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Abstract

A cloud tomographic retrieval algorithm relying on (i) the spherical harmonics
discrete ordinate method for radiative transfer calculation and (ii) the adjoint
radiative transfer theory for computing the gradient of the objective function has
been designed. In order to escape local minima and to increase the efficiency of
the retrieval algorithm, the computation of the gradient of the objective function
by the adjoint method has been combined with that of the gradient of a surrogate
function. The retrieval algorithm uses regularization and accelerated projected
gradient methods endowed with a step length procedure. The performances of
the retrieval algorithm as compared to those of a retrieval algorithm based on
the surrogate minimization method are analyzed on a few synthetic problems.
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1. Introduction

Accurate information about the cloud optical thickness is crucial for trace
gas retrieval algorithms, as well as for determining the radiative impact of clouds
on the Earth radiative budget [1, 2]. The traditional one-dimensional radiative
transfer models assume horizontally homogeneous clouds. In the Independent
Pixel Approximation (IPA), the horizontally inhomogeneous scene is divided
into columns and a one-dimensional radiative transfer model is applied to each of
them. However, as the horizontal transport of photons is neglected [3], IPA leads
to systematic errors, while some important three-dimensional effects cannot be
captured (e.g., side leakage and illumination [3], and radiative smoothing effects
[4]). For example, in Ref. [5], it was shown that due to horizontal radiative
transport, the cloud optical thickness errors can reach 45%. In this regard, for
accurate cloud retrievals, three-dimensional radiative transfer models should be
used. A promising approach for treating clouds as multi-dimensional objects is
cloud tomography, in which the spatial distribution of the cloud extinction field
can be obtained.
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In atmospheric remote sensing, we are faced with the retrieval of some atmo-
spheric parameters by minimizing a scalar-valued objective function (the misfit
function) that quantifies the agreement with data of the radiances measured by
a detector. The inverse problem can be solved by using first- or second-order
optimization methods

1. In a second-order optimization method, as for example, the Gauss-Newton
method, the objective function is approximated by a quadratic model
around the current iterate, and the Gauss-Newton approximation to the
Hessian matrix is used. This method requires the knowledge of the partial
derivatives of the radiances measured by a detector with respect to the at-
mospheric parameter of interest. For this purpose, (i) a linearized forward
approach, relying on an analytical computation of the derivatives, or (ii)
a linearized forward-adjoint approach, relying on the application of the
adjoint radiative transfer theory, can be used. For a plane-parallel geome-
try, scalar and vector linearized forward approaches were described in Ref.
[6, 7], while linearized forward-adjoint approaches were proposed in Ref.
[8, 9, 10, 11, 12, 13, 14, 15]. For a multi-dimensional geometry, lineariza-
tions of the spherical harmonic discrete ordinate method (SHDOM) [16]
by means of a forward and a forward-adjoint approach were presented in
Ref. [17]. Essentially, in this work, SHDOM was specialized for derivative
calculations and radiative transfer problems involving the delta-M approx-
imation, the TMS correction [18], and the adaptive grid splitting, while
practical formulas for computing the derivatives in the spherical harmon-
ics space were derived. The analysis was focused on the case of a detector
that measures the radiance from a single location and viewing direction.
As compared to the linearized forward approach, the linearized forward-
adjoint method is extremely efficient because only two radiative transfer
calculations are required for derivative calculations.

2. In a first-order optimization method, as for example, a gradient-based
method, the objective function is approximated by a linear model around
the current iterate, and only the knowledge of the gradient of the objec-
tive function is required. The gradient of the objective function can be
computed by adjoint methods. It should be pointed out that in medical
imaging, adjoint methods were used to retrieve tissue properties in multi-
dimensions [19, 20, 21]. As compared to the radiative transfer equation
employed in medical imaging, the equations used in atmospheric remote
sensing are challenging due to the angular singularity of the incident solar
radiation and the (near) angular and spatial singularity of the detector
response functions. Applications of adjoint methods for atmospheric re-
mote sensing were reported for one-dimensional [22], spherical [23, 24],
pseudo-spherical [25, 26], and three-dimensional domains [27]. The theo-
retical approach developed in Ref. [27] was latter used in cloud tomogra-
phy for the retrieval of two-dimensional cloud extinction fields from radi-
ances measured by a detector from multiple locations and viewing angles
[28]. Although the analysis was restricted to two-dimensional problems
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(in which the set of directions is a circle defined by one angular variable,
rather than a sphere defined by two angular variables), the efficiency of
adjoint methods in cloud tomography was demonstrated.

Based on a method developed by Levis et al. [29], we presented in Ref. [30],
a cloud tomographic retrieval algorithm that uses SHDOM for radiative trans-
fer calculation and the surrogate minimization method for solving the inverse
problem. The algorithm includes a surrogate step, in which the original objec-
tive function is substituted by a surrogate function, and a minimization step, in
which the surrogate function is minimized by means of gradient-based methods.
The key point in this approach is the choice of a surrogate function that on
the one hand, approximates the objective function, and on the other hand, has
an easily computable gradient. If in the minimization stage, only one iteration
step is considered, the resulting approach can be regarded as a gradient-based
method that uses an approximate gradient of the objective function.

In this paper, we present a cloud tomographic retrieval algorithm based on
the adjoint method. More precisely, the inverse problem is solved by means
of a gradient-based method that fuses the “accurate” gradient computed by
the adjoint radiative transfer theory and the more computationally efficient
surrogate function gradient. Our development is based on the idea revealed in
Ref. [28] and the extension of the formalism presented in Ref. [17] to the case
of a detector that measures the radiance from multiple location and viewing
directions.

The paper is organized as follows. In Section 2 we describe in detail the
computation of the gradient of the objective function in the framework of the
adjoint radiative transfer theory. The particulars of the retrieval algorithm are
presented in Section 3, and its numerical performances are analyzed in Section
4, while the final section of our paper contains a few concluding remarks.

2. Adjoint radiative transfer theory

In this section we present the methodology for computing the gradient of
the objective function in the framework of the adjoint radiative transfer theory.

2.1. Forward and adjoint radiative transfer equations
A mathematical derivation of the basic results in three-dimensional adjoint

radiative transfer is given in Appendix A. These are summarized below.
We consider the solar radiative transfer in a three-dimensional domain in

the shape of rectangular prism with lengths Lx, Ly and Lz, bottom and top
faces Sb(z = 0) and St (z = Lz), respectively, and lateral faces S1x (x = 0),
S2x (x = Lx), S1y (y = 0), and S2y (y = Ly). The boundary-value problem for
the total radiance I at point r in direction Ω, consists in the integro-differential
equation

dI
ds

(r,Ω) = −σext(r)I(r,Ω) +
σsct(r)

4π

∫
Ω

P (r,Ω,Ω′)I(r,Ω′) dΩ′, (1)
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and the boundary conditions at the top, bottom, and lateral faces, that is,

I(rt,Ω
−) =

F0

|µ0|
δ(Ω− −Ω0), rt ∈ St, (2)

I(rb,Ω
+) =

As

π

∫
Ω−
|µ−|I(rb,Ω

−)dΩ−, rb ∈ Sb, (3)

and
I(r1x,Ω) = I(r2x,Ω), I(r1y,Ω) = I(r2y,Ω), (4)

respectively. Here, dI/ds = Ω·∇I, σext is the extinction coefficient, σsct = ωσext
the scattering coefficient, ω the single scattering albedo, P the phase function,
F0 the solar flux, Ω0 = (µ0, ϕ0) with µ0 < 0, the solar direction, δ the Dirac
delta function, and As the surface albedo. Furthermore, Ω+ and Ω− denote an
upward and a downward direction, respectively, Ω is the unit sphere, Ω+ and
Ω− stand for the upper and lower unit hemispheres, respectively, r2x = r1x+Lxi,
r2y = r1y + Lyj, and (i, j,k) are the Cartesian unit vectors.

In order to express the radiative transfer equation in an operator form, we
define the forward transport operator L and the forward source term Q by the
relations

(LI)(r,Ω) =
dI
ds

(r,Ω) + σext(r)I(r,Ω)− σsct(r)

4π

∫
Ω

P (r,Ω,Ω′)I(r,Ω′) dΩ′

− As

π
δ(z)H(µ)µ

∫
Ω

H(−µ′)|µ′|I(r,Ω′) dΩ′, (5)

and
Q(r,Ω) = F0δ(z − Lz)δ(Ω−Ω0), (6)

respectively, where H is the Heaviside step function. In this setting, it can
be shown that if the (forward) radiance I solves the inhomogeneous operator
equation

(LI)(r,Ω) = Q(r,Ω), (7)

with the periodic boundary conditions (4) and the homogeneous boundary con-
ditions

I(rt,Ω
−) = 0, rt ∈ St, and I(rb,Ω

+) = 0, rb ∈ Sb, (8)

then I solves the radiative transfer equation (1) with the boundary conditions
(2)–(4). The converse result is also true.

In adjoint radiative transfer theory, we consider the adjoint transport oper-
ator L†, defined through the relation〈

LI, I†
〉

=
〈
I,L†I†

〉
, (9)

where the scalar product of the fields I1 and I2 is given by〈
I1, I2

〉
=

∫
Ω

∫
D

I1(r,Ω)I2(r,Ω) dV dΩ, (10)
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and D is the domain of the rectangular prism. The expression of the adjoint
operator L†, under the assumptions that (i) the forward radiance I satisfies the
periodic and homogeneous boundary conditions (4) and (8), respectively, and
(ii) the adjoint radiance I† satisfies the periodic boundary conditions (4) and
the homogeneous boundary conditions

I†(rt,Ω
+) = 0, rt ∈ St, and I†(rb,Ω−) = 0, rb ∈ Sb, (11)

is given by

(L†I†)(r,Ω) = −dI†

ds
(r,Ω) + σext(r)I†(r,Ω)− σsct(r)

4π

∫
Ω

P (r,Ω′,Ω)I†(r,Ω′) dΩ′

− A

π
δ(z)H(−µ)|µ|

∫
Ω

H(µ′)µ′I†(r,Ω′)dΩ′. (12)

The main result of the adjoint radiative transfer theory states that if (i)
the radiance I solves the forward problem consisting in the operator equation
LI = Q and the boundary conditions (4) and (8), and (ii) for some adjoint
source term Q†, the radiance I† solves the adjoint problem consisting in the
operator equation L†I† = Q† and the boundary conditions (4) and (11), then
(cf. Eq. (9)) 〈

Q†, I
〉

=
〈
L†I†, I

〉
=
〈
I†,LI

〉
=
〈
I†, Q

〉
. (13)

Note that the adjoint source term depends on the radiative transfer quantity
to be modeled. For example, the signal of a pixel detector that collects the
radiances around the location rtm ∈ St in the viewing direction Ωm = (µm, ϕm)
with µm > 0, is given by Im =

∫
D

∫
Ω
δ(r − rtm)δ(Ω − Ωm)I(r,Ω)dV dΩ. In

this regard, defining the adjoint source term by the relation Q†(r,Ω) = δ(r −
rtm)δ(Ω−Ωm), we obtain Im =

〈
Q†, I

〉
=
〈
I†, Q

〉
; thus, the signal of a detector

pixel can be computed by taking the scalar product between the adjoint radiance
I† and the forward source term Q.

The forward and adjoint radiative transfer equations LI = Q and L†I† = Q†,
respectively, are related to each other. Replacing Ω by −Ω in the expression
of the adjoint operator L†, gives L†(−Ω)I†(r,−Ω) = Q†(r,−Ω). Defining the
pseudo-forward radiance Î † by the relation Î †(r,Ω) = I†(r,−Ω) and using
the symmetry properties of the phase function P (r,−Ω,−Ω′) = P (r,Ω′,Ω),
yields L†(−Ω)I†(r,−Ω) = L(Ω)Î †(r,Ω). Thus, the pseudo-forward radiance
Î † solves the same type of radiative transfer equation as the forward radiance I,
i.e., LÎ † = Q̂ †, where the pseudo-forward source term is defined by Q̂ †(r,Ω) =
Q†(r,−Ω). In this work, the forward and adjoint radiative transfer equations
are solved by using SHDOM [16]. A brief summary of this approach is given in
Ref. [30].

2.2. Gradient of the objective function
In cloud tomography, we use the radiances measured by a detector from mul-

tiple locations and viewing angles to retrieve the extinction coefficient σext(ri)
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at a set of grid points {ri}
Npts
i=1 , where Npts is the number of grid points. The

grid point values σext(ri) are encapsulated in the extinction vector

σext = (σext(r1), . . . , σext(rNpts
))T .

The inversion process consists in an estimation of σext that minimizes the ob-
jective function

Eα(σext) = R(σext) + αL(σext), (14)

where

R(σext) =
1

2

Na∑
q=1

Np∑
p=1

[I(rtp,Ωmq;σext)− Imes(rtp,Ωmq;σ
?
ext)]

2 (15)

is the residual, L(σext) a regularization term, α the regularization parameter,

I(rtp,Ωmq;σext) =
1

A

∫
St

h(rt − rtp)I(rt,Ωmq;σext) dSt, (16)

the simulated signal of the pth detector pixel that collects the radiances around
the location rtp ∈ St, p = 1, . . . , Np in the viewing direction Ωmq, q = 1, . . . , Na,
h(rt− rtp) the characteristic function of the pth detector pixel projected on the
top surface, A = LxLy the area of the top face of the prism, Imes the measured
signal, and σ?ext the true extinction vector to be retrieved.

A gradient-based optimization method requires the computation of the gra-
dient of the objective function with respect to the extinction field, that is,
g(σext) = ∇Eα(σext) = gR(σext) + αgL(σext) with gR(σext) = ∇R(σext) and
gL(σext) = ∇L(σext). The most challenging task is the computation of gradient
of the residual gR(σext). Setting σextu = σext(ru) for some u = 1, . . . , Npts, the
uth component of the gradient gR(σext) is found to be (cf. Eq. (15))

gRu(σext) =
∂R

∂σextu
(σext)

=
1

A

∫
St

Na∑
q=1

Np∑
p=1

[I(rtp,Ωmq;σext)− Imes(rtp,Ωmq;σ
?
ext)]

× h(rt − rtp)
∂I

∂σextu
(rt,Ωmq;σext) dSt

=

∫
Ω

∫
V

{ Na∑
q=1

[ Np∑
p=1

fpq(σext)h(rt − rtp)
]
δ(z − Lz)δ(Ω−Ωmq)

}
× ∂I

∂σextu
(r,Ω;σext)dV dΩ, (17)

where
fpq(σext) =

1

A
[I(rtp,Ωmq;σext)− Imes(rtp,Ωmq;σ

?
ext)]. (18)
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From Eq. (17), it is apparent that gRu can be written as

gRu =
〈
Q†,

∂I

∂σextu

〉
, (19)

where the adjoint source term is defined by

Q†(r,Ω;σext) =

Na∑
q=1

F †0q(rt;σext)δ(z − Lz)δ(Ω−Ωmq), (20)

F †0q(rt;σext) =

Np∑
p=1

fpq(σext)h(rt − rtp) (21)

and fpq is given by Eq. (18). Consequently and by taking into account that
from LI = Q and ∂Q/∂σextu = 0, the relation L(∂I/∂σextu) = −(∂L/∂σextu)I
readily follows, we obtain

gRu =
〈
Q†,

∂I

∂σextu

〉
=
〈
L†I†, ∂I

∂σextu

〉
=
〈
I†,L ∂I

∂σextu

〉
= −

〈
I†,

∂L
∂σextu

I
〉
.

(22)
Thus, identifying the adjoint source term from Eq. (19) and solving the cor-

responding adjoint radiative transfer equation L†I† = Q†, we can compute gRu
by means of Eq. (22). The computation of gRu by using SHDOM is described
in Appendix B. Essentially, we extended the formalism presented in Ref. [17] to
cloud tomography, that is, to the case of a detector that measures the radiances
from multiple locations and viewing angles.

3. Retrieval algorithm

The retrieval algorithm uses gradient-based methods. In the standard gra-
dient descent method, we start with a guess σext0 for a local minimum of Eα,
and consider the sequence σext0, σext1, σext2,. . ., such that

σextk+1 = σextk − τk∇Eα(σextk),

where τk is the step length. At each iteration step k, the value of the objective
function and its gradient are computed with two calls of the radiative transfer
model. In the first call, Eα(σextk) is computed by solving the forward radiative
transfer equation, while in the second call, g(σextk) = ∇Eα(σextk) is computed
by solving the adjoint radiative transfer equation. The forward and adjoint
problems are solved successively on the same grid; in this way, the interpolation
between different grids is avoided. Actually, in the first step, the forward prob-
lem is solved by using the adaptive grid procedure with a prescribed splitting
accuracy, and in the second step, the adjoint problem is solved on the resulting
grid without splitting.

The design of the retrieval algorithm is based on the following considerations.
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1. In cloud tomography, the objective function may have several local min-
ima. The simplest techniques for escaping from local minima are (i)
restarting and (ii) using non-improving steps. In the first case, the search is
re-initialized whenever a local optimum is encountered. Specifically, when
the line search algorithm fails to find a step length for which the descent
condition is satisfied, the algorithm is restarted with a non-improving step.
In the second case, solutions with approximate gradient values are used.
In machine learning, this technique is equivalent to the use of stochastic
gradient descent, mini-batch gradient descent, and/or momentum. More
precisely, for regression problems in which the entire data set is grouped
in batches and each batch in samples, the loss function to be minimized
is the sum of the squared errors over the entire data set (over all batches
and samples). In stochastic gradient method, at each iteration step, the
gradient of the loss function over the entire data set is approximated by
the gradient corresponding to one batch and one sample, while in mini-
batch gradient methods, the gradient of the loss function is approximated
by the gradient corresponding to one batch and all samples contained in
the batch. These methods jump around the critical point much more than
gradient methods, so that they can more easily escape from a small domain
around a critical point. On the other hand, momentum based methods, in
which the step is not taken in the current gradient direction but in a direc-
tion that combines the current and the previous recent gradient direction,
are more likely to move through a small domain without stopping (when
they are on a side of a critical point, but still in the domain of attraction,
they only decrease their momentum instead of switching the direction).

2. The computation of the gradient by the adjoint theory can be a time
consuming process, especially when the number of grid cells is large. The
reason is that two radiative transfer simulations and one integration step
(according to Eqs. (B.14)–(B.19) of Appendix B) have to be performed.
To speed up the retrieval, we may compute gRu(σext) as in Eq. (17), but
in which the derivative of the diffuse radiance at point rt in direction Ωmq,

Id(rt,Ωmq;σext) = Id(rb,Ωmq;σext)T (rt, rb,Ωmq;σext)

+

∫ rt

rb

σext(r)J(r,Ωmq;σext; Id)T (rt, r,Ωmq;σext) ds.

is calculated by assuming that the single-scattering radiance depends on
the extinction fields [30]. Consequently, the computation of gRu(σext)
requires only the knowledge of the derivatives of the single-scattering ra-
diance, which in turn, requires only the knowledge of the derivatives of
transmission function T . Because these derivatives can be computed an-
alytically in a very simple manner, the complexity of the problem, as
well as the computational time can be substantially reduced. The result-
ing method is similar to the surrogate minimization method, provided
that in the minimization stage only one iteration step is considered. In
fact, g(σext) = gR(σext) + αgL(σext) computed in this way is nothing
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else than the gradient of the surrogate function Sα(σext|σextk), that is,
g(σext) = ∇Sα(σext|σextk). An important feature of the surrogate mini-
mization method is that, like any method using approximate gradients, it
does not suffer from the problem of getting stuck in local minima [29, 30].

The idea of the retrieval algorithm is to start with an initial guess σext0 for
an atmosphere with no cloud, and to switch from the gradient of the objective
function (computed by the adjoint method) to the gradient of the surrogate
function, when the relative decrease in the objective function is small, that is,

0 < Eα(σextk)− Eα(σextk+1) ≤ ε1Eα(σextk), (23)

for some prescribed tolerance ε1. In other words, when there is no significant
reduction of the objective function and there is a risk that the algorithm gets
stuck in a local minimum, the iteration is continued with an approximate gradi-
ent. The approximate gradient is the gradient of the surrogate function, which
physically corresponds to the single-scattering approximation. In this way, we
expect to accelerate the computation and to escape from possible local minima.

The retrieval algorithm borrows many feature from that described in Ref.
[30]; more precisely,

1. the regularization term is constructed by using averaging, Gaussian, and
median low-pass filters from image processing;

2. the regularization method is the iteratively regularized Gauss-Newton
method, in which the regularization parameter is gradually decreased dur-
ing the iteration; specifically, a decreasing geometric sequence of regular-
ization parameters αk+1 = qαk, where q < 1 is the ratio of the sequence,
is used;

3. the first-order optimization algorithms are the Nesterov acceleration for
the projected gradient method [32] and the BFGS algorithm [33];

4. the optimization problem is solved by imposing simple bounds on the
variables (box constraints);

5. a line search procedure relying on the descent condition is used to compute
the step length τ , that is,

Eα(σextkτ ) ≤ Eα(σextk), (24)

where σextkτ = PB(σextk + τ∆σextk), ∆σextk is the step delivered by the
optimization algorithm, and PB is the projection operator onto the box
constraints B (note that the descent condition corresponds to the Armijo–
Goldstein condition with a very small fraction of the rate of decrease in
the negative direction of the gradient);

6. the iteration is stopped according to the absolute residual convergence
test, that is, R(σextk) ≤ εAFR(σext0), for some prescribed tolerance εAF.

Some comments are in order.
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1. Like a momentum method, the Nesterov acceleration method does not
use the current gradient direction, i.e., the gradient is not computed with
respect to the current step but with respect to a feature step. As in
machine learning when the stochastic gradient descent or the mini-batch
gradient descent are used in conjunction with momentum, in the present
approach, the approximate gradient of the surrogate function is used in
conjunction with the Nesterov acceleration method.

2. In the standard implementation of BFGS, the curvature condition, used
by the line search procedure, is disregarded.

3. By interpreting εAFR(σext0) as the noise level, the absolute residual con-
vergence test is equivalent with the discrepancy principle, which is the
standard stopping rule for iterative regularization methods.

4. The gradient of the surrogate function corresponds to the single-scattering
approximation and we expect this approximation to be inaccurate at
points where the radiance has undergo multiple scattering events. These
points are at a large optical distance from the sensors, and determine the
so-called “veiled core” of the cloud [31]. But in the veiled core, the multiple
scattering process cause a loss of sensitivity to the extinction field, and
so, a reduction of the magnitude of the gradient. Thus, in the veiled core,
the absolute errors in the gradient are not large. Unfortunately, outside
of the veiled core, there is no guarantee that the errors in the gradient
are small, even when the cloud itself is optically thick. However, in the
retrieval algorithm, the accuracy of the approximate gradient is not deci-
sive. The reason is that we are dealing with gradient approximations and
not with function approximations, and in the line search procedure (24),
the step length τ is computed such that the descent condition is satisfied
for the objective function Eα and not for the surrogate function Sα. From
this point of view, the algorithm can be regarded as an iterative method
that uses the decrease of the objective function as a natural measure of
progress. In the next section, the validity of the method will be checked
through a numerical analysis.

In the following, the above algorithm (in which the gradient of the objective
function is replaced by the gradient of the surrogate function when no significant
reduction of the objective function occurs) will be referred to as the hybrid
algorithm, while he algorithm described in Ref. [30] (in which the objective
function is entirely substituted by a surrogate function, and in the minimization
step, several iteration steps are used to reduce the surrogate function) will be
referred to as the surrogate-minimization algorithm.

4. Numerical Simulations

In our numerical analysis, we choose the scene parameters as in Ref. [30],
namely, (i) the cloud single-scattering albedo and the phase function are com-
puted by Mie theory at a wavelength of 672 nm and for a Gamma size distribu-
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tion
p(a) ∝ aα exp

[
−α

(
a

amod

)]
(25)

with an effective radius aeff = 10 µm, a modal radius amod = 2aeff/3, and a size
distribution parameter α = 6, (ii) in addition to the cloud, molecular Rayleigh
scattering is considered as background, (iii) the solar zenith angle is θ0 = 0◦,
and a Lambertian reflecting surface with the surface albedo As = 0.05 is chosen,
(iv) there are Na = 9 viewing zenith angles corresponding to the Multiangle
Imaging SpectroRadiometer (MISR); these are given by ±70.5°, ±60°, ±45.6°,
±26.1°, and 0◦, where ± indicates the forward- and aftward-facing cameras, (v)
the number of discrete ordinates is (Nµ = 32) × (Nϕ = 2Nµ = 64), and the
spherical harmonics truncation indices are N = Nµ − 1 and M = Nϕ/2 − 1,
(vi) the delta-M scaling method, the TMS correction, and an adaptive grid
with a splitting accuracy of 10−3 are used, and (vii) the solution and spherical
harmonic series accuracies are 10−5 and 10−6, respectively. The discrete domain
of analysis has (i) the lengths Lx = Ly = 6 km and Lz = 2 km, (ii) the numbers
of base grid points Nx = Ny = 31 and Nz = 11, and (iii) the base grid spacings
∆x = ∆y = ∆z = 200m. In Ref. [30], the characteristic function of the
detector h(rt − rtp) was chosen as a box function. For such a characteristic
function with abrupt changes, the pseudo-forward direct beam Î†�(r,Ω) (given
by Eqs. (B.8)–(B.9) of Appendix B in conjunction with Eq. (21), that is,
F †0q(rt, ·) =

∑Np
p=1 fpqh(rt−rtp)) will have spatial discontinuities and the solution

of the adjoint problem will be a challenging task. The reason is that the adaptive
grid will supply extra spatial resolution along the boundaries of the pseudo-
forward direct beam, and so, the number of adaptive grid cells will significantly
increase as compared to those which are already required for a fine discretization
of the cloud extinction field [17]. Therefore, we prefer to use the Gaussian
characteristic function

h(rt − rtp) =

{
exp

(
− ||rt−rtp||

2
2

2σ2
d

)
,

0,

||rt − rtp||2 ≤ 2σd
otherwise ,

where σd = ∆x/2 is the half-width of the characteristic function of a detector
pixel. By choosing a smooth decreasing characteristic function, the number of
adaptive grid cells is reduced.

Before proceeding we make a parenthetic remark. According to Hadamard,
an operator equation is called well-posed if (i) the operator is surjective (exis-
tence of solutions). (ii) the operator is injective (uniqueness of the solution), and
(iii) the inverse operator is continuous (stability of the solution). A fundamental
result in regularization theory states that non-uniqueness can be a consequence
of the discretization, or more precisely, of the underlying interpolation scheme.
To demonstrate this result, we consider a box cloud with the extinction field

σcld?ext (x, y, z) = σmaxχ(x, y, z), (26)

χ(x, y, z) =

{
1,
0,

x1 ≤ x ≤ x2, y1 ≤ y ≤ y2 and z1 ≤ z ≤ z2
rest (27)
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where σmax = 3 km−1, x1 = y1 = 1.2 km, x2 = y2 = 4.4 km, z1 = 0.7 km,
z2 = 1.65 km, and τmax = 3.6. We keep fixed the cloud top height z2, and change
the cloud geometrical thickness h = z2 − z1 and the cloud extinction coefficient
σmax. For h, we take 21 equidistant values in the range [0.4, 1.2 km], while for
σmax, we take 101 equidistant values in the range [0.5, 5.0 km−1]. Then, for
each pair (h, σmax) we compute the residual R(σext). Note that the computa-
tions are performed without adaptive grid splitting. As interpolation schemes,
we use (i) the piecewise constant interpolation (nearest-neighbor interpolation),
that is, for zk−1 ≤ z1 ≤ zk, we take χ(·, zk) = 1 and χ(·, zk−1) = 0, and (ii) the
piecewise linear interpolation, that is, for zk−1 ≤ z1 ≤ zk, we take χ(·, zk) = 1
and χ(·, zk−1) = (zk − z1)/(zk − zk−1). Thus, we interpolate the characteristic
function, which is equivalent with the interpolation of the extinction field. The
plots in Fig. 1a, corresponding to the piecewise constant interpolation, illustrate
that in addition to the global minimum at (h = 0.95 km, σmax = 3 km−1), the
residual function has two local minima, while the plots in Fig. 1b, correspond-
ing to the piecewise linear interpolation, illustrate that the residual function is
convex with a single minimum. The explanation is that in the first case, the
rough base grid resolution of 200 m cannot reproduce the small changes in the
cloud geometrical thickness of about 80 m. Fortunately, SHDOM uses a trilin-
ear interpolation scheme for the extinction field, so that in the first instant, we
expect that local minima will not occur.

In our numerical analysis, we consider the retrieval of two three-dimensional
clouds:

1. a Gaussian cloud extinction field

σcld?ext (x, y, z) = σmaxχ(x, y, z), (28)

χ(x, y, z) = exp
[
− (x− x0)

σ2
x

− (y − y0)

σ2
y

− (z − z0)

σ2
z

]
, (29)

with σmax = 5 km−1, x0 = Lx/2, y0 = Ly/2, z0 = Lz/2, and σx,y,z =
Lx,y,z/5, and

2. the three-dimensional cloud extinction field σcld?ext (x, y, z) = σmaxχ(x, y, z)
with σmax = 8 km−1, obtained from a large eddy simulation (LES) of
stratocumulus [16].

The number of unknowns is Npts = 10571. The following settings are used in
the retrieval.

1. The Nesterov acceleration and the BFGS algorithm are used as optimiza-
tion methods, and the iteration is stopped when the number of iteration
steps exceeds 200 (the absolute residual convergence test is disregarded).

2. The regularization term corresponds to an averaging filter, the initial value
of the regularization parameter is α0 = 0.1, and the ratio of the geometric
sequence of regularization parameters is q = 0.5. In our simulations, we
do not optimize the ratio of the geometric sequence for each test problem,
because in practice, there is no error-free parameter choice method for

12



(a)

(b)

Figure 1: Residual function for a box cloud with different geometrical thicknesses h and
extinction coefficient σmax. The results correspond to piecewise constant (a) and piecewise
linear (b) interpolation schemes of the cloud geometrical thickness.
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computing q (in the noise region, the residual cannot be used as a selection
criterion).

3. In the hybrid method, the gradient of the surrogate function is computed
by assuming that the single-scattering radiance changes during the mini-
mization step, or equivalently, that the multiple-scattering components of
the source function and the surface radiance are constant during the mini-
mization step [30]. We switch to an approximate gradient when there is no
significant reduction of the objective function, that is, when the condition
(23) is satisfied with ε1 = 0.02.

4. In the case of the Gaussian cloud, the initial extinction field corresponds
to an atmosphere with no clouds. For the LES cloud, we use the ray
data casting method to estimate the bounds of the cloud shape [34, 35].
Outside the shape bound, the extinction field is set to that of a Rayleigh
atmosphere, while within the estimated shape bound, the extinction field
is initialized as homogeneous with σext0 = 0.5 km−1.

5. The initial and the minimum step lengths in the line search algorithm are
τ0 = 200 and τmin = 2× 10−4, respectively.

Essentially, we perform an inverse crime retrieval, because the same theoretical
ingredients (representation of the state, radiance field, and instrument sampling)
are employed to synthesize as well as to invert the data of the inverse problem.

In the first numerical experiment, we demonstrate that for cloud extinc-
tion fields with uniform small-scale distributions, local minima may appear.
For this purpose, we proceed as in Ref. [30], that is, we consider a perturba-
tion of the Gaussian cloud extinction field σcld?ext (x, y, z) = σmaxχ(x, y, z) given
by Eqs. (28) and (29). Specifically, the perturbed cloud extinction field is
σcldext(x, y, z) = σmaxχε(x, y, z), where χε(x, y, z) = (1 + σfε)χ(x, y, z), ε is a ran-
dom number uniformly distributed in the interval (−1, 1), and χ(x, y, z) is given
by Eq. (29). In Fig. 2, we plot the residual R(σext) versus the relative distance
d =

∥∥σext−σ?ext
∥∥
2
/
∥∥σ?ext∥∥2 for different values of the amplitude σf and by con-

sidering 500 configurations for each σf . The plots reveal that (i) R(σext) → 0
as σf → 0, (ii) for a given value of the amplitude σf , the points are clustered in
a domain, in which the residual may decrease by one order of magnitude, and
(ii) the same residual may correspond to points situated in different clusters,
that is, to points σext situated at different distances with respect to the true
solution σ?ext. The latter result implies that the residual R(σext) have critical
points. Indeed, taking two distinct points σ

(a)
ext and σ

(b)
ext (from the same clus-

ter or from different clusters) with R(σ
(a)
ext) ≈ R(σ

(b)
ext), the mean value theorem

R(σ
(a)
ext)−R(σ

(b)
ext) = ∇R(σ

(c)
ext) ·(σ

(a)
ext−σ

(b)
ext) shows that on the line segment be-

tween σ
(a)
ext and σ

(b)
ext, there exist a point σ(c)

extz such that ∇R(σ
(c)
ext) ≈ 0. Thus,

for non-smooth cloud extinction fields with uniform small-scale distributions,
there is the risk that local minima occur. In principle, the regularization term,
corresponding to an averaging filter, should avoid the appearance of non-smooth
cloud extinction fields. However, because no infallible parameter choice method
exists, or equivalently, the amount of regularization cannot be optimally con-
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Figure 2: Residual R(σext) versus the relative distance d =
∥∥σext−σ?ext

∥∥
2
/
∥∥σ?ext

∥∥
2
for a non-

smooth Gaussian cloud extinction field σcld
ext(x, y, z) = σmaxχε(x, y, z), where χε(x, y, z) = (1+

σfε)χ(x, y, z) and ε ∼ U(−1, 1). The results correspond to different values of the amplitude σf
and 500 configurations for each σf . According to the mean value theorem, on the line segment
between the points σ

(a)
ext and σ

(b)
ext, which belong to different clusters and have approximately

the same residual, there exist a point σ
(c)
ext such that ∇R(σ

(c)
ext) ≈ 0.

trolled, it may happens that during the iterative process, such distributions
occur and the algorithm gets stuck in a local minimum.

In Fig. 3 we illustrate the histories of the objective function for a restarted al-
gorithm that is completely based on the adjoint method for gradient calculation
and the hybrid algorithm. In the first case, the objective function drops quickly
for some iteration steps and then decreases slowly toward a local minimum.
When the line search algorithm fails to find a step length τk ≥ τmin = 2× 10−4

for which the descent condition Eα(σextk+1) < Eα(σextk) is satisfied, the algo-
rithm is restarted with a step length chosen as a fraction of the initial step, e.g.,
τ0 = 0.5 × 200 = 100. Compared to that, in the second case, when the rela-
tive decrease in the objective function is small, i.e., Eα(σextk)−Eα(σextk+1) ≤
ε1Eα(σextk) with ε1 = 0.02, the algorithm is continued with a worsening step
corresponding to the gradient of the surrogate function. The results show that
the restarted algorithm has a lower decreasing rate of the objective function
than the hybrid algorithm. Note that by further numerical experiments, we
found that the decreasing rate of the restarted algorithm cannot be significantly
improved for any τ0 in the range between 0 and 200. Taking into account that
for these simulations, the computational time of the restarted algorithm is on
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Figure 3: History of the objective function for the Gaussian cloud (left) and the LES cloud
(right). The results are computed with the Nesterov acceleration method by using the hybrid
and a restarted algorithm. The restarted algorithm uses at each restart the initial step length
τ0 = 100. For the hybrid algorithm, the transition points are the points at which the relative
decrease in the objective function is small, i.e., Eα(σextk)−Eα(σextk+1) ≤ ε1Eα(σextk) with
ε1 = 0.02, while for the restarted algorithm, the restart points are the points at which the
descent condition Eα(σextk+1) < Eα(σextk) is not satisfied for all step lengths τk ≥ τmin =
2× 10−4. Observe that a transition point appears before a restart point.

average 3-4 times higher than that of the hybrid algorithm, we may conclude
that the restarted algorithm is not only less accurate, but also less efficient than
the hybrid algorithm.

In Table 1 we illustrate the relative error in the extinction field

εext =

∥∥σext − σ?ext
∥∥
2∥∥σ?ext∥∥2

and the computational time for the hybrid and surrogate-minimization algo-
rithms. The variation of the relative error in the extinction field with re-
spect to the iteration index are shown in Fig. 4 for the hybrid and surrogate-
minimization algorithms, and in Fig. 5 for the Nesterov acceleration method
and the BFGS algorithm. The following conclusions can be drawn.

1. The relative errors corresponding to the hybrid algorithm are smaller than
those corresponding to the surrogate-minimization algorithm. In the hy-
brid algorithm, the relative error decreases faster at the beginning of the
iterative process.
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Cloud
Model

Retrieval
Algorithm

Relative
Error in

Extinction

Comput.
Time
(h:min)

Nesterov BFGS Nesterov BFGS

Gaussian
Cloud

Hybrid 18.43× 10−2 19.13× 10−2 3:07 3:23

Surrogate-
Minimization 20.96× 10−2 21.13× 10−2 2:16 2:34

LES
Cloud

Hybrid 19.21× 10−2 19.51× 10−2 3:47 4:05

Surrogate-
Minimization 23.08× 10−2 23.44× 10−2 2:55 3:16

Table 1: Relative error in extinction field and computational time for the hybrid and surrogate-
minimization algorithms. Each retrieval is performed by using the Nesterov acceleration
method and the BFGS algorithm.

2. The Nesterov acceleration method and the BFGS algorithm have almost
the same accuracies and convergence rates.

3. The surrogate-minimization algorithm is faster than the hybrid algorithm.

In Figs. 6, we illustrate the true extinction field σ?ext(ri) for the Gaussian
cloud at each base grid point, and in Fig. 7, the corresponding scatter plots
of the retrieved extinction field σext(ri) in the xz- and yz-planes. In the xz-
plane, the mean absolute error MAE = (1/Npts)

∑Npts
i=1 [σext(ri)− σ?ext(ri)] and

the root mean square error RMSE =

√
(1/Npts)

∑Npts
i=1 [σext(ri)− σ?ext(ri)]

2 are
5.169× 10−2 km−1 and 4.474× 10−1 km−1, respectively, while in the yz-plane,
these are 1.988× 10−2 km−1 and 2.793× 10−1 km−1, respectively.

In Figs. 8 and 9 we show the true extinction field σ?ext(ri) and the retrieved
extinction field σext(ri) for the LES cloud at each base grid point, and in Figs.
10 and 11, the corresponding absolute errors σext(ri)− σ?ext(ri) in the xz- and
yz-planes. The results correspond to three values for σmax, namely 8, 10, and
12 km−1, for which, the relative errors in the extinction field are 0.19, 0.24,
and 0.28, respectively, and the maximum vertically-integrated extinctions are
5, 6.25, and 7.5, respectively. The plots show that by increasing σmax the
retrieval becomes less accurate, and the algorithm has the tendency to blur
the boundary of the cloud [30]. Actually, in the xz-plane, the extinction curve
located at x ≈ 2.8 km becomes smoother along the z-axis when σmax increases,
while in the yz-plane, the extinction curves located at x ≈ 2 km and x ≈ 3.8 km
become smoother along the z-axis.

5. Conclusions and outlook

A cloud tomographic retrieval algorithm using the adjoint radiative trans-
fer theory for gradient calculations has been designed. The following special
features of the algorithm can be mentioned.
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Figure 4: Relative error in extinction field versus the iteration index for the Gaussian cloud
(left) and the LES cloud (right). The results correspond to the hybrid and surrogate-
minimization algorithms and are computed with the Nesterov acceleration method.

1. The retrieval algorithm uses SHDOM with the delta-M approximation, the
TMS correction, and the adaptive grid splitting for derivative calculations.

2. At each iteration step of a gradient-based optimization method, the value
of the objective function and its gradient are computed with two calls of
the radiative transfer model. In the first call, the objective function is
computed by solving the forward radiative transfer equation, while in the
second call, the gradient of the objective function is computed by solving
the adjoint radiative transfer equation.

3. In order to escape local minima and to increase the efficiency, the retrieval
algorithm is designed as a hybrid algorithm that combines the computation
of the gradient of the objective function by the adjoint method with that
of the gradient of a surrogate function. The decision of changing the
gradients depends on the relative decrease in the objective function.

The retrieval algorithm shares many features of the algorithm based on the sur-
rogate minimization method. These include (i) the construction of the regular-
ization term by using spatial filtering techniques from image processing, (ii) the
use of the iteratively regularized Gauss-Newton method, according to which,
the amount of regularization is gradually decreased during the iteration, (iii)
the application of the Nesterov acceleration method and the BFGS algorithm
in combination with a step-length procedure relying on the descent condition,
and (iv) the use of a stopping rule based on the absolute residual convergence
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Figure 5: Relative error in extinction field versus the iteration index for the Gaussian cloud
(left) and the LES cloud (right). The results correspond to the hybrid algorithm and are
computed with the Nesterov acceleration method and the BFGS algorithm.

Figure 6: True extinction field σ?ext(ri) in km−1 for the Gaussian cloud.
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Figure 7: Scatter plot of retrieved extinction field σext(ri) versus the true extinction field
σ?ext(ri) in the xz-plane (left) and the yz-plane (right) for the Gaussian cloud.

test.
Our numerical analysis has shown that the hybrid algorithm has

1. a significantly better decreasing rate of the objective function and a higher
efficiency than a restarted algorithm that is completely based on the ad-
joint method for gradient calculation, and

2. a better accuracy, but a lower efficiency than a surrogate-minimization
algorithm.

In a series of two papers, we presented our first attempt to design cloud tomo-
graphic retrieval algorithms based on the adjoint and surrogate minimization
methods. Cloud tomography is a very complex research field that requires more
detailed investigations. In order to draw pertinent conclusions about the re-
trieval performances, further experiments for scattering regimes that differ from
those investigated in this paper (more realistic clouds with higher opacity and
less smooth structure) should be performed. Moreover, the cloud tomographic
retrieval algorithm should be extended by including additional features. These
are listed below.

1. Initial guess. The chance of getting stuck in local minima can be weak-
ened by using an appropriate initial guess. The ray data casting method
overestimates the cloud volume especially at the cloud top and bottom.
To reduce overestimation at cloud top, the cloud-top height derived by
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(a)

(b)

(c)

(d)

Figure 8: True extinction field σ?ext(ri) (a) and retrieved extinction field σext(ri) in the xz-
plane for the LES cloud with σmax = 8 km−1 (b), σmax = 10 km−1 (c), and σmax = 12 km−1

(d). The extinction fields are normalized by σmax.
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(a)

(b)

(c)

(d)

Figure 9: The same as in Fig. 8 but for the yz-plane.
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(a)

(b)

(c)

Figure 10: Absolute error field σext(ri) − σ?ext(ri) in the xz-plane for the LES cloud with
σmax = 8 km−1 (a), σmax = 10 km−1 (b), and σmax = 12 km−1 (c). The error fields are
normalized by σmax.
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(a)

(b)

(c)

Figure 11: The same as in Fig. 10 but for the yz-plane.
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a stereo-photogrammetric technique can be used, while overestimation at
cloud bottom can be reduced by considering the lifting level from reanal-
ysis data or ground-based measurements of cloud-base height.

2. Optimization methods. Instead of a line search procedure for computing
the step length, adaptive learning rate (step length) methods that are fre-
quently used in machine learning, as for example, Adagrad [36], Adadelta
[37], Adam [38], AdaMax [38], and Nadam [39], should be tested. On the
other hand, global optimization method relying on a combination of de-
terministic and stochastic methods (evolutionary strategy and simulated
annealing) should be implemented. The approach used by Martin and
Hasekamp [28], in which the regularization parameter is decreased when
no improvement of the objective function is achieved, is also an interesting
alternative.

3. Regularization term. The regularization term corresponds to averaging,
Gaussian, and median low-pass filters from image processing. These low-
pass filters, which are similar to the L2-norm regularization of the gradient,
attenuate variations of the extinction field and have the tendency to elim-
inate details and blur the cloud edges. In contrast, high-pass filters, as
for example, gradient, Laplacian, Roberts, Sobel, and Prewitt, emphasize
significant variations of the extinction field at the cloud boundaries, and
help isolate varying patterns that correspond to sharp edges, details, and
noise. This type of filters, which are similar to total variation regulariza-
tion, should be also analyzed.

4. Regularization method. The regularization method used in this study is
the iteratively regularized Gauss-Newton method. For trace gas retrievals,
it was found that this method is superior to the method of Tikhonov regu-
larization, because it is insensitive to overestimation of the regularization
parameter [40]. For cloud tomography, its superiority is not yet proven.
In this regard, the method of Tikhonov regularization using dynamic pa-
rameter choice methods, as for example, the L-curve method, generalized
cross-validation, and maximum likelihood estimation, should be examined.
Note that in this case, the amount of regularization is controlled at each
iteration step.

5. Diffusion approximation. In cloud tomography, the spatial information
originates primarily from the outer shell of the cloud, whereas the amount
of information conveyed about the inner core of the cloud decreases signifi-
cantly with depth due to multiple scattering. In Ref. [31] it was suggested
that a hybrid three-dimensional radiative transfer solver, that treats the
outer shell of the cloud with high accuracy and the veiled core under the
diffusion approximation, will increase the efficiency of radiative transfer
simulations. This idea should be transposed and implemented in prac-
tice. Note that in SHDOM, the use of a diffusion-type approximation is
not a difficult task: in the domain of the veiled core, only the spherical
harmonics expansion coefficients corresponding n = 0 and n = 1 will be
used to represent the radiance (the rest of them will be set to zero), while
the continuity of the radiance field will be automatically satisfied in the

25



discrete ordinate space.
6. Retrieval of microphysical parameters. The adjoint theory can be used for

the retrieval of cloud microphysical parameters. If ξ is a parameter that
determines the extinction field σext(r), the scattering field σsct(r), and the
phase function P (r,Ω,Ω′) = P (r,Ω · Ω′), e.g., a cloud size-distribution
parameter or the refractive index of a cloud droplet, the derivative of the
residual R with respect to the parameter ξ can be computed as

gRξ =
∂R

∂ξ
= −

〈
I†,

∂L
∂ξ
I
〉
,

where(∂L
∂ξ
I
)

(r,Ω) = I(r,Ω)
∂σext
∂ξ

(r)− 1

4π

∂σsct
∂ξ

(r)

∫
Ω

P (r,Ω ·Ω′)I(r,Ω′) dΩ′

− σsct(r)

4π

∫
Ω

∂P

∂ξ
(r,Ω ·Ω′)I(r,Ω′) dΩ′,

∂P

∂ξ
(r,Ω ·Ω′) =

Nrank∑
n=1

∂χn
∂ξ

(r)Pn(Ω ·Ω′),

and for P (r,Ω ·Ω′) =
∑Nrank

n=1 χn(r)Pn(Ω ·Ω′), Pn(cos Θ) are the unnor-
malized Legendre polynomials, χn(r) the Legendre phase function coef-
ficients, and Nrank the maximum expansion order of the phase function.
The derivative of the residual gRξ can be calculated by means of SHDOM
like the gradient of the residual gR(σext). Moreover, because the deriva-
tives of the single-scattering radiance with respect to ξ can be computed
analytically in a very simple manner, it seems to be possible to design a
hybrid algorithm for microphysical parameters retrieval. Along this line it
should be pointed out that in the framework of the surrogate minimization
method, the retrieval of cloud size-distribution parameters from unpolar-
ized and polarimetric measurements has been reported in Ref. [41] and
[42], respectively.

Appendices
Appendix A Basic results in three-dimensional adjoint radiative trans-

fer

In this self-contained appendix we intend to present in a pedagogical manner
the fundamentals of the three-dimensional adjoint radiative transfer.

A.1 Radiative transfer equation in operator from
As in Section 2, we consider the boundary-value problem for the total radi-

ance in a three-dimensional domain D in the shape of rectangular prism with
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lengths Lx, Ly and Lz, bottom and top faces Sb(z = 0) and St (z = Lz), re-
spectively, and lateral faces S1x (x = 0), S2x (x = Lx), S1y (y = 0), and S2y
(y = Ly). This consists in the integro-differential equation

dI
ds

(r,Ω) = −σext(r)I(r,Ω) +
σsct(r)

4π

∫
Ω

P (r,Ω,Ω′)I(r,Ω′) dΩ′, r ∈ D,

(A.1)

the boundary conditions at the top and bottom faces

I(rt,Ω
−) =

F0

|µ0|
δ(Ω− −Ω0), rt ∈ St, (A.2)

and

I(rb,Ω
+) =

As

π

∫
Ω−

ρ(rb,Ω
+,Ω−)|µ−|I(rb,Ω

−) dΩ−, rb ∈ Sb, (A.3)

respectively, and the periodic boundary conditions at the lateral faces

I(r1α,Ω) = I(r2α,Ω), r1α ∈ S1α, r2α ∈ S2α, α = x, y. (A.4)

Here, As is the spherical albedo and ρ(rb,Ω
+,Ω−) the normalized bi-directional

reflection function, while the meaning of the other quantities is as in Section 2.
Let Σb and Σt be the planes z = 0 and z = Lz, respectively, and ∆ the

domain of the plane-parallel layer bounded by the planes Σb and Σt. We extend
the optical parameter functions σext(r), σsct(r), and P (r,Ω,Ω′) by periodicity
along the x- and y-directions in the domain ∆, and similarly, the normalized
reflection function ρ(rb,Ω

+,Ω−) in the plane Σb. By this construction it is
apparent that if the radiance I satisfies the boundary-value problem (A.1)–(A.4),
then I satisfies the so-called extended boundary-value problem consisting in the
radiative transfer equation (A.1) in ∆, the top boundary condition (A.2) on Σt,
and the bottom boundary condition (A.3) on Σb. The converse results is also
true. Thus, by periodicity extension, the initial boundary-value problem for a
finite domain D can be reformulated as a boundary-value problem for a plane-
parallel layer ∆. In this case, if the radiance I satisfies the extended boundary-
value problem for a plane-parallel layer, then I solves the integral equation

I(r,Ω−) =
F0

|µ0|
δ(Ω− −Ω0)T (rt, r,Ω0) (A.5)

+

∫ r

rt

J (r′,Ω−; I)T (r′, r,Ω−) ds′, r ∈ ∆, rt ∈ Σt,

for any downward directions Ω−, and

I(r,Ω+) = I(rb,Ω
+)T (rb, r,Ω

+)

+

∫ r

rb

J (r′,Ω+; I)T (r′, r,Ω+) ds′, r ∈ ∆, rb ∈ Σb, (A.6)
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for any upward directions Ω+, where

J (r,Ω; I) =
σsct(r)

4π

∫
Ω

P (r,Ω,Ω′)I(r,Ω′) dΩ′

is the source function,

T (r1, r2,Ω) = exp
(
−
∫ r2

r1

σext(r) ds
)

the transmission along the characteristic Ω = (µ, ϕ) starting at r1 and ending
at r2, and

I(rb,Ω
+) =

As

π

∫
Ω−

ρ(rb,Ω
+,Ω−)|µ−|I(rb,Ω

−) dΩ−

the upward bottom radiance. The converse results is also true. Equation (A.5)
represents the integral form of the radiative transfer equation for downward
radiances, while Eq. (A.6) represents the integral form of the radiative transfer
equation for upward radiances.

Let us define the forward operator

(LI)(r,Ω) =
dI
ds

(r,Ω) + σext(r)I(r,Ω)− σsct(r)

4π

∫
Ω

P (r,Ω,Ω′)I(r,Ω′) dΩ′

− As

π
δ(z)H(µ)µ

∫
Ω

ρ(r,Ω,Ω′)H(−µ′)|µ′|I(r,Ω′) dΩ′, (A.7)

and the forward source term

Q(r,Ω) = F0δ(z − Lz)δ(Ω−Ω0), (A.8)

where H is the Heaviside step function. The last term in Eq. (A.7) represents
the contribution at the bottom surface, while the boundary condition at the
top surface is encapsulated in the expression of the forward source term (A.8).
With respect to the Dirac delta functions δ(z) and δ(z −Lz) in Eqs. (A.7) and
(A.8), respectively, we make the following remark. In general, the Dirac delta
function δ(z − z0) can be defined on (−∞,+∞) as the limit of the sequence of
functions

ha(z − z0) =

{
1
2a ,
0,

z0 − a ≤ z ≤ z0 + a
otherwise ,

i.e., δ(z− z0) = lima→0 ha(z− z0), so that the filter property of δ(z− z0) on the
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interval [z0, z1] is∫ z1

z0

f(z)δ(z − z0) dz = lim
a→0

∫ z1

z0

f(z)ha(z − z0) dz

= lim
a→0

1

2a

∫ z0+a

z0

f(z)dz

= lim
a→0

1

2a
[af(ζa)]

=
1

2
f(z0),

where, according to the mean-value theorem, z0 ≤ ζa ≤ z0 +a, yielding ζa → z0
as a→ 0. Analogously, the filter property of δ(z − z1) on the interval [z0, z1] is∫ z1
z0
f(z)δ(z − z1)dz = (1/2)f(z1). However, in Eq. (A.7) , δ(z − z0) is defined

on the interval [z0,+∞) as the limit of the sequence of functions

ha(z − z0) =

{
1
a ,
0,

z0 ≤ z ≤ z0 + a
otherwise ,

in which case,
∫ z1
z0
f(z)δ(z − z0) dz = f(z0), while in Eq. (A.8), δ(z − z1) is

defined on the interval (−∞, z1] as the limit of the sequence of functions

ha(z − z1) =

{
1
a ,
0,

z1 − a ≤ z ≤ z1
otherwise ,

in which case,
∫ z1
z0
f(z)δ(z − z1) dz = f(z1).

The following result states the operator form of the radiative transfer equa-
tion: Let the forward radiance I solves the operator equation

(LI)(r,Ω) = Q(r,Ω), r ∈ D, (A.9)

with the boundary conditions

I(rt,Ω
−) = 0, rt ∈ St,

I(rb,Ω
+) = 0, rb ∈ Sb,

I(r1α,Ω) = I(r2α,Ω), r1α ∈ S1α, r2α ∈ S2α, α = x, y. (A.10)

Then I solves the boundary-value problem (A.1)-(A.4), and conversely. To prove
this assertion we take into account that due to the periodicity extension, it is
sufficient to show that if I solve the operator equation (A.9) in ∆ with the
homogeneous boundary condition I(rt,Ω

−) = 0 for rt ∈ Σt and I(rb,Ω
+) = 0

for rb ∈ Σb, then I solves the extended boundary value problem, and conversely.
For a downward direction Ω = Ω−, we have H(µ) = H(µ−) = 0, and Eq. (A.9)
can be written explicitly as

dI
ds

(r,Ω−) = −σext(r)I(r,Ω−) + J (r,Ω−; I)

+ F0δ(z − Lz)δ(Ω
− −Ω0). (A.11)
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Integrating Eq. (A.11) along the direction Ω−, using the boundary condition
I(rt,Ω

−) = 0 for rt ∈ Σt, and taking into account that
∫ Lz

z
f(z′)δ(z′−Lz) dz′ =

f(Lz), which yields

F0

∫ r

rt

δ(z′ − Lz)δ(Ω
− −Ω0)T (r′, r,Ω−) ds′

= F0
1

|µ0|

∫ Lz

z

δ(z′ − Lz)δ(Ω
− −Ω0)T (r′(z′), r,Ω−) dz′

=
F0

|µ0|
δ(Ω− −Ω0)T (rt, r,Ω0)

with r′(Lz) = rt, we are led to the integral form of the radiative transfer equation
for the downward radiances (A.5). For an upward direction Ω = Ω+, we have
H(µ) = H(µ+) = 1, and Eq. (A.9) read as

dI
ds

(r,Ω+) = −σext(r)I(r,Ω+) + J (r,Ω+; I)

+
As

π
δ(z)µ+

∫
Ω

ρ(r,Ω+,Ω′)H(−µ′)|µ′|I(r,Ω′) dΩ′. (A.12)

Integrating Eq. (A.12) along the direction Ω+, using the boundary condition
I(rb,Ω

+) = 0 for rb ∈ Σb, and the result
∫ z
0
f(z′)δ(z′) dz′ = f(0), which yields

As

π

∫ r

rb

[
δ(z′)µ+

∫
Ω

ρ(r′,Ω+,Ω′)H(−µ′)|µ′|I(r′,Ω′)dΩ′
]

× T (r′, r,Ω+)ds′

=
As

π

1

µ+

∫ z

0

[
δ(z′)µ+

∫
Ω

ρ(r′(z′),Ω+,Ω′)H(−µ′)|µ′|I(r′(z′),Ω′) dΩ′
]

× T (r′(z′), r,Ω+)dz′

=
As

π

[∫
Ω

ρ(rb,Ω
+,Ω′)H(−µ′)|µ′|I(rb,Ω

′) dΩ′
]
T (rb, r,Ω

+)

=
As

π

[∫
Ω−

ρ(rb,Ω
+,Ω−)|µ−|I(rb,Ω

−) dΩ−
]
T (rb, r,Ω

+)

= I(rb,Ω
+)T (rb, r,Ω

+)

with r′(0) = rb, we obtain the integral form of the radiative transfer equation
for the upward radiances (A.6).
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A.2 The adjoint transport operator
The linear operator L can be expressed as a linear combination of four op-

erators L = L1 + L2 + L3 + L4, where

(L1I)(r,Ω) =
dI
ds

(r,Ω),

(L2I)(r,Ω) = σext (r) I(r,Ω),

(L3I)(r,Ω) = −σsct (r)

4π

∫
Ω

P (r,Ω,Ω′)I(r,Ω′) dΩ′,

and

(L4I)(r,Ω) = −As

π
δ(z)H(µ)µ

∫
Ω

ρ(r,Ω,Ω′)H(−µ′)|µ′|I(r,Ω′) dΩ′.

The adjoint transport operator L† of L is defined through the equation〈
LI, I†

〉
=
〈
I,L†I†

〉
, (A.13)

where the scalar product of the radiation fields I1 and I2 is given by〈
I1, I2

〉
=

∫
D

∫
Ω

I1(r,Ω)I2(r,Ω) dΩdV.

In the following, we intend to compute the adjoint transport operator L† under
the assumptions that (i) the forward radiance I satisfies the boundary conditions
(A.10), and (ii) the adjoint radiance I† satisfies the boundary conditions

I†(rt,Ω
+) = 0, rt ∈ St,

I†(rb,Ω
−) = 0, rb ∈ Sb,

I†(r1α,Ω) = I†(r2α,Ω), r1α ∈ S1α, r2α ∈ S2α, α = x, y. (A.14)

Since L is a linear combination of four operators we consider each term sepa-
rately.
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1. For the linear operator L1, we integrate by parts and obtain〈
L1I, I

†〉 =

∫
Ω

∫
D

dI
ds

(r,Ω)I†(r,Ω) dV dΩ

=

∫
Ω

∫
D

[Ω · ∇I(r,Ω)] I†(r,Ω) dV dΩ

=

∫
Ω

∫
D

[∇ ·ΩI(r,Ω)] I†(r,Ω) dV dΩ

=

∫
Ω

∫
D

∇ ·
[
ΩI(r,Ω)I†(r,Ω)

]
dV dΩ

−
∫
Ω

∫
D

I(r,Ω)
[
Ω · ∇I†(r,Ω)

]
dV dΩ

=

∫
Ω

∫
S

n ·
[
ΩI(r,Ω)I†(r,Ω)

]
dSdΩ

−
∫
Ω

∫
D

I(r,Ω)
dI†

ds
(r,Ω) dV dΩ.

The homogeneous boundary conditions in Eqs. (A.10) and (A.14) imply
that on the top boundary St we have I(rt,Ω

−) = I†(rt,Ω
+) = 0, while on

the bottom boundary Sb we have I(rb,Ω
+) = I†(rb,Ω

−) = 0. Moreover,
on the lateral boundaries, the dot product will have the same magnitude
but opposite signs on opposite ends of the finite domain, and therefore,
the integration will evaluate to zero, e.g., from n1x · Ω = −n2x · Ω and
the periodic boundary conditions in Eqs. (A.10) and (A.14), we infer
that n1x ·ΩI(r1x,Ω)I†(r1x,Ω) = −n2x ·ΩI(r2x,Ω)I†(r2x,Ω). Hence, the
surface integral is zero and we obtain

〈
L1I, I

†〉 =
〈
I,L†1I†

〉
with

(L†1I†) (r,Ω) = −dI†

ds
(r,Ω).

2. The linear operator L2 is the identity operator multiplied by the extinction
cross-section and it is apparent that

(L†2I†)(r,Ω) = σext(r)I†(r,Ω).

3. To compute the adjoint transport operator L†3 we consider the scalar prod-
uct 〈

L3I, I
†〉 = − 1

4π

∫
D

σsct(r) dV

×
∫
Ω

∫
Ω

P (r,Ω,Ω′)I(r,Ω′)I†(r,Ω) dΩ′dΩ,

interchange the order of integration with respect to the variables Ω and
Ω′, and obtain

〈
L3I, I

†〉 =
〈
I,L†3I†

〉
with

(L†3I†)(r,Ω) = −σsct(r)

4π

∫
Ω

P (r,Ω′,Ω)I†(r,Ω′) dΩ′.
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4. For the linear operator L4 we proceed analogously. In the integral〈
L4I, I

†〉 = −As

π

∫
D

δ(z) dV
∫
Ω

∫
Ω

H(µ)µH(−µ′)|µ′|

× ρ(r,Ω,Ω′)I(r,Ω′)I†(r,Ω)dΩ′dΩ

we interchange the order of integration with respect to the variables Ω
and Ω′, and obtain

〈
L4I, I

†〉 =
〈
I,L†4I†

〉
with

(L4I
†)(r,Ω) = −As

π
δ(z)H(−µ)|µ|

×
∫
Ω

ρ(r,Ω′,Ω)H(µ′)µ′I†(r,Ω′) dΩ′.

Collecting all results we find that the adjoint transport operator can be explicitly
written as

(L†I†)(r,Ω) = −dI†

ds
(r,Ω) + σext(r)I†(r,Ω)− σsct(r)

4π

∫
Ω

P (r,Ω′,Ω)I†(r,Ω′) dΩ′

− As

π
δ(z)H(−µ)|µ|

∫
Ω

ρ(r,Ω′,Ω)H(µ′)µ′I†(r,Ω′) dΩ′. (A.15)

The main result of the adjoint radiative transfer theory states that if (i)
the radiance I solves the forward problem consisting in the operator equation
LI = Q and the boundary conditions (A.10), and (ii) for some adjoint source
term Q†, the radiance I† solves the adjoint problem consisting in the operator
equation L†I† = Q† and the boundary conditions (A.14), then (cf. Eq. (A.13))〈

Q†, I
〉

=
〈
L†I†, I

〉
=
〈
I†,LI

〉
=
〈
I†, Q

〉
. (A.16)

A.3 Solution of the adjoint radiative transfer equation
The forward and adjoint radiative transfer equations LI = Q and L†I† = Q†,

respectively, are related to each other.
Replacing Ω by−Ω in the expression of the adjoint transport operator L†, we

rewrite the adjoint radiative transfer equation as (L†I†)(r,−Ω) = Q†(r,−Ω).
Defining the pseudo-forward radiance Î † by the relation Î †(r,Ω) = I†(r,−Ω),
and using the identity H(µ)| − µ| = H(µ)µ, we express (L†I †)(r,−Ω) as

(L†I †)(r,−Ω) =
dI †

ds
(r,−Ω) + σext(r)I †(r,−Ω)

− σsct(r)

4π

∫
Ω

P (r,Ω′,−Ω)I †(r,Ω′) dΩ′

− As

π
δ(z)H(µ)µ

∫
Ω

ρ(r,Ω′,−Ω)H(µ′)µ′I †(r,Ω′) dΩ′. (A.17)
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Further, using the symmetry properties of the phase function P (r,−Ω′,−Ω) =
P (r,Ω,Ω′) and of the bi-directional reflection function ρ(r,−Ω′,−Ω) = ρ(r,Ω,Ω′),
yielding∫

Ω

P (r,Ω′,−Ω)Î †(r,−Ω′) dΩ′ =

∫
Ω

P (r,−Ω′,−Ω)Î †(r,Ω′) dΩ′

=

∫
Ω

P (r,Ω,Ω′)Î †(r,Ω′) dΩ′,

and (H(−µ′)| − µ′| = H(−µ′)|µ′|)∫
Ω

ρ(r,Ω′,−Ω)H(µ′)µ′Î †(r,−Ω′)dΩ′

=

∫
Ω

ρ(r,Ω′,−Ω)H(µ′)|µ′|Î †(r,−Ω′) dΩ′

=

∫
Ω

ρ(r,−Ω′,−Ω)H(−µ′)| − µ′|Î †(r,Ω′) dΩ′

=

∫
Ω

ρ(r,Ω,Ω′)H(−µ′)|µ′|Î †(r,Ω′) dΩ′,

respectively, we obtain

(L†I †)(r,−Ω) =
dÎ†

ds
(r,Ω) + σext(r)Î †(r,Ω)

− σsct(r)

4π

∫
Ω

P (r,Ω,Ω′)Î †(r,Ω′) dΩ′

− As

π
δ(z)H(µ)µ

∫
Ω

ρ(r,Ω,Ω′)H(−µ′)|µ′|Î †(r,Ω′) dΩ′,

showing that (L†I †)(r,−Ω) = (LÎ †)(r,Ω). Thus, defining the pseudo-forward
source term by the relation Q̂ †(r,Ω) = Q†(r,−Ω), we see that the pseudo-
forward radiance Î † (i) solves the same type of radiative transfer equation as
the forward radiance I, i.e., (LÎ †)(r,Ω) = Q̂ †(r,Ω) ), and (ii) satisfies the
boundary conditions (A.10).

Appendix B Gradient computation by means of SHDOM

In this appendix, we present a method for computing the gradient in the
framework of SHDOM. To simplify the writing we will omit to indicate explicitly
the dependency on σext.

Rewriting the forward transport operator (5) as

(LI)(r,Ω) =
dI
ds

(r,Ω) + σext(r)I(r,Ω)− σext(r)J(r,Ω; I)

− As

π
δ(z)H(µ)µ

∫
Ω

H(−µ′)|µ′|I(r,Ω′)dΩ′,
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where
J(r,Ω; I) =

ω(r)

4π

∫
Ω

P (r,Ω,Ω′)I(r,Ω′) dΩ′

is now the source function, and taking its derivative with respect to σextu, yields( ∂L
∂σextu

I
)

(r,Ω) = I(r,Ω)
∂σext
∂σextu

(r)− J(r,Ω; I)
∂σext
∂σextu

(r).

On the adaptive grid, we consider a cell with the global index c and a grid point
with the global index j, which belongs to cell c. If j is the local index of this
grid point within cell c, we define the map g as (j, c)

g−→ j, or equivalently,
j = g(j, c). For r ∈ Dc, where Dc is the domain of cell c, we assume that the
extinction and extinction/source function product vary linearly within the cell,
i.e.,

σext(r) =
∑
i

Li(R)σext(rg(i,c)) (B.1)

and
σext(r)J(r,Ω; I) =

∑
i

Li(R)σext(rg(i,c))J(rg(i,c),Ω; I), (B.2)

respectively. Here, Li are the first-order interpolation basis functions for a
rectangular prism element, R = r−ρc is the position vector of a point in a local
coordinate system attached to cell c, ρc = (1/4)

∑
i rg(i,c) the position vector of

the center point of cell c, rg(i,c) = ri the position vector of the grid point with
global index i = g(i, c), and the sum

∑
i is taken over all grid points i of a cell

(for a two-dimensional grid, i ranges from 1 to 4, while for a three-dimensional
grid, i ranges from 1 to 8). Setting σextg(i,c) = σext(rg(i,c)), gives

( ∂L
∂σextu

I
)

(r,Ω) =
∑
i

Li(R)[I(r,Ω)− J(rg(i,c),Ω; I)]
∂σextg(i,c)

∂σextu
,

and further (cf. Eq. (22))

gRu = −
Ncells∑
c=1

∑
i

∫
Ω

∫
Dc

Li(R)Î †(r,−Ω)

× [I(r,Ω)− J(rg(i,c),Ω; I)]
∂σextg(i,c)

∂σextu
dV dΩ, (B.3)

where Ncells is the number of cells.
In the next step, we split the forward and pseudo-forward radiances I(r,Ω)

and Î †(r,Ω), respectively, into their diffuse and direct components, i.e.,

I(r,Ω) = Id(r,Ω) + I�(r,Ω), (B.4)
I�(r,Ω) = δ(Ω−Ω0)T0(r), (B.5)

T0(r) =
F0

|µ0|
T (r0, r,Ω0), (B.6)
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and

Î †(r,Ω) = Î†d(r,Ω) + Î†�(r,Ω), (B.7)

Î†�(r,Ω) =

Na∑
q=1

δ(Ω− Ω̂mq)T̂ †mq(r), (B.8)

T̂ †mq(r) =
F †0q(rtq)

|µ̂mq|
T (rtq, r, Ω̂mq) (B.9)

respectively, where Ω̂mq = −Ωmq and

T (r0, r,Ω0) = exp
(
−
∫ r

r0

σext(r
′)ds′

)
is the transmission along the characteristic Ω0 starting at r0 and ending at r.
Inserting Eqs. (B.4)–(B.8) into Eq. (B.3), assuming the expansions

Id(r,Ω) =

M∑
m=−M

N∑
n=|m|

Imn(r)Ymn(Ω), (B.10)

Î †d (r,Ω) =

M∑
m=−M

N∑
n=|m|

Î †mn(r)Ymn(Ω), (B.11)

J(r,Ω; I) =

M∑
m=−M

N∑
n=|m|

Jmn(r)Ymn(Ω), (B.12)

where Ymn(Ω) are the orthonormal real-valued spherical harmonic functions,
and N and M are the maximum expansion order and number of azimuthal
modes, respectively, using the linear approximation

f(r) =
∑
j

Lj(R)f(rg(j,c)) =
∑
j

Lj(R)fg(j,c), (B.13)

where f(r) stands for Imn(r), Î †mn(r), T0(r), and T̂ †mq(r), and employing the
identity Ymn(−Ω) = (−1)nYmn(Ω), we end up with the computational formulas

gRu = TA + TB + TC + TD + TE , (B.14)

where

TA = −
Ncells∑
c=1

∑
i,j,k

M∑
m=−M

N∑
n=|m|

(−1)nÎ †
mn,g(j,c)

Imn,g(k,c)
∂σextg(i,c)

∂σextu
Li,j,k, (B.15)

TB =

Ncells∑
c=1

∑
i,j

M∑
m=−M

N∑
n=|m|

(−1)nÎ †
mn,g(j,c)

Jmn,g(i,c)
∂σextg(i,c)

∂σextu
Li,j , (B.16)
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and

TC = −
Ncells∑
c=1

∑
i,j,k

Î †d (rg(j,c),−Ω0)T0g(k,c)
∂σextg(i,c)

∂σextu
Li,j,k, (B.17)

TD = −
Ncells∑
c=1

Na∑
q=1

∑
i,j,k

Id(rg(j,c),Ωmq)T̂ †mq,g(k,c)
∂σextg(i,c)

∂σextu
Li,j,k, (B.18)

TE =

Ncells∑
c=1

Na∑
q=1

∑
i,j

M∑
m=−M

N∑
n=|m|

Ymn(Ωmq)T̂ †mq,g(j,c)Jmn,g(i,c)
∂σextg(i,c)

∂σextu
Li,j .

(B.19)

Comments.
1. The input parameters of SHDOM are the extinction coefficient σext, the

single scattering albedo ω, and the expansion coefficients of the phase
function χn, specified at all grid points on the base grid. The base grid
point values of the extinction field are the unknowns of the inverse prob-
lem. An adaptive grid is implemented to add grid points in regions where
the source function is changing more rapidly. The adaptive grid evolves
from the base grid by splitting cells where more resolution is judged to
be needed. Actually, a base grid cell, also called a “parent cell”, is split
into “child cells” to achieve higher spatial resolution. In this regard, the
sums in Eqs. (B.15)–(B.19) are taken over all child cells. Moreover, the
derivative (∂σext/∂σextu)(ri) is computed as (i) (∂σext/∂σextu)(ri) = δiu,
if ri is a point on the base grid, and (ii) by interpolating the base grid
point values, if ri is a point on the adaptive grid but not on the base grid.
If the delta-M scaling method is applied, σext, ω, and χn are scaled before
their use. If σext, ω, and χn are the scaled quantities, given respectively,
by

σext = (1− fω)σext, (B.20)

ω =
1− f

1− fω
ω, (B.21)

2

2n+ 1
χn =

1

1− f

( 2

2n+ 1
χn − 2f

)
, n = 0, . . . , N, (B.22)

where f = χN+1/(2N + 3) is the truncation factor, we have

∂σext
∂σextu

(ri) = (1− fω)
∂σext
∂σextu

(ri),

and the computational formulas (B.14)–(B.19) remain valid, but with
∂σext/∂σextu and T (r0, r,Ω0) replaced by ∂σext/∂σextu and

T (r0, r,Ω0) = exp
(
−
∫ r

r0

σext(r
′)ds′

)
,

respectively.
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2. The pseudo-forward source term, defined as Q̂ †(r,Ω) = Q†(r,−Ω) with
Q†(r,Ω) as in Eq. (20), is given by

Q̂ †(r,Ω) =

Na∑
q=1

F †0q(rt)δ(z − Lz)δ(Ω− Ω̂mq).

As a result, the pseudo-forward diffuse radiance Î †d (r,Ω) satisfies (i) the
radiative transfer equation

dÎ †d
ds

(r,Ω) = −σext(r)Î †d (r,Ω) + σext(r)J(r,Ω; Î †d )

with the source function

J(r,Ω; Î †d ) =
ω(r)

4π

Na∑
q=1

F †0q(rtq)

|µ̂mq|
T (rtq, r, Ω̂mq)

+
ω(r)

4π

∫
Ω

P (r,Ω,Ω′)Î †d (r,Ω′) dΩ′,

and (ii) the boundary condition

Î †d (rb,Ω
+) =

A

π

Na∑
q=1

F †0q(rtq)T (rtq, rb, Ω̂mq)

+
A

π

∫
Ω−
|µ−|Î †d (rb,Ω

−) dΩ−

at the bottom surface.
3. In Eqs. (B.15)–(B.19) the interpolations coefficients Li,j,k and Li,j , given

respectively, by

Li,j,k =

∫
Dc

Li(R)Lj(R)Lk(R)dV, (B.23)

Li,j =

∫
Dc

Li(R)Lj(R) dV, (B.24)

are computed analytically in a local coordinate system attached to the
grid cell and stored in a lookup table.

4. For i = g(i, c), ωi = ω(ri), χn,i = χn(ri), and T0i = T0(ri), the expansion
coefficients of the source function in the expressions of TB and TE given
by Eqs. (B.16) and (B.19), respectively, are calculated as

Jmn,i = ωi
χn,i

2n+ 1
Imn,i + ωi

χn,i
2n+ 1

Ymn(Ω0)T0i. (B.25)

5. The diffuse radiance at a point rt ∈ St in direction Ωmq is computed by
integrating the source function through the medium, that is,

Id(rt,Ωmq) = Id(rb,Ωmq)T (rb, rt,Ωmq)

+

∫ rt

rb

σext(r)J(r,Ωmq; Id)T (r, rt,Ωmq) ds. (B.26)
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Similarly, the radiances Î†d(rg(j,c),−Ω0) and Id(rg(j,c),Ωmq) in the expres-
sions of TC and TD given by Eqs. (B.17) and (B.18), respectively, are also
computed by the source integration method.

6. For solar problems with the delta-M method and when the TMS method
is applied, we compute in a first step, the TMS correction of the source
function as

∆J(ri,Ωmq,σext) =
F0

|µ0|
T (r0i, ri,Ω0;σext)

×
[ ω(ri)

1− fω(ri)

1

4π

Nrank∑
n=1

χn(ri)P̃n(cos Θq)

− ω(ri)

M∑
m=−M

N∑
n=|m|

χn(ri)

2n+ 1
Ymn(Ω0)Ymn(Ωmq)

]
,

(B.27)

where P̃n(cos Θq) are the unnormalized Legendre polynomials and cos Θq =
Ω0 ·Ωmq, and in a second step, the TMS correction of the signal as

·I(rtp,Ωmq;σext) =
1

A

∫
St

h(rt − rtp)∆I(rt,Ωmq;σext) dSt, (B.28)

∆I(rt,Ωmq;σext) =

∫ rt

rb

σext(r)4J(r,Ωmq,σext)T (r, rt,Ωmq;σext)ds,

(B.29)

where the grid point values ∆J(ri,Ωmq,σext) are used to compute the
integral of the source function ∆J(r,Ωmq,σext) in Eq. (B.29). Finally, we
determine the corrected residual and the TMS correction of the gradient
by using the relations

R(σext) =
1

2

Na∑
q=1

Np∑
p=1

[I(rtp,Ωmq;σext) + ∆I(rtp,Ωmq;σext)

− Imes(rtp,Ωmq;σ
?
ext)]

2, (B.30)

and

∆gRu(σext) =

Na∑
q=1

Np∑
p=1

[I(rtp,Ωmq;σext) + ∆I(rtp,Ωmq;σext)

− Imes(rtp,Ωmq;σ
?
ext)]

∂∆I
∂σextu

(rtp,Ωmq;σext), (B.31)

respectively. In Eq. (B.31), the partial derivatives of the signal correction
∂∆I/∂σextu are computed analytically by means of Eqs. (B.27)–(B.29).
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