagation time on channel i, and that the signal
model described above is valid only within the bandpass of
the filters.

2. Computing correlations (runs 2 and 3)

For each chunk of signal recorded on line iwe compute a
chunk of SiðtÞ of the same length, 1024. We then compute
the desired correlation functions as

CX;YðτÞ ¼ hX�ðtÞYðtþ τÞi ¼ F−1½FðXÞ�FðYÞ�;

where h� � �i stands for the average over the length of the
chunk and F is the discrete Fourier transform. Finally, we
average the correlation functions from all the chunks and
store this result for further postprocessing.
To illustrate how we reconstruct the information on â

from S1 and S2, let us consider the first-order coherence
function gð1ÞðτÞ ¼ hâ†ðtÞâðtþ τÞi=hâ†âi. We start with the
product

S�ðtÞSðtþ τÞ ∝ â†ðtÞâðtþ τÞ þ ĥðtÞĥ†ðtþ τÞ
þ â†ðtÞĥ†ðtþ τÞ þ ĥðtÞâðtþ τÞ

on a single line, i.e., with S being either S1 or S2. Then, we
consider that the noise added by an amplifier cannot be

affected by the state of the resonator, so that â and ĥ are
independent and thus uncorrelated; hence,

hâðτÞĥðtþ τÞi ¼ hâðτÞihĥðtþ τÞi ¼ 0;

as there is no phase coherence in the thermal noise
(hĥi ¼ 0). We thus have

hS�ðtÞSðtþ τÞi ∝ hâ†ðtÞâðtþ τÞi þ hĥðtÞĥ†ðtþ τÞi:

Hence, at zero bias voltage V ¼ 0 (the so-called off
configuration),

hS�ðtÞSðtþ τÞioff ∝ hĥðtÞĥ†ðtþ τÞi;

whereas at the finite voltage V for the multiphoton emission
(so-called on configuration),

hS�ðtÞSðtþ τÞion ∝ hâ†ðtÞâðtþ τÞi þ hS�ðtÞSðtþ τÞioff :

Consequently,

gð1ÞðτÞ ¼ hS�ðtÞSðtþ τÞion − hS�ðtÞSðtþ τÞioff
hS�Sion − hS�Sioff

:

Now, as we are considering states of the resonator
with at most a few photons, we typically have hS�Sioff≃
hS�Sion ≫ hS�Sion − hS�Sioff . From there, any small fluc-
tuation of the gain of the detection chain or of the noise
temperature during the experiment reduces greatly the
contrast on gð1ÞðτÞ. We thus rely on the cross-correlation
XðτÞ ¼ hS�1ðtÞS2ðtþ τÞi on the two lines rather than on the
previous autocorrelation on one of them. (Note that due to a
residual cross talk between the two channels, this cross-
correlation averages to a finite value even in the off
position, but which is 60 dB lower than the autocorrelation
of each channel). We hence use

gð1ÞðτÞ ¼ XðτÞon − XðτÞoff
Xð0Þon − Xð0Þoff

:

A similar treatment allows us to compute gð2ÞðτÞ with
slightly more complex calculations. The classical Hanburry
Brown–Twiss experiment correlates the signal power
over the two channels, i.e., extracts gð2ÞðτÞ from
hS�1S1ðtÞS�2S2ðtþ τÞi. The off value of this correlator is
once again much bigger than the relevant information of the
on-off part, and any drift of the amplifiers would blur the
averaged value of gð2ÞðτÞ. This is why we use CðtÞ ¼
S�1ðtÞS2ðtÞ instead of S�i ðtÞSiðtÞ as a measure of the instanta-
neous power emitted by the sample, provided that the time
delay between the two detection lines is calibrated and
compensated for. We then have
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gð2ÞðτÞ ¼ hCðtÞCðtþ τÞion − hCðtÞCðtþ τÞioff
ðhCion − hCioffÞ2

− 2
hCioff

hCion − hCioff
−
½XðτÞon − XðτÞoff �Xð−τÞoff

ðhCion − hCioffÞ2

−
½Xð−τÞon − Xð−τÞoff �XðτÞoff

ðhCion − hCioffÞ2
; ðB1Þ

where hCi stands for hCðtÞi.

3. Computing power spectral densities, total emitted
powers, and Fano factors from correlations

From the raw cross-correlation CðνÞ [Fourier transform
of CðtÞ], we compute the normalized emitted power
spectral density:

PSDðνÞ ¼ CðνÞon − CðνÞoff
CðνÞoff

:

The photon emission rate,

Γ ¼ kBTN

h

Z
BW

PSDðνÞ
ν

dν;

is then obtained by integrating the PSD over the bandwidth
(BW) of the resonator, with TN ∼ 7.5 K the effective noise
temperature of the cross-correlated signal. We then use this
photon emission rate Γ and the fully corrected gð2ÞðτÞ
described above to compute the Fano factors:

Fk ¼ 1þ 2Γk

Z þ∞

0

½1 − gð2ÞðτÞ�dτ:

The experimental gð2ÞðτÞ and the estimation of the error on
Fk are presented in Appendix G.

APPENDIX C: RESONATOR PARAMETER
DETERMINATION

Both runs 2 and 3 started with the determination of the
resonator parameters. This was done by recording the PSD
for many values of the bias voltage V around Vk¼1 (that is
many values of the Josephson frequency νJ). The total
emitted power was then computed as indicated in the
previous Appendix. This power being proportional to the
real part of the resonator impedance Re½ZðνJÞ�, plotting it
as a function of the central frequency νJ of each spectrum
reconstructs the resonator line shown in Fig. 5 (for run 3).
Fitting the resonator line by a Lorentzian peak yields the
central frequency of the resonator νR ¼ 4406.75�
0.25 MHz and a FWHM of 61.05� 1.2 MHz correspond-
ing to a quality factor Q ¼ 72� 1.4 (run 3). The same
procedure yields Q ¼ 36.6� 0.7 for run 2.

APPENDIX D: ESTIMATION OF THE MAXIMUM
JOSEPHSON ENERGY (RUN 3)

In order to estimate the absolute maximal Josephson
energy of our SQUID, we measure the emission at k ¼ 1
at a bias voltage corresponding to νJ ¼ 5.15� 0.01 GHz (on
the high-frequency tail of the resonance), in order tomaintain
a low brightness and have a total emission rate given by

Γ ¼ 2π2ðE�
JÞ2

ℏ2νJ

Re½ZðνJÞ�
RK

; ðD1Þ

where RK ¼ h=e2 is the resistance quantum and E�
J the

effective Josephson energy of the SQUID renormalized by the
phase fluctuations of its environment. We record Γ as a
function of the magnetic field [see Fig. 6(b)] by sweeping the
coil voltage in a single direction, extremely slowly and with
very small steps, in order to avoid the lag and hysteresis
mentioned in the main text and documented in the next
Appendix. As E�

J varies as the absolute value of a cosine
function of the magnetic field, Γ varies sinusoidally as
expected, and a sinusoidal fit yields a precise value of the
maximum emission rate Γmax. To eliminate the unknown
Re½ZðνJÞ� in Eq. (D1) and obtainE�

J;max, we also measure the
power spectral density SðνÞ of the shot noise emitted when
biasing the circuit at a voltage V well above twice the
superconducting gap voltage (∼200 μV). We then divide
Γmax by the derivative

dSðνÞ
dV

¼ 2e
Re½ZðνÞ�

RN
; ðD2Þ

at frequency νJ [see Fig. 6(a)], with RN the normal resistance
of the SQUID thatwe estimate to be 335� 6 kΩ in run 3. The
Josephson energy is thus simply given by

FIG. 5. Characterization of the resonator. Measured total emitted
power (dots) as a function of the central frequency of the emitted
spectrum. The orange line is a Lorentzian fit yielding the resonator
frequency νR ¼ 4406.7� 0.25 MHZand quality factorQ ¼ 72�
1.4 (run 3).
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E�2
J ¼ Γmax

dS=dV
eh2ν
π2

RK

RN
:

We find E�
J;max ¼ 1.01� 0.02 μeV, to be compared to

the Ambegaokar-Baratoff value EAB
J;max ¼ 1.73� 3 μeV,

which indicates a renormalization factor of 0.583 in perfect
agreement with our estimate of 0.587 (see Supplemental
Material of Ref. [22] for the method).

APPENDIX E: HYSTERETIC MAGNETIC
BEHAVIOR OF THE SQUID AND FITTED EJ

VALUES (RUN 2)

As is the case for many Josephson devices, our sample
suffers from the presence of magnetic vortices trapped in
the superconducting electrodes in the vicinity of the
SQUID. These vortices add a contribution to the external

magnetic field applied by the coil. As the coil field is
ramped, the vortices can move and induce jumping or
lagging of the effective flux experienced by the SQUID
loop. Because the effective Josephson energy depends on
this effective flux, its determination is problematic.
However, as explained in the previous Appendix,

because the microwave emission is simply proportional
to the square of the Josephson energy EJ in the low
occupation limit, EJ variations can be followed from the
measured emitted power when the bias voltage (or equiv-
alently the Josephson frequency νJ) is tuned far on the tail
of the resonator resonance. Figure 7 shows a record of the
square root of the emitted power

ffiffiffiffi
P

p
for νJ ¼ 5 GHz, when

sweeping back and forth the magnetic field along a
particular path indicated by the blue arrows: starting from
V ¼ 0 V, the voltage vcoil applied to the coil circuit goes
down to −2.5 V, increases to −1.5 V, goes all the way
down to −4.2 V, and finally reincreases to −3 V: a
hysteretic emission is observed with lagging in both
directions. To check that the Ej values fitted in run 2 make
sense and are valid, we plot them as a function of vcoil and
apply a relative vertical scaling to compare them to

ffiffiffiffi
P

p
.

The fitted EJ values fall on the recorded trajectory for the
emission, which shows that they are consistent with the
chosen vcoil values.

APPENDIX F: BIAS VOLTAGE NOISE

The fridge setups with which we performed our experi-
ments presented a bias voltage noise with a standard
deviation of about 4 nV in runs 1 and 2 and 80 nV in
run 3. This transcribes into a Josephson frequency noise
and a finite emission width (at k ¼ 1) of less than 2 MHz
and about 38 MHz, respectively, to be compared to the
resonator linewidths of about 120 and 60 MHz, respec-
tively. Consequently, we could neglect this noise in our

(a)

(b)

FIG. 6. Calibration of EJ via the field dependence of the
emission. (a) Photon emission rate Γ expressed in mega photons
per second measured (dots) as a function of the voltage applied to
the coil, recorded at νJ ¼ 5.15� 0.01 GHz, far from the resonance
frequency of the resonator. The dashed orange line is a sinusoidal
fit. (b) Derivative of the shot-noise signal as a function of the
frequency. The orange dot shows the point at νJ used for dividing Γ
(see text).
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FIG. 7. Magnetic hysteresis and fitted Ej values. Square root of
the emitted power

ffiffiffiffi
P

p
at 5 GHz (blue points, left axis) versus

applied coil voltage vcoil, and fitted EJ values (red, right axis)
presented in Fig. 2 of the main text. A relative vertical scaling is
applied to compare the two datasets.
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analysis for run 2, but had to take it into account for run 3.
Indeed, when the circuit is biased at V0 ¼ hνJ0=2e, the
power spectral density at a given instant and at a frequency
ν around νJ0 is proportional to the product of the impedance
of the resonator at that frequency ν by the probability to
produce a photon at frequency ν ¼ νJ0 þ 2eδV=h:

PSDðνÞ ∝ Re½ZðνÞ� × PðhνJ0 þ 2eδVÞ;

with δV the noise voltage at that instant.

In the case of a purely thermal noise with Gaussian
statistics, one would assume the PSD at k ¼ 1 to be the
product of the Lorentzian shape of the resonator determined
in Appendix C, centered on νR, by a Gaussian centered on
νJ0. However, fitting the measured PSD revealed that also
using a Lorentzian shape L for the noise distribution yields
better results [see Fig. 8(a)].
Now considering the emission at fixed frequency ν as a

function of the bias voltage V (or νJ) allows us to measure
more directly the noise distribution [see the three examples
of Fig. 8(b)], as the impedance ZðνÞ becomes a simple
multiplicative constant to a V-dependent line shape. Once
again, a Lorentzian fit is in better agreement with the
experimental data than a Gaussian. Figure 8(c) shows the
FWHM of the noise distribution (expressed in frequency
units), measured in this way on many curves at different
biases: its value over a window centered on the resonator
is 38.2� 1.3 MHz.

APPENDIX G: SET OF MEASURED gð2Þ
FUNCTIONS AND FANO FACTORS (RUN 3)

Figure 9 presents the full set of gð2ÞðτÞ data, shown both
for short and long times. Antibunching of the k ¼ 1 case
can be observed in the dip of gð2ÞðτÞ for k ¼ 1 at all EJ
values, as well as in the data taken at strong EJ=hν ¼ 0.045
and 0.065, for k ¼ 2. We extract Fðk; EJÞ by integrating
gð2ÞðτÞ according to

Fk ¼ 1þ 2Γk

Z þ∞

0

½1 − gð2ÞðτÞ�dτ; ðG1Þ

over the 40 ns time window shown in the left-hand panels
of Fig. 9. The relative Fano factor uncertainty is determined
by the standard deviation σ of gð2Þ measured at long time
(right-hand panels) and the total number N of integrated
points: ΔFk=Fk ¼ ð1 − 1=FkÞðΔΓk=Γk þ 2Γk

ffiffiffiffi
N

p
σ=FkÞ.

APPENDIX H: INCLUDING THE EFFECTS OF
VOLTAGE NOISE IN QUANTUM NUMERICAL

SIMULATIONS

This Appendix describes how fluctuations of the bias
voltage affect the dynamics of a Josephson-photonics
system and how they can be accounted for in a simulation
of measured observables. Obviously, all observables dis-
cussed here, from the resonator occupation and emitted
power to correlation functions and Fano factors, depend on
the detuning from the voltage matching condition,
2eV ¼ kℏω, of the k-photon resonance. Examples are
the measured emitted power in Fig. 1(c) of the main text,
or the simulated results in Fig. 10, which show the
unnormalized correlation function Gð2ÞðτÞ ¼ hni2 ×
gð2ÞðτÞ with the dependence of Gð2Þðτ → ∞Þ ¼ hni2 on
the detuning illustrated in the right-hand panel. In an
experiment, even if the mean voltage is tuned to resonance,

(a)

(b)

(c)

FIG. 8. Fitting of the voltage noise. (a) Example of three
measured PSD of emission (blue lines) taken at various voltage
biases, below, at, and above the resonator central frequency, as well
as their fit (orange) by a product of two Lorentzian lines (see text).
The resonator line shape (dashed gray line) is superposed to allow
the reader to better locate the bias values. (b) Three examples of
emitted power P (solid lines) taken at fixed frequencies ν as a
function of the bias voltageV, aswell as their Lorentzian fit (dashed
lines). (c) FWHM extracted from many PðVÞ curves as those
shown in (b), on a dense bias grid. The orange bar shows the
window used to compute the mean value of the emission width and
its height indicates the corresponding standard deviation.
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voltage fluctuations will let the system explore the effects
of such detuning. Voltage fluctuations are always present
and have been carefully measured and characterized for the
various runs of our experiments (see Appendix F). The
typical size of fluctuations has been determined and is used
to scale the voltage in the right-hand panel of Fig. 10. In
fact, that typical size (in run 3) is not small, so that there is a
substantial effect on the measured observables for typical
fluctuations ΔV, as shown by the markers in Fig. 10, right,
indicating detunings of 0,0.2, and 0.4ΔV.
To account for the main effects of voltage fluctuations,

one can assume that they are of thermal origin and of
classical nature. While fluctuations are much slower than
the excitation and leaking dynamics of the resonator, the
averaging time over which measurements are assembled is
much longer. In this quasistatic case, voltage fluctuations
can be accounted for by averaging over a distribution of
detunings. Assuming a classical noise model, we chose a
Gaussian distribution. This noise model has been success-
fully used to prove and characterize entanglement of a two-
resonator Josephson-photonics setup in Ref. [31], but

T

FIG. 9. Function gð2ÞðτÞ for various values of k and EJ . Raw experimental measurement of gð2ÞðτÞ from k ¼ 1 to k ¼ 4 (from left to
right) and for EJ=hνr ¼ f0.011; 0.018; 0.025; 0.029; 0.045; 0.065g. The left-hand panel each panel pair presents the short time variation
of g2 while the right-hand panel presents the noise on the measured gð2ÞðτÞ fluctuating around 1 at long time. A vertical multiplication
factor is indicated in these right-hand panels together with the average value a and the standard deviation σ of the noise.
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FIG. 10. Effects of voltage noise on the correlation function
Gð2ÞðτÞ are simulated by averaging over a Gaussian normal
distribution PðδV=ΔVÞ (gray shaded in the right-hand panel)
with the variance extracted from experiment as described in
Sec. VI C. The unnormalized correlation functions Gð2ÞðτÞ for
three detunings (0,0.2, and 0.4ΔV; see markers) are shown in
the left-hand panel, together with the averaged result (black). The
areas under the curves (shaded in the left-hand panel) enter the
Fano factor according to Eq. (4) of the main text (other
parameters are k ¼ 3, EJ ¼ 0.9Esat

J ¼ 0.07=hν).
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different or refined methods (see, e.g., the Supplemental
Material of Ref. [37]) are also possible.
We find that voltage noise has a substantial effect in our

experiment. This can be seen already on mean observables,
such as the mean number of photons in the resonator hni
[cf. Fig. 3(a) of the main text], but also on correlation
functions (left-hand panel of Fig. 10) and on the Fano
factor; see Fig. 11. The left-hand panel of Fig. 10 highlights
a situation where that effect is very pronounced. As may be
expected, this happens around the transition points of the
semiclassical results discussed in Appendix I (which, in
fact, show nonanalyticity only for the resonant case).
Shown are the (unnormalized) correlation functions
Gð2ÞðτÞ for the three values of detunings indicated in the
right-hand panel, as well as the result of averaging Gð2ÞðτÞ
over the distribution PðδVÞ, shown shaded in the right-
hand panel. The averaging completely changes the time
dependence of Gð2ÞðτÞ, and can even result in a super-
Poissonian Fano factor, Fav > 1, where the noiseless
resonant Fano factor would be sub-Poissonian, F < 1,
represented by the shaded (positive and negative) areas
and cf. Fig. 11.
In contrast to the strong effects on the dip-peak structure at

larger driving, for weak driving (and the naiveF ¼ k results)
the effect of voltage fluctuations is nearly negligible. In
particular, this can be observed (see Fig. 11) for higher
resonances, where the frequency mismatch fluctuations
∝ ΔV=k are reduced. Altogether, classical fluctuations,
not unlike the quantum fluctuations due to the large α, lead
to a broadening of the pronounced features predicted by

semiclassics, but the distortion of features can be quite
strong. Despite the large impact of fluctuations, the highly
nontrivial, complex driving dependence of the experimental
and simulated Fano factors matches astonishingly well.
Figure 3(b) of the main text demonstrates the high degree
of theoretical understanding and experimental control
Josephson-photonics systems offer in exploring this novel
regime of strong-coupling quantum electrodynamics.

APPENDIX I: STRONG EMISSION REGIME OF A
JOSEPHSON-PHOTONICS SYSTEM AT A

MULTIPHOTON RESONANCE

The most striking feature of biasing a Josephson-photon-
ics system at a multiphoton resonance is the emission of
photon multiplets. This bunching is reflected in a photon
Fano factor Fk ¼ k, observed for the k-photon resonance at
weak driving in accordance with the naive expectation.
However, as Josephson energy and therefore emission get
stronger and the resonator is not relaxing to its ground state
between consecutive Cooper pair tunneling events, the
dynamics becomes more complex and the behavior of the
Fano factor of photonic emission [Fig. 3(c) of the main text]
and the mean resonator occupation [Fig. 2(b) of the main
text] become highly nontrivial. In essence, this is a conse-
quence of two competing effects in the nonlinear terms of the
Hamiltonian (i) At moderate EJ the k-parametric drive term,
∼ak þ ða†Þk in Eq. (3), is strongly superlinear; in the fashion
of stimulated emission, the tunnelingmatrix elements and the
corresponding excitation rate are strongly enhanced, if there
are already excitations present in the resonator. (ii) At
stronger EJ, however, the Josephson nonlinearity formally
encoded in the Bk operators in Eq. (3) suppresses the
efficiency of the driving. In the classical limit, this is reflected
in a Bessel function reaching its maximum [14], while for
large α the same nonlinearity appears on a few-photon level
and the resonator is effectively reduced to a few-level system
(cf. Ref. [22] for the case k ¼ 1).
Understanding the system in the semiclassical limit,

α → 0 offers some insight into the complex dynamics, even
for our case, where α ∼ 1. The generic dependence of the
resonator occupation and of the Fano factor on EJ is
visualized in Fig. 12. A detailed semiclassical analysis [14]
shows that the scaled resonator occupation αhni undergoes
a (bifurcation) transition to a saturation value for all k
corresponding to the nonlinear suppression discussed as
(ii) above. The corresponding threshold value Esat

J above
which αhni saturates has been discussed and derived in
detail in Ref. [14]. For smaller EJ, the first and second
resonance, k ¼ 1 and k ¼ 2, differ from k ≥ 3.
For the k ¼ 1 resonance, the occupation continuously

increases with the EJ (quadratically, as expected in the
weak EJ limit, where the Josephson coupling reduces to a
linear drive). For the conventional parametric (k ¼ 2)
resonance, emission is suppressed for low EJ until a
continuous onset above a parametric threshold value
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FIG. 11. Effects of voltage noise on the Fano factor in the weak
driving limit. Dependence of the Fano factor on the effective
driving strengthEJ=hν for the resonances k ¼ 1; 2;…; 6 simulated
(for zero nominal detuning) without noise (dashed lines), and
including noise (solid lines) as described by Fig. 10).
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[14], while for k ≥ 3 at threshold the occupation jumps
from zero to a finite value in the semiclassical limit. In
Fig. 2(b) of the main text, which (because α ∼ 1) is far from
the semiclassical limit, the parametric behavior manifests
as a clear upward turn of the numerical results (solid lines)
compared to the rate equation result of Eq. (3) in the main
text (dashed lines), valid only in the low EJ limit.
For the Fano factor, one generically finds a peak around

the parametric threshold,which has been described for k ¼ 2
as bursts [40], each encompassing multiple pairs of photons.
A semiclassical analysis is possible beyond the parametric
threshold and finds a sudden switching of the noise. Noise
and Fano factor vanish just below the saturation threshold,
while they diverge above. This behavior has been explained
in Ref. [37] as a generic result of a certain type of nonlinear
driving Hamiltonian, where the nature of the fixed point and
the corresponding fluctuation properties (amplitudes and
correlation times) change abruptly.
The impact of quantum fluctuations for large αmasks all

sharp transitions predicted by semiclassics. Besides blur-
ring all transitions, quantum fluctuations may also allow
dynamical transitions between solutions and crucially
affect certain observables [41].

APPENDIX J: SIMULATED INTRARESONATOR
WIGNER FUNCTIONS

The k granularity of the microwave emission is not the
only quantum feature of the emission process described in
this work. Although we did not measure it, the field statistics
is also non-Gaussian. The intraresonatorWigner function has
a k-fold symmetry, but apparently no Wigner negativity.
Figure 13 displays, for instance, the Wigner functions
obtained from the master equation simulations done for
Fig. 2(b) at the highest Josephson energy EJ=hνR ¼ 0.142
(vertical dotted line in the figure). The k symmetry is clearly
visible from k ¼ 2 to 5, the very low occupation at k ¼ 6
making the sixfold symmetry barely visible. At k ¼ 1, the
system is close to saturation and the Wigner function gets
deformed compared to the displaced ground state simulated
at low EJ (not shown), as for a linearly driven damped
oscillator.
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