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Abstract—Increasing vehicle automation changes the role of
humans in the car, which imposes new requirements on the design
of in-vehicle software and hardware for flexible interior concepts.
An option to meet these requirements is the development of user-
focused automation based on combined user and context monitor-
ing in real time. The system behavior may be dynamically adapted
by adjusting the driving style or the interior lighting. Here, we
present a hierarchical approach on the basis of semantically moti-
vated low-level features for activity and stress recognition based on
OpenPose and electrocardiogram data. A driving simulator study
with 29 participants was conducted to determine the potential of the
approach. Participants had to accomplish different tasks: manual
driving (MD); mobile office work with varying task load levels (high
task load: MO-HT, low task load: MO-LT); and relaxing (REL)
during automated driving. The validation revealed that our model
is able to correctly distinguish between different activities using
only a set of primitive features (average precision: driving: 76%
and mobile office work: 93%, relaxing: 86%). Furthermore, we
evaluated a person-independent and a person-specific approach for
stress detection and found that both strategies show similar trends
in accordance with our predictions (person-independent: stress
detected in MO-HT: 22%, MO-LT: 18%, MD: 18%, REL: 15%;
person-specific: stress detected in MO-HT: 79%, MO-LT: 72%,
MD: 65%, and REL: 50%). These results demonstrate the efficacy
of using a lightweight semantic approach for activity recognition
and stress detection as basis for user-focused vehicle automation.

Index Terms—Activity recognition, driver monitoring, mobile
office, stress estimation, user-focused automation, vehicle
automation.

I. INTRODUCTION

A. Promises and Challenges of Automated Driving

INCREASING vehicle automation will change the role of
humans in the car. While nowadays humans are in charge

of the driving task, soon humans will be expected to monitor
the automation and to be the fall back at system boundaries.
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In highest automation levels (levels 4 and 5 according to SAE
international, see [1]), humans are foreseen to be relieved from
control at least for a certain road section. They can then devote
their time and attention to activities such as relaxing, reading,
or even using their car as a mobile office (e.g., [2]–[4]). Yet,
users of automated vehicles have different needs than drivers
of manually driven cars, such that that changing use cases also
impose new requirements on the design of in-vehicle software
and hardware. For instance, persons who want to prepare a
presentation for a meeting at the destination need to be sure
that the time is sufficient to complete the task. They do not
want to resume control too early (which would be possible in
SAE level 4 at section boundaries, such as the transition from
highway to rural roads). To add, people may suffer from kinetosis
while working on a laptop in the automated vehicle [5]. Notably,
mobile office workers with high task load may want to have
different information or configurations of the vehicle interior
than users who do routine tasks, want to relax, or manually drive,
so that vehicles that offer multiple automation levels will have to
be able to adapt to the user in the current situation. An option to
realize this is the development of user-focused automation which
places two basic human needs at the center of system design [6]:
the need to understand and the need to be understood.

The need to understand is required for goal-oriented inter-
action with the environment and enables understanding and
predictability. To address this need, automated systems must
behave in a predictable manner, so that the systems are trans-
parent to their users [6]. The need to be understood is necessary
to build a relationship and thus lays the foundation for trust
and the experience of positive emotions. Automated vehicles
need to be able to infer when users are uncertain or stressed
and recognize when it is appropriate to provide information. To
realize user-focused automation, systems have to focus on the
human being by combining user and context monitoring using
various sensors in real time [6]. Then, the system behavior could
be adapted by adjusting, for example, the driving style, the infor-
mation provided via a human-machine interface, or the interior
lighting ([4], [6]). As a prerequisite for adapting towards the user,
user-focused systems require a reliable real-time estimate of
what the user is doing and how the user is feeling. Hence, the goal
of this article is to develop a user model that is able to estimate
a person’s activity and state (i.e., manual driving, relaxing, and
mobile office work) in real time based on video recordings and
integrate this with a heart-rate-based stress assessment as the
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basis for satisfying the need to be understood in user-focused
level-4-vehicles.

B. Human Sensing in Autonomous Driving

In artificial intelligence, human sensing is the automated per-
ception of particularities in the state of a human. This state can be
their action state (i.e., the activity the human is conducting), their
physiological or mental state (i.e., the emotion and cognitive
activity of the person), as well as their social state (i.e., their
standing in their social group and society in general) in relation to
the overall context. Next to assessing the presence of vulnerable
road users outside the vehicle, driver monitoring is the most
relevant use case for human sensing in the context of driving.
For instance, monitoring the driver through various modalities is
used to measure the capability of drivers to operate the vehicles
directly by detecting whether their gaze is oriented towards
the road [7]. More indirectly, these modalities can be used to
identify drivers’ physiological or mental state, for example,
their drowsiness (e.g., [8]) or workload (e.g., [9]). In automated
vehicles, a further possible application of human sensing is the
detection and tracking of human activity.

A challenge for detecting and tracking human activities in the
wild from raw video data lies in the noisiness and variability of
the video signal. This can be due to resolution, varying lighting
conditions, and, on the human side, general variability in human
body height, color of skin, and the color and style of clothing.
Recent advances in body pose estimations using convolutional
neural networks enable the accurate detection of key joints of
the human body for driving scenarios. The subfield of deriving
human activity from key joints is referred to as skeleton-based
action recognition [10]. By focusing on the location of the
joints in the user, the challenge in activity recognition is shifted
from image processing to structuring the data for classification
with the advantage of heavily reducing the complexity of the
incoming data.

For activity recognition, classification is traditionally done
using hidden Markov models, decision trees, or support vector
classifiers (SVCs) ([11], [12]). Recently, end-to-end learning
using three-dimensional (3-D) convolutional networks or recur-
rent neural networks gained attraction in employing temporal
sensitive activity recognition over a latent representation space
[13]. While end-to-end solutions generally achieve better per-
formance over large and inhomogeneous sets of data, it is a
challenge to interpret the results and trace back how they are
derived. In comparison, hierarchical semantically driven models
are used in order to buffer the model using low-level feature
matrices on which higher level reasoning is performed. That
way, given the final result of hierarchical algorithms, we are
able to effectively estimate the state and influence these primitive
features on the classification result. Specifically, these low level
features can hold information on key actors of the human body
which influences a given activity [14]. Hence, these hierarchical
approaches increase the interpretability of models for activity
recognition.

As opposed to physical activity, mental states cannot be
directly assessed but only inferred via self-report or by analyzing

behavioral or physiological cues known to correlate with given
mental states. For example, when humans are afraid, generally,
their heart rate increases, they begin to sweat more and to
breath faster [15]. Similarly, stress can be assessed based on
physiological signals. Stress can be seen as a functional response
of the human to environmental challenges. Stress mostly comes
along with elevated arousal because the organism (i.e., brain
and body) is in a state of preparedness to the requirements of
the stressor [16]. Hence, in this article, stress is understood as a
long-lasting state of continuous mental arousal resulting from
specific task requirements. Stress has previously been found
to have negative effects on memory, concentration, and overall
health [17]. Especially in the context of driving, concentration
is required to operate the vehicle safely. Yet, in high automation
levels, the problem sphere shifts from a safety issue to comfort
concerns. A user-focused system that detects if the user of an
automated vehicle is stressed during his mobile office work, can
be of service by removing distractors in the environment by
adding focus light, optimizing the route, or turning down the
volume of the radio. Stress can be assessed based on physio-
logical measurements, such as heart rate, skin conductance, or
hormonal activity, because stress affects humans’ physiology
and experience. In driving scenarios, drivers’ stress level have
been assessed using heart-rate-based measures, galvanic skin
responses [18], or using biomarkers, such as salivary amylase
activity [19]. However, heart-rate-based measures have the clear
advantage of being robust even during movement. Moreover,
next to traditional methods such as the electrocardiogram (ECG)
using electrodes on the chest, flexible and/or wearable solutions
for in-vehicle heart rate assessment have been developed and
proven to be feasible [20], [21].

C. Goals of the Research & Contribution

In this article, we present a hierarchical, modular approach
to activity recognition on the basis of semantically motivated
low-level features. Our algorithm uses a sliding-window-based
approach to distinguish between the activities relaxing, mobile
office work, and driving in 60 s intervals. The activity recognition
will be combined with a stress detection algorithm, in which
stress is inferred by integrating a momentary assessment of the
user’s arousal based on heart rate (variability) over a time period
of 60 s. The approach will be evaluated using realistic data from a
driving simulator study with 29 participants. In the next section,
we will present the model architecture. Then we will dwell on
the procedure and the results of the evaluation study. Thereafter,
the findings of the article are critically discussed with respect to
previous literature.

II. MODEL ARCHITECTURE

A. General Description

The proposed model is generally split into three functional
units, starting with a preprocessing pipeline for video and
ECG data during which the incoming data is cleaned, scaled,
and augmented. The second unit contains the feature space
transformation and dimensionality reduction to put the data
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Fig. 1. Sketch of the architecture. RRI and HRV are used to detect arousal
while feature primitives using hand positions and head movements determine
the current pose. Final estimates are given through majority vote over a fixed
time window.

into a representation space which facilitates classification. This
includes the derivation of the interval between two R waves,
the RR interval (RRI) in the ECG and the calculation of heart
rate variability (HRV) as basis for arousal estimation and stress
classification. In addition, for activity recognition, this entails
deriving the relative position of the left and right hand as well as
the head turning of the user from the video recordings based on
OpenPose [22], yielding a set of predefined primitive features
on which classification is done. This set of primitives is used in
the third functional unit to classify the current pose of the user
with a linear SVC. The poses, in turn, are integrated over time to
yield an estimate of the participant’s current activity. Addition-
ally, we estimate instantaneous arousal using the participant’s
instantaneous RRI and HRV calculated over a window of the
previous 60 s. The arousal value is integrated over a period of
60 s to determine whether the participant is currently in the state
of stress.

We chose this hierarchical approach as opposed to an end-to-
end data driven model for activity and stress detection to achieve
the following benefits (a sketch of the architecture is found in
Fig. 1).

1) Sensor Agnosticity: By employing a low-level feature
buffer, we separate the activity state classification from
the sensor array it is derived from. This means that the
classifier can still be used in a different sensor setup as
long as the low-level features can still be derived.

2) State Agnosticity: The feature buffer also allows modifi-
cation to the activity states to be recognized, as long as the
states can be readily estimated from the low-level features.

3) Scenario Agnosticity: The hierarchical model allows for
generalizability irrespective of the scenario and context
that the data is recorded.

4) Explainability and Adaptability: As the goal of this re-
search is to ultimately derive adaptation strategies based
on the user state, we expect the low-level features to be
meaningful to select the most optimized strategy as they
themselves already hold semantic information about the
current user state.

B. Pose and Activity Recognition

1) Preprocessing: We use video data of the user sitting in the
driver seat as the input signal. The raw video data is processed

using the OpenPose single person model which extracts key body
parts as (x and y-) coordinates in the upper body. We scale the
coordinates to be between (00) and (11) based on the position
of the participant’s right ear as upper left corner to achieve
height invariance among participants. Furthermore, we derive
the position of the participant’s fingertips from the position of
the coordinates of the wrists and elbows provided by OpenPose
by extending the vector by a factor of 1/(1.6) as we hold the
fingertip position to be more meaningful as the wrist position
for the respective activities, especially when working on the
computer. We use a factor of 1:1.6 between hand and forearm
length reflecting the classical view on ideal body proportions
approaching the golden ratio [23].

2) Feature Space Transformation: The instantaneous pose
is estimated based on a set of predefined, meaningful primitive
features. Since the aim is to classify based on the functional
component the user is exerting instead of raw image coordinates,
features are extracted by determining the spatial distance of the
hand coordinates toward a set of manually selected functional
regions of interest (ROIs), including the steering wheel, the
keyboard, the mousepad, the user’s lap, and the user’s head. Ad-
ditionally, we approximate where a user is looking by clustering
head rotation patterns.

Spatial distance of the hands towards the set of ROIs is
quantified probabilistically using Gaussian mixture modeling
[24]. For this, we fix the means of 2-D Gaussian distribu-
tions on the image space to the positions corresponding with
these ROIs. Correlation matrices for Gaussian distributions are
estimated automatically using the expectation maximization
algorithm [25].

Head rotation patterns are obtained using clustering on key
joints pertaining to the head (i.e., the ears, eyes, nose, and
neck). This is done by first reducing dimensionality of the
x and y coordinates of each of these joints using principal
component analysis (PCA, [26]). The PCA transforms vector
spaces onto the directions of the principal eigenvectors and is
normalized based on the explained variance in each direction,
yielding a uniform extension of data points in the new space.
Additionally, we reduce the dimensionality by projecting the
joint coordinates onto the axes which collectively account for
95% of the expected variance, effectively reducing noise and
low-information movement from our data space. Moreover,
we remove the computational complexity of our subsequent
sampling through the dimensionality reduction. Since our new
feature space is uniformly expanding, we cluster the vector space
using K-means clustering [27] with Euclidean distance as our
centroid metric. In order to determine the optimal number of
clusters (i.e., the head positions which are meaningful and best
separable given our input data), we compare clustering results
using varying amounts of clusters and the resulting clusters
using Davies–Bouldin-index [28]. The Davies–Bouldin-index
is an indicator of cluster separation given by the ratio of within-
cluster distances over between-cluster distances. Thus, compact
clusters, which are farther apart from each other, are preferred.
Lastly, the feature space is sparsified, yielding only the best clus-
ter association (together with a confidence estimate) to remove
positional information from the subsequent pose classification.
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By removing positional information, the model is easier adapted
to different setups and configurations.

3) Pose Estimation and Activity Recognition: Classification
of the instantaneous pose over the set of primitive features is done
using a linear SVC (SVC, [29]) given our ground truth labels
data for poses driving, mobile office work, and relaxing in the
training dataset. SVCs estimate hyperplanes which optimally
separate labeled data by not only minimizing the error on the
training data but by additionally maximizing the margin between
the hyperplane and close support vectors given a regularization
parameter C, which determines the relative importance of wide
margins and penalty of misclassified points. Linear SVCs gen-
eralize well on new data due to the optimal margin property.
Additionally, predicting a new sample given the hyperplane is
fast, maintaining online capability. After the instantaneous pose
is estimated, the activity is inferred as the most frequent pose
using a sliding window approach over time period of 60 s.

C. Arousal and Stress Detection

Here, we distinguish between two states of instantaneous
arousal, a low arousal state where a person experiences low
stimulation and a high arousal state where stimulation is high.
The arousal values are integrated over time to estimate the user’s
stress level. Stress is inferred over a time period, in which a lot
of high arousal is detected.

Arousal is quantified using the interval between two subse-
quent R-peaks in the QRS interval, the RRI. From this, HRV
is calculated using the root mean square of the successive
differences between two R waves (RMSSD) [30].

According to previous research, decreased RRI (which cor-
responds to a faster heart rate) and lower HRV are linked to
increased arousal due to increased sympathetic activation [31].
We here hold these findings as our ground truth assumption on
a person’s arousal state. As with pose and activity, we integrate
the instantaneous arousal state over time to distinguish whether
a user is in a state of stress or not.

We propose two approaches for the detection of arousal states.
The first approach is person-independent and can be used when
no user-dependent training is possible. The second approach is
person-specific and uses Gaussian mixture models to estimate
the relative distributions of high arousal states and low arousal
states given a person’s RRIs and HRV data collected over
a sufficient time frame. Person-specific heart rate analysis is
preferable when the respective baseline data are available since
both, resting heart rate, and HRV, are affected by numerous
person-specific factors, such as overall health, the amount of
physical exercise, height, weight, and diet. Thus person-specific
baselines are generally more meaningful than population wide
estimations.

1) Preprocessing: Data preprocessing includes removing
movement-related artifacts in the RRIs and calculating an es-
timate for HRV. Movement artifacts are expressed as a sudden
change in the noted RRIs resulting from the detection of spurious
heartbeats. Movement artifacts are thus identified and removed
[see (1)]. For this, we followed the approach described in [32]
by removing a RRI when the difference of two consecutive RRIs

is greater than corresponding to 30 beats per minute

RRIj =

{
RRIj if 60000

RRIj
− 60000

RRIj−1
< 30

NaN otherwise
. (1)

Finally, RMSSD is calculated on overlapping windows in an
interval of 60 s using

RMSSD =

√√√√ 1

N − 1

N−1∑
i = 1

(RRIi+1 − RRIi)
2 (2)

where RRIi is the RRI (i.e., the time interval between the ith
and (i+ 1)-st R peak) and N the total number of R peaks in the
interval. The window length of 60 s was chosen to allow a quick
arousal estimation enabling relatively short-term adaptations to
the final stress detection and is in line with recent recommenda-
tions on window length for RMSSD calculation [31], [33].

2) Arousal Estimation and Temporal Integration: The
person-independent approach for arousal estimation quantifies
arousal by taking into consideration population wide averages
on the average resting RRI given the person’s age and gender
group (see [34]). If either information on the user is not available,
a global average for that specific section is taken. If the RRI of
users is in the upper 95th percentile in their category (meaning
their RRI is very unlikely to be their resting RRI), users are
detected to be in a state of high arousal. In the context of
driver monitoring, this approach can be used, when a new user
enters the car (i.e., before user-specific training is done) or when
user-specific training is not available. For this approach, we only
make use of the RRI and not HRV.

The second approach utilizes user-specific modeling in order
to improve the sensitivity of the model to the user’s specific
physiology given our ground truth assumptions. Since arousal
is linked to a decrease in the RRI (= an increase in heart rate)
and a decrease in HRV, a 2-D bimodal Gaussian mixture model
is fitted to the data of each user (consisting of the instantaneous
RRIs and the corresponding HRV calculated over the previous 60
s, see above). High arousal is assigned to the distribution model
with the lower average RRI and the lower average HRV (and
vice versa for low arousal). We expect the values to be normally
distributed inside these two distributions over the training period.
The model returns the label of the arousal state which has the
highest likelihood given the estimated distributions.

As mentioned above, stress is seen here as the experience
of high arousal over a longer period of time. Therefore, stress
is subsequently inferred analogously to our activity recognition
strategy as the most frequent arousal state using a sliding win-
dow approach over 60 s windows which is updated with each
incoming RRI.

III. MODEL VALIDATION

A. Validation Dataset

In order to validate our model, a driving simulator study was
conducted to determine the potential of the approach. A driving
simulator study was chosen in order to validate in a realistic
setting, where participants were filmed in dynamic lighting con-
ditions while accomplishing different tasks. In total, participants
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Fig. 2. Camera setup and typical pose during each scenario. From left to right.
(a) Manual driving. (b) Relaxing. (c) Mobile office work.

had to accomplish three different tasks: manual driving, mobile
office work, and relaxing during automated driving. In addition,
the task load level of the mobile office work was varied in order
to induce either high or low stress.

The study included 32 healthy adult participants between the
ages of 18 and 62 years. Participants declared that they had a
valid drivers’ license and provided written informed consent to
take part in the article. In line with the institute’s guidelines
to minimize risks for driving simulator study, vulnerability to
simulator sickness, pregnancy, and acute intake of alcohol or
other drugs were exclusion criteria for the study. No further ex-
clusion criteria or control conditions were established for study
participation. Participants received 5€ per commenced half hour
as reimbursement for their participation. The recordings for three
of the participants were either incomplete or erroneous, so that
the data of 29 participants (average age = 25.5 years, standard
deviation = 8.2 years, 14 females, 15 males) were included into
the data analysis.

The experiment was implemented in the virtual reality lab
with 360° full view at the German Aerospace Center [35].
Participants sat in a realistic vehicle mock-up and controlled
the mock-up car in the driving simulation (Virtual Test Drive,
Vires Simulationstechnologie, Bad Aibling, and Germany) via a
standard interface with throttle, brake pedal, steering wheel, and
indicators. All drives took place on a three-lane highway. The
cockpit of the vehicle mock-up was equipped with a keyboard
and a mouse pad that could be folded out on the right side of
the driver seat. A screen was mounted in the center console
on which the content for the mobile office task was displayed.
Fig. 2 shows the setup with an exemplary pose of the different
activities.

During the experiments, participants were recorded using a
Logitech C930-E 1080p webcam mounted on the A-pillar at
the passengers’ side and using a wearable standard three-lead
ECG recorded with a sampling rate of 500 Hz (HealthLab by
SpaceBit, Eberswalde, Germany). HeathLab includes an R wave
detection from the raw ECG and provided the beat-to-beat RR-
values

The experiment consisted of four scenarios during which
participants had to accomplish different tasks. Each scenario
lasted roughly 15 min and took place on the same route. Before
each scenario, participants received detailed instructions about
their task in the next scenario, so that they could immediately
start with the task once the driving scenario was started. The
scenarios started with the vehicle entering the highway. During
the automated drives, the vehicle drove with a speed of about
130 km/h or less if demanded by traffic. The scenarios ended
with the vehicle exiting the highway.

The scenarios were as follows.
1) Manual Driving (MD): Participants had to drive manually

on the highway for roughly 15 min. Participants were
asked to adhere to the traffic rules and avoid driving faster
than 130 km/h.

2) Relaxing (REL): Participants were instructed that they can
relax while sitting in the automated vehicle.

3) Mobile Office With Low Task Load (MO-LT): During
automated driving, participants had to conduct a mobile
office task. The task consisted of answering emails from
computer-generated “co-workers” wanting to make ap-
pointments. Participants then had to schedule and manage
appointments using a calendar application. All tasks had
to be performed using keyboard and mouse in a virtual
Mozilla Thunderbird environment displayed on the screen
on the center console of the mock-up car. In this version,
only few emails (two were already in the inbox and nine
further were received during the drive) had to be answered
during the drive.

4) Mobile Office With High Task Load (MO-HT): The same
mobile office task had to be accomplished as during MO-
LT during automated driving. In order to induce stress, in
this version however, many emails (eight were already in
the inbox and 16 were received during the drive) had to
be answered. Additionally, here participants were asked
to complete all scheduling tasks and working through all
incoming emails.

In order to reduce secondary effects of position and sequence
as well as carryover effects, the order of the drives was random-
ized using Latin squares and participants took a break after each
driving scenario. The breaks between the scenarios were about
three minutes. This time was needed to start the next scenario,
stop, store, restart the data recording, and instruct the participants
for the next scenario. In the beginning, participants conducted
two training rides were to become familiar with manual and
automated driving in the simulator as well as the mobile office
task. In total, the experiment took approximately two hours. For
analysis, we only used the physiological and OpenPose data
collected while driving on the highway (entering and exiting
maneuvers were excluded).

B. Evaluation Criteria

For activity recognition, we expect that the conditions MD,
REL, and MO-HT hold the activity labels for driving, relaxing,
and mobile office work, respectively. The condition MO-LT is
expected to yield a mixture of labels from relaxing and mobile
office work, depending on how much time participants take to
work on scheduling. The main method of evaluation employed
is classification accuracy, together with precision and recall for
each of the tested classes. Classes are balanced since all partici-
pants taken into consideration completed every condition of the
experiment and took approximately the same amount of time for
each condition (deviations account for the time participants take
to reach the goal in MD, however all participants reached the goal
in approximately the same time). As we are classifying activity
over three conditions (driving versus mobile office work versus
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Fig. 3. Spatial cluster associations to ROIs of left and right hand respectively.
The different colors refer to the different clusters the hand locations have been
associated to.

relaxing) we can set the baseline (chance level) for classification
accuracy to 33%.

We used a person-independent nested ten-fold cross valida-
tion in order to train and test our model. As our dataset includes
29 participants who successfully finished the experiment, we
hold three persons in the testing set for each fold and use the
remaining 26 participants for training the model, as well as
determining the optimal penalty hyperparameter for the linear
SVC. The penalty parameter yielding the highest accuracy was
chosen for training via grid search over a set of candidates
C ∈ {0.001, 0.10.51, 10100}.

As stress is not guaranteed throughout the experiment, we
make the following assumptions.

1) We expect to detect the highest level of stress either in
MO-HT or in MD (depending on how demanding driving
is for the respective participant).

2) We expect to detect more stress in MO-HT than in MO-LT.
3) We expect to detect the least amount of stress in REL.
This was confirmed by a comparison of the average RRI of

the participants between the four conditions MD (M = 837.9
ms, SD = 137.5 ms), REL (M = 862.6 ms, SD = 133.2 ms),
MO-LT (M = 835.9 ms, SD = 137.4 ms), and MO-HT (M =
814.8 ms, SD = 117.2 ms) with a repeated-measures ANOVA.
It revealed a main effect of condition on RRI (F(384) = 6.9,
p <.001) with the following significant post-hoc comparisons:
MO-HT < MO-LT; MO-HT < REL; MO-LT < REL; and MD
< REL (ps < .05 [uncorrected], all other comparisons were not
significant).

C. Evaluation Results

Given our experimental setup, assignment of each hand po-
sition to the cluster with the highest likelihood results in the
clustering regions displayed in Fig. 3. Fig. 4 shows the position
of the ROI centers superimposed on a heat map of hand positions.
Varying the number of clusters on K-means for head rotation
clustering yielded that three clusters can be best separated (low-
est Davies–Bouldin score for k = 3: 0.7). Fig. 5 shows the points
associated with each cluster. The clusters roughly correspond to
participant is looking towards the center console, participant is
looking straight, and participant is looking out of the left side
window.

Fig. 4. Heat map of left (top) and right (bottom) hand across all conditions
together with the fixed ROI centers (blue triangles).

Fig. 5. Head turn cluster associations. Semantically, the three clusters refer
to (a) looking towards the center console (left). (b) looking out of the front
windshield (center), (c) looking out of the left-side window (right). The color
of the dots denotes the respective body part (nose, right eye, left eye, right ear).
Please note that (c) is missing the left eye due to occlusion during the head turn
away from the camera.

Activity recognition yielded the following results: We ob-
tained an average classification accuracy of 85% over all condi-
tions using a linear SVC with a penalty parameter value of 0.1.
Average precision is 76% for driving, 93% for mobile office
work, and 86% for relaxing. The average recall over all folds
is 94% for driving, 93% for mobile office work, and 74% for
relaxing (given a chance level of 33%).

The label-wise classification accuracy is displayed in a con-
fusion matrix in Fig. 6. The results show that the model had
difficulties distinguishing between driving and relaxing. This
can be explained by the fact that many participants choose to grab
the steering wheel during driving in the low position, resulting
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Fig. 6. Confusion matrix of SVC classifier over ten-fold cross-validation. The
left shows the predicted label while the bottom shows the true label.

Fig. 7. RRI and HRV distribution across conditions with its corresponding
arousal clustering for one participant. On the left, the association of data points
to experimental conditions is displayed, while the right shows the association of
data point to the arousal labels (low versus high).

in their hands being close to the lap position they hold during
the relaxed condition.

Both, the person-independent threshold-based stress recog-
nition approach as well as the person-specific GMM approach
return a similar pattern, however with a different base rate. Our
baseline approach detects the most stress in condition MO-HT
(22% of the time) across all participants, the second most in
both MO-LT and MD (18%). The least stress is detected in REL
(15%).

Our person-specific mixture modeling approach detects the
most stress in MO-HT (79%) across all participants, the second
most stress in MO-LT (72%), third most in MD (65%), and the
least stress in REL (50%). These findings are in accordance with
our prediction, as MO-HT is identified as the condition which
yields the highest stress and REL as the condition with the least
amount of stress.

Fig. 7 shows the clustering results of arousal detection using
GMM for a participant. The overall stress classification results
for the two approaches in the different conditions are visualized
in Fig. 8.

IV. DISCUSSION

A. Summary of Goals and Main Results

The goal of this article was to develop a method for combined
activity recognition and stress detection as building block for
user-focused automation. For this endeavor, a hierarchical model

Fig. 8. Stress detection across conditions. While the baseline level detected
is different between approaches, the ranking among conditions stays consistent.
Error bars show the standard error of the mean.

taking video and ECG data as input, which is based on low-level
semantic labels, was used. A validation on a realistic dataset
from a driving simulator study revealed that our model is able
to correctly distinguish between the activities driving, mobile
office work, and relaxing using only our set of primitive features
derived from the semantic low-level labels. Furthermore, we
evaluated a person-independent and a person-specific approach
for stress detection and found that both strategies showed similar
trends in accordance with our prediction. These results indicate
the efficacy of using a lightweight semantic approach for ac-
tivity recognition and stress detection as basis for user-focused
automation in the vehicle.

B. Discussion of General Architecture

The hierarchical architecture proposed in this article proved
to be informative in solving the dual problem of recognizing
activity and detecting stress based on a set of low-level features.
By generating a semantic low-level feature buffer, we forced
the model to generalize over a feature set applicable for a wide
variety of scenarios. Cross-validation confirmed that the setup
effectively constrains the high-level input space to a meaningful
low-level embedding and still reaches good classification ac-
curacy. While end-to-classification approaches based on deep
learning can achieve relatively high classification accuracy on
similar problems, such an approach on semantic low-level fea-
tures has the advantage of a high transparency facilitating the
interpretation of the results (see also [36]). In addition, an archi-
tecture as the one proposed here is agnostic to the specific sensors
utilized to derive the low-level features and can be extended to
other user states and scenarios. Worth mentioning is also the fact
that deriving the low-level features was accomplished without
explicit labels for them. Better labeled data may even improve
the performance of the model.

C. Discussion of Activity Recognition

The approach for activity classification used in the current
model provided relatively high classification accuracy for the
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three different activities. In future research, this approach may
be improved either by employing a wider set of static poses as
primitives for the activities or by improving the recognition of
our set of static poses (e.g., with a multicamera set-up). Our
approach is limited because it only considers static low-level
poses. This appears to be sufficient for discriminating the activi-
ties in the current dataset, but may fall short for activities that are
expressed as a series of distinct poses. A recent work employed
recurrent neural networks for classifying activities based on
low-level primitives integrating also temporal dependencies in
the activities and in this way even accomplish to discriminate
activities that are more similar than the ones separated here
(e.g., reading magazine versus reading newspaper or putting
on jacket versus taking off jacket) [36]. Thus, our approach
for activity recognition may even be improved and extended
to further activities by considering temporal dependencies.

D. Discussion of Stress Detection

While both stress detection strategies revealed a similar and
expected trend of the estimated stress in the different conditions,
the difference in the base rate indicates that person-independent
classification is challenging which is likely due to the fact that the
base heart rate varies across people. Moreover, the model defines
stress as elevated arousal over 60 s intervals, so that it is able
to capture changes in the windows but is agnostic to changes
on different time scales especially of sudden stressful events.
Therefore, it may be useful to include multiple resolutions over
different window sizes to capture arousal changes over different
periods of time. In addition, cardiovascular indices, such as the
RRI and HRV are not the only indicators for stress and especially
may miss information regarding negative affect, so that the
model may be improved by also considering other information,
such respiration rate, facial expressions, or behavioral data to
cover further aspects of stress (e.g., [37], [38]).

It also has to be mentioned that the training and validation
dataset only included ground truth labels for different (high
level) activities and not for different stress states, so that better
labeled data with more fine-grained stress levels may improve
the model performance even more. However, the analysis of
the average RRIs in the four scenarios showed that the RRI de-
creased from REL to MO-LT and MO-HT indicating increased
activation and stress. At this point, it is worth mentioning that
the length of the driving scenarios was rather in the range of
short drives and that stress during mobile office work may also
occur during longer automated drives. To add, some stress may
have resulted from the driving simulation experience instead
of the accomplished activities. In addition, the sample of the
evaluation study had a relatively young average age. Hence,
future studies should investigate whether the developed stress
estimation algorithm also works during sustained stress, in real
automotive settings, and for other age cohorts.

E. Integration Into User-Focused Automation

User-focused automation [6] needs robust user modeling as
input for determining the best-possible adaption strategy. Due
to the wide range of user states and activities, it is unlikely

that it will be possible for user-focused systems to be able to
recognize all possible user states and activities. However, a
robust recognition of certain states and activities may already
provide the system with a possibility to adapt to these and
therewith improve the interaction and experience of the user
already (e.g., [6]). Hence, the model for activity and stress
estimation may provide sufficient information to improve the
conditions for users in dedicated mobile offices use cases [6].
Therefore, next to the abovementioned advice for improving
the classification performance, an integration of the algorithm
with adequate adaption strategies into first user-focused systems
should be accomplished. In addition, shorter time window sizes
for stress estimation may aid the design of user-focused systems
for other use cases than mobile office, so that these could also re-
act to stress elicited by sudden events (e.g., uncertainty whether
the automated vehicle has correctly perceived and recognized
traffic lights or vulnerable road users). In such cases, methods
to detect the cardiac defense response (see [39]) may be used to
supplement our approach.

V. CONCLUSION

Here, we presented a hierarchical model based on low-level
semantic features for activity and stress recognition as initial
step for the development of user-focused systems. The derived
classification accuracy scores motivate to pursue this path further
to realize first applications adapting to the user’s current needs
in (simulated) automated vehicles.

ACKNOWLEDGMENT

The authors thank M. Suren, A. Behrens, S. Bohmann, G.
Grolms, J. Wegener, R. Möhle, and J. Rehm for their help in
study preparation and data collection. In addition, we thank M.
Dotzauer for proof reading.

REFERENCES

[1] S. A. E. International, “Standard J3016,” Taxonomy Definitions Terms
Related Road Motor Veh. Automated Driving Syst., vol. 4, pp. 593–598,
2014.

[2] B. Pfleging, M. Rang, and N. Broy, “Investigating user needs for non-
driving-related activities during automated driving,” in Proc. 15th Int.
Conf. Mobile Ubiquitous Multimedia, 2016, pp. 91–99.

[3] K. Pollmann, O. Stefani, A. Bengsch, M. Peissner, and M. Vukelić, “How
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