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Abstract
Microwave photonics is a remarkably powerful system for quantum simulation and technologies,
but its integration in superconducting circuits, superior in many aspects, is constrained by the long
wavelengths and impedance mismatches in this platform. We introduce a solution to these
difficulties via compact networks of high-kinetic inductance microstrip waveguides and coupling
wires with strongly reduced phase velocities. We demonstrate broadband capabilities for
superconducting microwave photonics in terms of routing, emulation and generalized linear and
nonlinear networks.

1. Introduction and motivation

Itinerant optical photonics [1–4] was made possible by the low loss, short wavelength, and controlled
patterning in optical on-chip devices, enabling multimode interferometry. Aside from demonstrating
superposition and multi-partite entanglement, these systems are proposed as a path to
quantum-technological applications [5–7]. A clear and persistent disadvantage of these devices is the
challenge of on-demand single optical photon generation [8].

In contrast, superconducting circuits demonstrated high quality, on-demand single microwave photons
more than a decade ago [9]. As superconducting qubit systems emerge as a leading candidate in the race
toward universal quantum computing, it is vital to integrate microwave photonics for routing, processing
and communication between computational nodes [10–12].

The ubiquitous frequencies of microwave quantum circuits are constrained between ∼ 109 –1010 Hz
[13, 14] due to a combination of fundamental and technical considerations [15]. This leads to typical
wavelengths, λ, in excess of 10 mm and enlarged overall device sizes, with consequent box-mode parasitic
excitations and fabrication difficulties when trying to scale to complex networks of microwave photonics
[16, 17]. It has been suggested to compress footprints by deforming the traces to spirals or meanders
[18, 19]. However, such elongated devices are more vulnerable to fabrication errors leading to ‘weak spots’
[20] and increased noise from magnetic vortex penetration [21].

The high-kinetic inductance (HKI) of amorphous superconductors (such as WSi) along with a large
microstrip capacitance introduced in this work, allows us to achieve impedance-matched short wavelength
microwave photonics. This fulfills the linear networking properties considered above. In addition, the
nonlinearity [22, 23] of such HKI microstrips provides a route to amplification at the quantum limit
[19, 20, 24–26] due to wave-mixing phenomena. Single HKI superconducting strips have been used to
build high-quality microwave resonators [27], superinductors for use in qubit architectures [28], kinetic
inductance detectors [23, 29–31], galvanometers [32], and more. This can now be extended to a
multi-mode network for more complex photonic tasks.
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Here we establish a scalable platform for itinerant microwave networks by demonstrating a variety of
geometries of superconducting HKI WSi coupled microstrips. We achieve controllable links between the
50Ω impedance-matched central traces by using sub-micronic [33] coupling traces.

This paper is structured as follows: in section 2 we briefly review the concept of HKI, show how we
adopt the microstrip geometry for coupled superconducting networks, and derive the theory of propagation
along microstrips connected periodically by coupling traces. For our simplest device this leads to a
two-mode bandstructure calculation. This section also describes the simulation of our devices for an
arbitrary geometry. Section 3 describes the fabrication of our devices, including design choices made in
anticipation of the physical phenomena we want to observe, and the technical recipe for fabrication
(extended details are provided in appendix B). In section 4 we present the results of experiments with
networks of traveling and standing waveguides, and we discuss their linear and nonlinear behavior. Finally,
section 5 considers various applications of our findings. Appendices contain more information on the phase
velocity’s experimental value, the technical details of the fabrication, the Fabry–Perot resonances in the
coupled mode formalism, and specific supporting simulations.

2. Theoretical framework

2.1. HKI waveguides
The kinetic inductance in superconducting devices operated in the microwave regime stems from the
kinetic energy per unit length associated with the motional energy of the Cooper pairs in the device [34].
The kinetic energy of a single Cooper pair is 1

2 (2me)v2
s , where me is the electron mass and vs is the velocity.

The density of pairs equals half the density of electrons ne, so the kinetic energy per unit length can be
written

Ek =
1

2
(2me)v

2
s ·

ne

2
A =

me

2q2
eneA

I2, (1)

where A is the cross section. Also I = qenevsA is the current, where qe is the elementary charge. Ek is thus
added to the energy of the magnetic field Em induced when the charge carriers are set in motion [35]. We
use the common definition of the total inductance per unit length as related to the total energy due to
current (also per unit length) by Ek + Em = 1

2 LlI2. Thus the Ll of a superconducting transmission line is
comprised of the sum of the kinetic term and the magnetic contribution [36]:

Ll =
μ0λ

2
L

A

(
1 +

(
I

I�

)2

+ · · ·
)

+ Lg, l, (2)

where μ0 is the vacuum permeability, λL the London penetration depth (∼450 nm for our WSi traces), and
is given by λ2

L = me/μ0neq2
e [37]. In this expression, we have also added I� as the characteristic current scale

for nonlinearity [24, 38]. The geometric (magnetic) inductance per unit length, Lg,l is typically negligible
compared to the HKI (first term in Ll) for our thin WSi traces [39].

The nonlinear kinetic inductance (given by the factor (I/I�)2 in equation (2)) becomes relevant as larger
currents are driven through the traces (� I�). The underlying physics explaining this nonlinearity stems
from a perturbative suppression of the superconducting order parameter as the current is increased [40],
and consequently the pair density is suppressed, resulting in a quadratic (nonlinear) increase in λL affecting
the prefactor of equation (2). In our devices, typically I� � 3Ic, where Ic is the critical current of the traces
[41].

We note that the kinetic inductance is a function of transport properties of the superconducting
material (especially the large penetration depth λL) as well as geometric parameters (such as the small
cross-section A).

2.2. Superconducting microstrips
We achieve characteristic impedance-matching in our microstrips with relative ease. The capacitance per
unit length Cl = εrε0w/d can be engineered to fit Ll to reach the impedance Z =

√
Ll/Cl = 50Ω. Here, εr

and d are the dielectric constant and the thickness of the dielectric layer, and ε0 the vacuum permittivity.
This contrasts the case of coplanar HKI traces, where extended tapers are required to avoid reflections due
to discontinuity in Z [42]. The use of impedance-matched microstrips makes the tapers superfluous,
reducing the area further. Microstrip traces are essentially parallel plate capacitors, with transverse
electromagnetic fields penetrating the dielectric material separating the ground plane from a conducting
trace as displayed in figure 1(a). When connected directly to larger wire-bond launchers (e.g. our
‘double-line’ device, depicted in figure 1(b)), the microstrips constitute traveling waveguides. Alternatively,
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Figure 1. Graphic representation of the microstrip devices. (a) Conceptual microstrip trace geometry; arrows indicate the
electric field. Green: superconducting WSi trace, pink: dielectric, purple: Al ground. (b) The double-line device: two periodically
coupled traveling waveguides. (c) The resonant lattice structure, 49 nearest-neighbor coupled standing waveguides, with
additional capacitive couplings to launchers in either end. (d) Illustration of the generalization of (b) to seven parallel microstrip
traces (the 7PMT), also showing the various layers of fabrication. Note the inversion compared to (a); in our fabrication scheme
the WSi is deposited first, and the ground last. Top-left corner inset: zoom, showing traces and coupling lines. Bottom-right inset:
angled top view, showing the opening in Al and Si layers, fitting the launch pad of the WSi seen as shadow.

standing waveguides, can be implemented with microstrips, when the traces are open or grounded at either
end.

Transmission between adjacent microstrips is achieved through sub-micronic coupling wires
(‘couplers’). As the couplers’ widths are narrowed down to about 1/10 of the 50 Ω waveguides’ width, Ll of
the former is increased by an order of magnitude. Following these geometric changes also Cl changes its
value to become smaller by the same ratio. Thus the couplers behave as mostly inductive links. The
couplers’ Zl is therefore an order of magnitude larger than that of the waveguides, confirming their
perturbative role as a weak link.

A fundamental advantage of the microstrip architecture is the very slow phase velocity (approximately
1% of the vacuum speed of light)

vph = c

(
εr

(
1 +

λ1

d
coth

t1

λ1
+

λ2

d
coth

t2

λ2

))
� 1√

LlCl
, (3)

where λ1,2 and t1,2 are the superconducting penetration depths and thicknesses of the two superconductors;
the trace and the ground [30]. In the devices presented in this paper vph � 4 × 106 m s−1. The immediate
consequence for traveling waves (cf in the amplifier in [43] and in the first two devices shown here) is that
the photons are decelerated to spend several nanoseconds in our device, permitting us to shorten the traces
significantly and still maintain sufficient wave-mixing or appreciable routing to other coupled waveguides.
In the case of resonant structures, waveguide lengths’ L can be reduced according to L = λ/2 ∼ vph/2f
where f is the desired frequency, cf the operational bandwidth. For our vph and f ′s this corresponds to
L ∼ 200 μm.

2.3. Theory of periodically coupled traveling waveguides
Aiming toward functionalization, HKI microstrip networks, which form periodic one- or two-dimensional
structures, are of obvious interest. Here, we present the (linear) theory of two periodically coupled
waveguides of infinite length described and analyzed in the language of crystal physics. This approach is
easily extendable to multi-trace networks or two-dimensional devices and can serve as starting point for
more advanced descriptions including nonlinearities and quantum effects.

A standard transmission line model (see e.g. reference [17]) yields wave propagation along the various
segments of the structure

Vl
α(xα) = tl

αeikαxα + rl
αe−ikαxα where α = p, s, c ; kα = 2πf

√
LαCα, (4)

ZαIl
α(xα) = tl

αeikαxα − rl
αe−ikαxα and Zα =

√
Lα/Cα. (5)

The different segments are distinguished by an index l numbering the unit cells and α = p, s, c for primary,
secondary and coupler lines, see figure 2(a), where for the designed double-line, we can assume Zp = Zs =:
Z0, kp = ks =: k0, while xp/s ∈ [0, L] and xc ∈ [0, d]. Dissipation can also easily be included. Kirchhoff circuit

3
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Figure 2. (a) Sketch of the double-trace structure and definitions introduced in the text. Using the voltages on the nodes vl
α as

variables, Kirchhoff rules yield a tight-binding model with parameters ε, h0,c as marked on the rightmost unit cell. (b)
Bandstructure of a periodic infinite double-line device (parameters adapted from the experimental device). The
(Bloch-)wavevector K2 ≈ kL of the eigenmode symmetric in primary and secondary line is nearly unaffected by the couplers,
while the anti-symmetric mode has a band gap (shaded region) where Im K1 > 0.

equations require voltage matching and current conservation for each node, e.g.

tl−1
p eikpL + rl−1

p e−ikpL = Vl−1
p (L) ≡ vl

p = Vl
p(0) = Vl

c(0), (6a)

0 = Il−1
p (L) − Il

p(0) − Il
c(0), (6b)

where the first line can be used to rewrite the current in each segment in terms of two voltage node
variables it connects. This immediately yields a tight-binding description

0 = h0v
l−1
p + εvl

p + h0v
l+1
p + hcv

l
s (7a)

0 = h0v
l−1
s + εvl

s + h0v
l+1
s + hcv

l
p (7b)

with real parameters for on-site energy and in- and cross-line hoppings,

ε = i

(
2

Z0

1 + z2
0

1 − z2
0

+
1

Zc

1 + z2
c

1 − z2
c

)
and h0/c = −i

1

Z0/c

2z0/c

1 − z2
0/c

, (8)

where z0 = eik0L and zc = eikcd were introduced.
The eigenmodes of an infinite double-line are straightforwardly found by a Bloch-like ansatz(

vl
p

vl
s

)
= �vνeiKν l; Kν ∈ C, ν = 1, 2 (9)

as eigensolutions of

(
ε+ 2h0 cos Kν hc

hc ε+ 2h0 cos Kν

)
�vν = 0 ⇒ cos K1/2 = − ε

2h0
±

√
h2

c

4h2
0

, (10)

see figure 2(b), with eigenvectors that are (anti-)symmetric in primary and secondary voltages for two
identical coupled lines.
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To solve the actual scattering problem for a finite line we write the ansatz for the general solution(
vl

p

vl
s

)
=

∑
ν=1,2

aν�vνeiKν l + bν�vνe−iKν l (11)

and use equation (6) to express the left/right-going amplitudes of a unit cell by node voltages

tl−1
α =

1

1 − z2
0

(
vl−1
α − z0v

l
α

)
(12a)

rl−1
α =

1

1 − z2
0

(
−z2

0v
l−1
α + z0v

l
α

)
, where α = p/s, (12b)

where the input and output of a line with N nodes is

tL
α = t0

α, rL
α = r0

α, tR
α = z0tN

α , rR
α = z̄0rN

α . (13)

The four variables in the ansatz are then determined by four of the eight equations, equation (12), involving
the known boundary conditions (e.g. the inputs into all lines), while the remaining four equations yield the
unknown output variables.

In that manner, one may, for instance, find for the case of a single input, tL
p into the primary line (and all

other inputs set to zero),

tr
p/s =

ttot(K2) ± ttot(K1)

2
tL
p . (14)

with

ttot(Kν) =
(1 − z2

0) sin Kν

(1/z0) sin [Kν(N + 1)] − 2 sin [KνN] + z0 sin [Kν(N − 1)]
. (15)

We will explain the specific form of equations (14) and (15) in the discussion of the results below.

2.4. Simulation
Besides the band theory for periodic devices explained above, which can give analytical results for the
simplest cases, we apply a number of numerical simulations to model different aspects of the physics of the
various investigated devices on varying levels of complexity. Here, we describe a generic method usable for
arbitrary linear networks and comment how some nonlinear effects can be accounted for, while other more
specific approaches are briefly explained in the appendices.

Defining the network geometry, we consider q = 1, . . . , Q nodes, some of which are connected by edges.
Besides its length δj, each edge j = 1, . . . , Jq connected to node q is characterized by capacitance and
inductance per unit length (determined, e.g. by different widths of main traces and nanowire couplers)
yielding an impedance Zj. The edge voltage then can be written (in line with equation (6)) as

Vq(x) = A j
qeikjx + B j

q e−ikjx, (16)

where x denotes the distance from the q’th node along the j’th edge and kj is the impedance and frequency

dependent wave-number. We solve for A j
q and Bj

q for all Q nodes’ J =
∑

q Jq connected edges, but the
number of unknowns can be reduced by mapping the connectivity:

A j
q1
= Bj

q2
e−ikjδj (17)

if the j’th edge connects the nodes indexed q1 and q2. The input and output nodes (injection and readout)
constitute the boundary conditions. For all other nodes current conservation requires that

Jq∑
j=1

A j
q

Zj
=

Jq∑
j=1

Bj
q

Zj
. (18)

We encode equations (16)–(18) together with the boundary conditions in a matrix, M, in which each row
represents an equation, so that

M ×
−→
V =

−→
K , (19)

where
−→
V = (A1

1, B1
1, A2

1 . . .A
Jq
1 , B

Jq
1 . . .A1

2, B1
2 . . .A1

Q, B1
Q . . .A

JQ
Q , B

JQ
Q ), i.e. the vector of unknowns, and

−→
K is a

vector almost exclusively of zeros due to the nature of the equations, except for those regarding the
boundary conditions. Our simulation also accounts for dielectric losses as we add an imaginary term to kj.

Accounting for the nonlinear inductance of our devices leads to a power-dependent wave-equation for
each edge, which, in general, yields complicated frequency mixing physics (as exploited for traveling-wave
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Figure 3. Graphic illustration of the fabrication steps (not in scale). (a) Sputtering of WSi (green) covers the entire surface of the
bulk Si substrate (gray). (b) Optical lithography and wet-etch define the network traces. (c) Electronic lithography narrows down
the couplers (horizontally oriented in this chart) to the desired submicronic width. (d) aSi (pink) is deposited onto the WSi
network, and (e) the Al (ground) is finally added, also by e-beam deposition. The latter layer is subsequently patterned by liftoff
(not shown).

parametric amplifiers [43, 44]). Here, we will not consider those effects, but solve the nonlinear partial
differential equation within a single-frequency ansatz (namely with the frequency of the CW-input).
Thereby, it reduces to coupled ordinary differential equations (ODEs) for V(x) and I(x) for each segment of
our device. In that nonlinear case, we can still encode voltage and current at the nodes (i.e. at the end points
of each segment) by amplitudes AJ

q and Bj
q, but the propagation along the segment and the relation between

amplitudes at start and end is no longer trivially given by the phase factor of a propagating wave,
equation (17), but rather has to be found by solving the corresponding ODEs for each segment. This means
that if nonlinear effects are included for a single segment j between nodes q1 and q2, the two lines in the
matrix equation equation (19) corresponding to equation (17) (and the corresponding equation linking BJ

q1

to AJ
q2) are replaced by a nonlinear relation between the four amplitudes, which is implicitly defined by

solving the corresponding ODEs. The matrix equation (19) thus becomes a nonlinear implicit equation.

3. Fabrication

In designing our devices, we consider different aspects directly controlled by the dimensions of the traces.
Once the width w and height t of the microstrip are chosen, Ll is settled given its material properties, and
the requirement of impedance matching determines the dielectric layer thickness necessary to reach the
proper value of Cl (figure 3).

A central concern of the design is to ensure step coverage. The dielectric layer must necessarily be thicker
than the underlying patterned WSi network; when the opposite is the case, the dielectric layer fails to climb
and cover the edges of the network, allowing electrical shorts to the ground layer. This constraint
disqualifies the use of certain dielectrics, e.g. SiO2, with relatively low εr.

All our devices are fabricated by five consecutive steps to define their three layers. Initially, we grow a
∼10 nm film of WSi by DC magnetron sputtering, where the stoichiometry of the target (45%/55%)
together with the dimensions of the trace, yet to be defined, determines λL and hence Lkin. A protective
resist mask is then applied, first by spinning, and next by optical lithography allowing wet-etch of WSi
everywhere except on the intended network segments. Electronic lithography is used to narrow the
coupler-width from the scale of ∼μm, where optical lithography is efficient, to ∼100 nm, below the
wavelength of our laser-writer, again by wet-etch. Next, the dielectric is grown at a rate of ∼0.1 nm s−1 by
e-beam evaporation without further patterning. The inclusion of dielectrics potentially results in loss
effects, considered further below. We choose amorphous silicon with the dielectric constant εr � 11.7 for
this purpose [17].

In the last fabrication step, we prepare a double-layer photo-resist mask. The lower layer’s enhanced
sensitivity to the laser compared to the upper layer, results in an ‘undercut’, ensuring a smooth liftoff in
acetone after evaporation of the Al top film. The Al serves as the electrical ground of the microstrips and
protects the device mechanically during continued handling. After dicing into 6 × 6 mm2 squares,
wire-bonding to impedance-matched printed circuit boards, and mounting in Al boxes, all experiments are
conducted at � 20 mK temperatures in our dilution refrigerator, far below WSi’s critical temperature of
4.7 K [45].

4. Results and discussion

Before proceeding to observing the behavior of couplers in networks, we measure their critical currents and
find Ic � 0.15 mA, which is consistent with the scaling of critical currents with width, found for wider
superconducting WSi traces shown in figure 4(a) [46]. This linear scaling of the critical current with trace
cross section emphasizes the advantage of our fabrication method; the e-beam lithography ensures accurate
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Figure 4. (a) Critical current measurement of a ∼12 nm thick WSi chip with nanowires of various widths. The dashed line is a
linear fit. Reprinted figure with permission from [46], Copyright (2021) by the American Physical Society. (b) SEM photo
(false-colored) from the 7PMT device of a 3 μm wide waveguide (green) and an intersecting submicronic coupler (yellow)
connecting the waveguide to parallel waveguides.

Figure 5. (a) Direct and coupled transmission measurements and simulation for two parallel microstrip traces periodically
coupled through highly inductive nano-wires. (b) Phase-dependent transmission, as CW signals are applied in both traces
simultaneously, with changing input powers in port 1 (represented by colorbar) and changing phase in port 2 (horizontal axis).
The measured output in port 2′ (vertical axis).

dimensions of couplers and waveguides (exemplified with a SEM photo in figure 4(b)) and yields the
desired nonlinearity.

4.1. Networks of traveling waveguides
Our first device, is a ‘double-line’, i.e. two parallel 3 μm wide microstrips, separated by 30 μm, and
connected every 100 μm by 30 couplers. This periodicity ensures mode coupling under the slowly varying
envelope approximation considering the reduced vph.

We measure the output from both lines (ports 1′ and port 2′), when continuous waves (CW) signals are
applied from our Keysight P5024A Vector Network Analyzer into one of them (see figure 1(b)). The total
length of each microstrip, i.e. from launcher to launcher, is 3 mm >λ � 400μm. The unemployed launcher
(port 2 in figure 1(b)) is terminated to the ground through attenuators and a 50Ω resistor at room
temperature to avoid reflections into the waveguide.

The observed frequency-dependent transmission, figure 5(a), shows a flat region at low frequencies,
where both, direct and coupled, lines transmit well, followed by a series of resonances (anti-resonances) in
the direct transmission with concomitant anti-resonances (resonances) in the coupled transmission.

This behavior is well reproduced by simulations of the circuit (dashed) based on voltage continuity and
current conservation. To analyze the results, we first consider the eigenmodes of an infinitely extended
tight-binding model, see equation (7). The band structure of the two resulting symmetric and
anti-symmetric eigenmodes is shown in figure 2(b), showing a symmetric mode which propagates with a
Bloch-wave vector K ≈ kL in the probed frequency range while the antisymmetric mode only emerges
above a band gap at ≈3.5 GHz. This band structure explains the main features of the observed
transmission: put into line 1 the wave is not in an eigenmode and will excite both modes, which then
propagate with different (Bloch-)wave vectors K1,2, so that a beating pattern in space results (similar to the
physics of evanescently coupled waveguides or coherent oscillations in time in a double-well). The observed
resonances and anti-resonances are a direct result of the beating, as is the flat transmission region in the
bandgap of the anti-symmetric mode, where the input is split symmetrically into direct and coupled port by

7
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Figure 6. Linear transmission measurements of the 7PMT as described in the main text. (a) Transmission spectra for signals
introduced in trace no. 4, with rolling averages of 150 MHz to eliminate ringing caused by minor reflections at connectors. The
dotted line at 5.99 GHz marks the central frequency of Gaussian wave packets used in pannel (b). (b) Measurement of
propagation and arrival times of wave packets with the central frequency f4, introduced in the center waveguide. Perpendicular
squares mark the center of the wave packet, corrected for unequal launching traces. Inset: zoom on the (time, output trace)-plane
analogue to the colored planes in the main figure. (c) Measured transmission to ports 1′–4′, as we split the CW input signal at
f1,4 = 5.12 GHz between port 1 and 4, varying the phase difference.

the symmetric eigenmode. This simple picture is additionally modified by scattering from the in- and
out-coupling into the periodic structure, which leads to small wiggles associated to Fabry–Perot-type
resonances, particularly pronounced just above the bandgap (see appendix C). Other important
modifications stem from dissipative effects (although weak), from disorder of the ‘crystal’-structure due to
fabrication imperfections (see appendix D) and from any parasitic resonance.

We also observe interference between signals introduced simultaneously in the two waveguides: in
figure 5(b) we alter the phase difference between the two inputs, and while we measure the transmission
through one wave-guide, the signal power in the other (‘the neighbor’) is scanned over four orders of
magnitude (and for all relative phases). For the lowest input powers into the neighbor, the direct
transmission is drastically reduced due to nonlinearities. This effect is reproduced by our numerical
simulation where nonlinearities are present only in the couplers. As the power in the neighbor increases, the
signals interfere, and the nonlinearity of the couplers quenches and phase shifts the highest-power signal
outputs.

In our next experiment, we increase the network’s size to include seven parallel microstrip traces
(7PMT) in a circuit similar to the former one, as portrayed in figure 1(d), which also visualizes the layers of
the fabrication scheme. In this device, we boost the couplers’ Zl further by removing the ground above
them (not shown), thus minimizing their Cl. The performance is tested by applying CW signals over a
bandwidth of 6 GHz in the center trace (no. 4) and measuring the output, presented in figure 6(a). Here the
dotted vertical line marks the frequency f4 = 5.99 GHz, chosen as the central frequency of wave packets
used for the subsequent measurement. We then replace the CW signal with short Gaussian-shaped wave
packets generated by side-band mixing control, again introduced in the center trace. Their arrival is
detected at the output terminals of the device. Overall, each wave packet traverses the network in
nanoseconds, but when we subtract the electrical delay, we register the arrival at different output traces with
a relative delay of ∼10–30 ps (see figure 6(b)), compared to the arrival of the first wave packet at port 4′. In
this figure, the smaller amplitude of the detected wave packet at port 3′ (shown in red) is consistent with the
lower transmission due to interference through that specific trace.

Returning to CW signals, we proceed at the frequency f1,4 = 5.12 GHz for which the eight transmissions
ratios from ports 1 and 4 to ports 1′–4′ (according to annotation in figure 1(d)) are all relatively high and
similar in magnitude. Splitting the input power between the former two, we vary the relative phase and
measure the output in figure 6(c). The nearly symmetrical interference patterns are due to similar
transmission coefficients in the network (e.g. 4 → 1′ vs 1 → 4′). Injection at port 4 has the possibility also to
coherently diffuse to traces 5′–7′, causing the slight asymmetries in figure 6(c).
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Figure 7. Power transmission spectra in the 7PMT measured for varying input powers, (a) through trace 1, (b) from port 1 to
port 4′, and (c) through trace 4. Labels are the same as in figure 1(d)). The color-scale is common for all three subfigures, and
indicates the power-dependent transmission normalized to the transmission of the lowest power (Pmin) in the spectrum.

Similar theoretical considerations as for the double-line can be employed for the 7PMT. Besides the
band structure and symmetry of the eigenmodes, our simulations (see appendix E) show that propagation
through the waveguides resembles quantum walks observed in optical systems [47] with a diffraction
pattern, related to the frequency-dependent transmission in figure 6(a).

We also measure the nonlinearity in the 7PMT emerging from the HKI of WSi by transmitting CW
signals of increasing powers through chosen waveguides, starting at signals corresponding to an occupation
of ∼1 photons in the device. The frequency-dependent transmissions, plotted in figures 7(a)–(c), clearly
show that the nonlinearity first emerges in the couplers before it manifests in the waveguides. The direct
transmission S1→1′ , is thus hardly affected until the highest excitations are reached and the signal is confined
in the trace. Transmitting power from this waveguide to the center of the device relies on couplers between
all waveguides in between, resulting in the stronger power dependence of S1→4′ . The case of transmission
through the central waveguide (trace 4) differs from the two above: despite again considering a coupler-free
transmission path, this waveguide is coupled on either side and therefore is more sensitive to the couplers’
behavior. These effects are further discussed in appendix E (and in its related figure 13).

4.2. Resonant cavity of standing waveguides
The third and final demonstration of the capabilities of superconducting microstrip WSi circuitry switches
the focus from traveling to standing waves in a 2D square lattice (2DSL) of 49 microstrips, effectively acting
as a multi-mode resonance cavity. Each microstrip resonator is ∼400μm long and is coupled to four
neighbors (two in either end, shown in figure 8). The resonators in the two opposing corners of the 2DSL
are capacitively coupled to coplanar transmission lines (inset of figure 9(a)), terminated in large (0.3 mm
wide) launch-pads, enabling excitation and measurement. Scanning CW the transmission spectrum
(figure 9(a)) reveals three distinctive energy bands within the operational bandwidth of our readout-chain,
comparable to the linear simulation in figure 9(b), which considers both dielectric loss and the transmission
profile of attenuators, amplifiers, and circulators applied in the experiment. The simulation, analogous to
that in figure 5(a), also correctly reveals finer features within the energy bands (figure 9(d)), and shows the
band structure to be largely determined by the couplers. When these are longer, bands and gaps are dense,
as modes populate the couplers. In the opposite limit, reduction of the coupler length breaks down the
well-ordered band structure. Importantly, our measurements span several orders of magnitude in power,
starting from P = −120 dBm, which corresponds to an expectation of 0.2 photons within our device (given
by PL/(hfvph), with h Planck’s constant, f = 6 GHz, and L = 3 mm for the 7PMT traces). Remarkably, the
nonlinearity of the couplers confines the transmission in figure 7(b) at −90 dBm corresponding to only 200
photons.

The 2DSL’s geometry is closely related to that of photonic gratings employed to demonstrate a variety of
many-body problems [48], such as quantum entanglement [49], interacting polaritons [50], and phase
transitions of Mott-insulators [51, 52].
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Figure 8. Optical microscopy image (false colored), showing parts of wide microstrip resonators coupled with narrow couplers.
Inset: SEM photo of coupling to input or readout with colors matching figure 6 (grey substrate and green WSi visible in the gap
separating purple Al readout line from purple ground).

Figure 9. Linear transmission vs frequency normalized by the strongest response shown by (a) measurement and (b) simulation.
For this device there are only two ports, 1 and 2. Here and elsewhere Sx→y = Py/Px, where Pi is the power at port i. (c) zoom on
part of the spectrum joining (a) and (b).

4.3. Estimating the Kerr nonlinearity
Nonlinearity is observed in the 2DSL, when we introduce sufficiently strong powers and it affects the
resonance frequencies’ phase and magnitude (exemplified in figures 10(a) and (b) respectively). The
observed behavior can be explained by a Duffing-type toy-model of a Fabry–Perot resonator (see theory
results in the insets), where the phase accumulation, when crossing the mirrors and the cavity itself, is
assumed to become power dependent (see appendix G).

The observed power dependence is quantified as a self-Kerr nonlinearity [53], and is approximated as
the linear shift in frequency per additional photon, i.e.

K11 ∼
Δω

ΔN
=

2π(f1 − f0)

N1 − N0
(20)

where f0,1 are the resonance frequencies at two different powers, and N0,1 the corresponding number of
photons in the cavity. The frequency dependence on the photon number is estimated by means of the
Q-factor:

N =
2P

�ω

Q

ω
, (21)

where P is the power. The first fraction in equation (21) is the rate of photons entering the resonator, and
the second fraction is the average survival time of a photon.

For the resonance shown in figure 10 at powers of −40 dBm and −55 dBm, we find K11 � −7.8 ×
10−4 Hz. The frequency decreases, when photons are added, so K11 is negative, but its magnitude is
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Figure 10. (a) Nonlinearity of the 2DSL measured by a polar representation of the transmission S21 in one of the peak
frequencies from figure 9(b) (inset: simulation) and (b) magnitude of the transmission around the same peak frequency as
shown in (a) (inset: simulation).

remarkably larger than the corresponding results found for w = 8 μm [46], consistent with
K11 ∝ 1/L2

kin ∝ 1/w2, cf equation (2). Note that the investigated resonance is an extended mode residing in
a network of multiple coupled resonators. The mode volume is significantly enhanced and the nonlinearity
is therefore somewhat suppressed. When a single resonator is probed, the nonlinearity can be ∼ 2 orders of
magnitude larger [46].

4.4. Dielectric losses
The use of a thin dielectric barrier for the microstrip capacitance leads to losses from two-level-systems
(TLSs) in the dielectric material [54–56]. Powers above a certain material-dependent threshold saturate the
TLSs, and the resulting transmission spectrum reflects the nonlinearity of the dielectric rather than that of
the waveguide. This effect can be roughly estimated quantitatively by the saturation parameter, a function of
the TLS Rabi frequency [57].

However, the short length (up to 10s of wavelengths) of the itinerant devices ensures minimal losses
(<10%), when using a low loss-tangent (<5 × 10−4) barrier material such as amorphous Si. In future
designs an alternative dielectric could replace amorphous Si to allow even higher transmissions and thus
signals closer to the single-photon-limit.

5. Outlook

In this work, we have introduced a platform for on-chip microwave photonic experiments with
superconducting circuits. Our three devices, fabricated with established cleanroom procedures, utilize the
HKI of WSi in a microstrip geometry. This property, together with the strongly reduced phase velocity,
allows us to demonstrate rich phenomena of linear and non-linear optics in on-chip impedance-matched
networks of coupled microwave transmission lines.

The three setups presented here constitute first examples of functionalized devices in this platform. They
are chosen to demonstrate the possible design versatility that can be advanced to future devices with greater
functional complexity. The first setup realizes the simplest linear optics device, a beam splitter [58], by
replacing the wave coupling of similar devices in integrated optics [5, 7] by periodic couplers. The crystal
like-structure enriches the design variability by the ability to employ band-structure design techniques, for
instance, with the aim of creating photonic band gaps or other device principles from photonic crystal or
semiconductor physics. In addition, we demonstrated strongly nonlinear effects in the CW propagation.
Secondly, we extended the double-line device toward a more complex network, which mimics
multi-scatterer configurations used for boson-sampling in quantum optics experiment in the visible regime.
There, we studied power diffusion between the traces, pulse propagation, and nonlinear effects.

Waveguide lattices of similar type may also be used for (microwave) photonic simulations, while
nonlinearities can be exploited for wave-mixing and non-reciprocity [59]. Finally, in the third setup we
realized a network of weakly coupled resonators with multiple pronounced resonances. The Duffing-like
nonlinear transmission through one such resonance was investigated in detail.

Going beyond the simplest linear optics devices, the platform presented here will be able to implement
both linear and nonlinear functional units, either without (passive) or with (active) external parameter
modulation. For instance, passive linear devices could be built exploiting band structure design to create
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low or high pass filters, or by designing destructive interference to achieve zero transparency. Our design
flexibility in terms of device geometry can be used to build loop resonators, or side-coupled stub resonators,
to shape Fano resonances or other desired transmission profiles [60]. Combined with non-linearity, such
devices have all the ingredients for nonreciprocal effects and can be used to design diodes. Other possible
nonreciprocal units are active devices, e.g. parametrically driven, which can be applied as routers and
circulators [59]. In our platform, such devices can be realized by nonlinear frequency mixing with the signal
in a control port of a multi-port geometry, or by direct modulation of linear devices parameters.

While the working principle of these integrated optics devices rely on classical wave physics, subject to
modifications, our platform may also find use in scattershot boson-sampling [61], multi-mode few-photon
interferometry [62], for analogue simulation of effects such as Hawking radiation [63], or as the non-linear
medium exploited for reservoir-computing in neural networks [64].
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Appendix A. Estimating the phase velocity

An important property of our microstrip networks is the phase velocity, vph which depends on frequency
and geometry of the traces. For the couplers, the geometric inductance, Lg,l is completely negligible, and in
the linear regime equation (2) reduces to

Ll =
μ0λ

2
L

(t · w)
, (22)

where w and t are the width and thickness of the trace in question (written explicitly instead of A). But also
Cl ∝ w, so for traces with submicronic ranges, vph = (ClLL)−1/2 is independent of w. However, in wider
traces such as our wave guides, Lg,l becomes important, hence raising the total Ll somewhat, and lowering
vph by ∼10%. Wave-guides and couplers are thus foremost differentiated by their impedance Z.

We estimate λWSi ∼ 450 nm for our sputtered W0.55Si0.45 based on other measurements (not shown
here), which is in the same order of magnitude, but moderately lower than more tungsten-rich alloys [65].

Our measured vph = 4 × 106 m s−1 fits its theoretical value found using the formulae and values in this
section, and the results also agree with the computed microstrip vph from [30].

Appendix B. Technical aspects of fabrication

In section 3 we outlined the fabrication scheme’s various steps associated with the three layers of our device.
Here we include additional technical details.

After WSi deposition, the applied photo-resist is AZ1505, spun at 4000 RPM. Exposure with a 405 nm
laser is followed by development in AZ developer for a minute, and prior to wet-etch, we hard-bake our
devices at 120◦C for 2 min. The etching is done with a tungsten etchant at 3 nm s−1 (verified in separate
experiments), and stopped by immersion in water.

Narrowing the couplers’ width to below the wavelength of the laser-writer includes, as mentioned,
electronic lithography. A protective mask of PMMA is spun at similar parameters as above, baked at 160◦C
and exposed at 5 A current and 1600 μC cm−2 in a pattern of two large rectangles distanced by the desired
coupler over each intended coupler strip (which after the former step was >μ m wide). The unexposed
strip between these openings in the mask is centered above the strip to be narrowed, and after development
in an MIBK solution the process is completed by an additional wet-etch session.

The dielectric Si is grown as we melt and evaporate bulk Si grains by e-beam. The relatively slow
evaporation rate (compared to, e.g. the growth rate of Al, mentioned below) as given in the main text,
results in the amorphous surface with the desired dielectric constant. Patterning of the Si layer is
unnecessary; the WSi and the overlying Al must be in galvanic contact only at the launcher pads, and the
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large areas of these two layers ensures a sufficiently high capacitance, and in turn a negligible impedance
ZC � (iωC)−1 for the range of frequencies in our measurements.

In developing the fabrication recipe, we tested two methods for patterning of the Al ground: sputtering
followed by wet-etch (Al etchant) and lift-off of an evaporated Al film. The advantage of the former is the
high quality and uniformity of a sputtered metal film, but this method included alignment through the
highly opaque Al layer, when exposing the spun photoresist, intended to serve as a protective mask during
the etching step.

The alternative, lift-off, includes a two-layer mask. Initially, LOR 5B is spun (rates as above) and baked
at 200◦C for 5 min, and subsequently AZ1505 is applied, spun, and baked, and the entire wafer is exposed
with parameters as given above. No post-bake is necessary, and we deposit a ∼60 nm film by e-beam
evaporation at 0.5 nm s−1.

Appendix C. Fabry–Perot resonances

The symmetry of the double-line device with respect to exchanging primary and secondary line is reflected
in the (anti)symmetric eigenmodes. If the lines were fed by a symmetric combinations of incoming waves,
these would couple to the symmetric eigenmode and result in symmetric outgoing waves. Following this
reasoning, we can decouple the double-line into two independent single-channel problems: after
introducing (anti)symmetric combinations equations (10) and (11) result in

tl
+ =

tl
p + tl

s

2
=

1

1 − z2
0

[
a2eiK2l

(
1 − z0eiK2

)
+ b2e−iK2l

(
1 − z0e−iK2

)]
(23a)

tl
− =

tl
p − tl

s

2
=

1

1 − z2
0

[
a1eiK1l

(
1 − z0eiK1

)
+ b1e−iK1l

(
1 − z0e−iK1

)]
(23b)

and equivalent expressions for rl
±, so that we indeed arrive at two decoupled single-channel scattering

problems.
To understand results, it is instructive to view the single-channel problem as a Fabry–Perot type

scattering problem, where in- and out-coupling constitute a left and right scattering barrier of a resonator,
in which propagation is described by the eigenmode, see figure 11(a). Transfer matrices of the individual
barriers, T̂L/R(K1/2), are then obtained from equation (23) (and the corresponding equation for rl

±) and
equation (15) is recovered from the standard picture of multiple reflections

ttot(K) = t̃LeiK(N−1)
(
1 + r̃Rei2K(N−1) r̃′L + . . .

)
t̃R =

t̃LeiK(N−1) t̃R

1 − r̃Rei2K(N−1) r̃′L
, (24)

where t̃L/R, r̃L/R, t̃′L/R, r̃′L/R are entries of the scattering matrices corresponding to T̂L/R(K1/2).
This picture allows us to explain the features observed in the total transmissions of the symmetric and

antisymmetric single-channel problem shown in figure 11(b). In the symmetric case, where the eigenmode
wavevector K2/L ≈ k (cf figure 2(b)), in- and out-coupling occurs with minute reflections, so that the total
transmission t tot(K2) ≈ 1 with tiny Fabry–Perot oscillations determined by the ei2K2(N−1) phase factor in the
denominator. In the antisymmetric case, below the bandgap (cf figure 2(b)) total transmission is completely
suppressed, while above the bandgap large reflection at the in- and out-coupling ‘barriers’ yield pronounced
anti-resonances, which become reduced as K1 grows to approach kL. The frequency of oscillations is related
to the slope of the Re K1(ω) curve in figure 2(b).

The total transmission involving the excitation and interference of both eigenmodes is easy to
understand below and far above the bandgap: in the bandgap of the antisymmetric solution, where
Im K1 > 0, sizable transmission only occurs through the symmetric eigenmode with |t tot(K2)| ≈ 1 and,
hence, |tR

p/s| ≈ 1/2. Far above the bandgap, both eigenmodes transmit near perfectly in a wide frequency
range and alternately interfere constructively and destructively in primary and secondary line, where the
frequency of this interchange is determined by the difference in K1 − K2 stemming from the ei2K1/2(N−1)

phase factors in the numerators of equation (24) resulting in the large-scale structures in the transmission
shown in figure 5(a). Just above the bandgap, substantial interference can only occur, when the
antisymmetric transmission peaks due to a Fabry–Perot resonance, but it will also depend on the respective
phases. These resonances are closely spaced (cf figure 11(b)), and the result is the rather complex
transmission pattern between 3.6 and 4 GHz in figure 5(a). Similar considerations as for the double-line can
be employed for multi-line setups, but there, beyond the band structure and some symmetry considerations
on the eigenmode structure, an intuitive understanding becomes considerably harder.
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Figure 11. (a) Fabry–Perot resonator formed by scattering at in-/out-coupling and propagation in eigenmode of infinite line.
Transmission of symmetric (b) and anti-symmetric eigenmode through the Fabry–Perot structure, cf equations (15) and (24).

Appendix D. Disorder of the periodic structure

For all the simulations presented in this work, we assumed devices to have strictly identical parameters for
various segments; i.e. for the double-line device all couplers are assumed to have identical length,
impedance and capacitance per length, and are equidistantly placed and primary and secondary line are
similarly identical. Fabrication imperfections will obviously disturb these symmetries; both the discrete
translational symmetry by one unit cell (periodicity) and the p/s-mirror symmetry. As these symmetries
were crucial in explaining the experimental measurements, we study the robustness of observed features
against disorder in the parameters of the individual segments. For that purpose, we assume independently,
normal distributed parameters for inductance, capacitance and length of each individual segment with a
relative variance 3%. Figure 12 shows the simulation result for direct and coupled transmission
(cf figure 5(a)) obtained by simulating N = 1001 such imperfect devices compared to the device without
variations (solid lines). The shaded region indicates a 1σ confidence interval (i.e. for a certain frequency
only 16% of devices fall below (above) the lower (upper) limit) around the median (dashed). Note, that the
depth of the destructive interference minima is very sensitive to the symmetry breaking caused by disorder,
while other features are relatively robust.

Appendix E. Simulation of power propagation in the 7PMT

In the main text we discussed the simulated propagation of power throughout the network, both directly
through various traces in the linear regime, and in the nonlinear regime. In figure 13 we expand the
simulation to show the propagation, also in the narrow couplers, too numerous to be shown in the main
letter.

In particular, figure 13(a) displays the delay of transmission from the central trace, where the power is
injected, to its neighbors. This is due to the high nonlinearity experienced by most of the couplers linking
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Figure 12. Influence of fabrication imperfection. Direct and coupled transmission through a double-line device without (solid)
and with variation of parameters between individual segments.

Figure 13. Simulations of power distribution in the 7PMT, when introducing signal at 8.5 GHz in the central trace at (a) −40
dBm and (b) −90 dBm. Colorbars include direction (positive is defined downwards and rightwards). Left(right) colorbar relates
to couplers(traces) in both subfigures. Both figures are normalized according to the input power (i.e. leftmost cell in the central
trace equals unity).

this trace to the rest. In figure 13(b), where the introduced power is five orders of magnitude lower, fewer
couplers are affected and the power transmits to adjacent traces earlier.

Appendix F. Simulation of the nonlinear behavior of the double-line

In section 4 of the main text we discussed the interference between two inputs in the double-line device and
showed the impact of nonlinear effects at higher power in figure 5(b). Here, we will briefly describe, how to
use a nonlinear single-frequency simulation to model such effects.

To model the experimental results of figure 5(b), we consider a nonlinear inductance as in equation (2)
for the couplers only, where nonlinear effects are more pronounced. In section 4 of the main text we
explained how nonlinearities can be included for signal propagation along certain segments and how this
modifies the generic matrix equation (19) for a network of arbitrary geometry. The resulting nonlinear
problem is solved in Matlab using a Broyden method, within which a standard ODE45-solver is used to find
the amplitude relations along each segment. The results of this simulation are shown in figure 14.

In the experiment we observed at the lowest probed power a transmission with a purely sinusoidal phase
dependence. Overall the transmission is drastically reduced as compared to the linear regime of figure 5(a).
For stronger power non-linear effects manifest as modified phase dependence with a pronounced minimum
at fixed (power-independent) phase difference, and finally as jumps that signal multi-stable states. While
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Figure 14. Measurement and simulations illustrating the non-linear behavior of the first device (with two parallel microstrips)
in the interference measurement presented in figure 5(b). Signals are sent down both traces 1 and 2, with constant phase and
variable power in trace 1, while in trace 2 the power is kept constant (P2 � −37 dBm) and the phase θ is varied. (a) Measurement
curves showing the power output at trace 2′ (opposite of trace 2) for different values of the power in trace 1. Non-linear effects
manifest as a shift of the phase dependence and jumps that signal multi-stable states. (b) The simulation captures the shift of the
phase dependence with increasing power in trace 1. (c) The transmitted power P2′ has a linear regime as a function of the input
P2 (with P1 set to zero) only up to a power P2 � −50 dBm. The measurement P2 � −37 dBm corresponds to the non-linear
regime, near the zero of P2′ , where the transmission is drastically reduced, as can be seen in (a) (the transmission is negligible for
P1 � 0).

our simulation was not designed to capture multi-stability and possible hysteretic behavior, it can reproduce
some of the observed features such as a modified phase dependence and pronounced minima at fixed phase.

The overall low transmission at the lowest probed power is explained by figure 14(c). It shows the
transmitted power P2′ as a function of the input P2 (with P1 set to zero) up to the power of P2 � −37 dBm
used as the constant reference power in figures 14(a) and (b) and the experiment. The transmitted power
P2′ has a linear dependence on the input only up to a power P2 � −50 dBm. The measurement P2 � −37
dBm thus corresponds to a strongly non-linear regime, namely an input power near the zero of P2′ . For
figures 14(a) and (b) this means that for the lowest curves (where the power input into P1 is non-zero but
small), the transmission is hence drastically reduced and strongly modulated by the phase of the weak P1.

Appendix G. Simulation of a non-linear resonance in the 2DSL

The resonance studied in figure 10 is modeled as a resonance of a toy-model Fabry–Perot cavity with
Duffing non-linearity, acting as proxy for the much more complex resonant structure realized in the
experiment. The output aout amplitude of a Fabry–Perot cavity is related to the input ain at one of the cavity
mirrors (port 1) by the total transmission amplitude, aout = S21ain, which depends on the transmission
amplitudes t1 and t2 and reflection amplitudes r′1 and r2 of the two scatterers (mirrors) defining the cavity:

S21 =
|t1‖t2|eiφ

1 − |r′1||r2|e2iKeffL
, (25)

where we have assumed a symmetric cavity, |t1| = |t2| = t and |r′1| = |r2| =
√

1 − t2. Important to the
model are the phases 2Keff L and φ. The first models the phase accumulated during one round-trip through
the cavity, while in the second includes contributions from passing through the mirrors. Both phases are
assumed linear in the input frequency ω in the linear regime and account for a Duffing-type non-linearity
by including a power dependence (where |aout|2 stands in for the intra-cavity intensity),

φ =
(ω − ωres)

αγ

(
1 − β

γ

ωres

|aout|2
Pc

)
, (26)

KeffL = 2π
ω

ωres

(
1 +

γ

ωres

|aout|2
Pc

)
. (27)

Here we have introduced parameters that characterize the resonance: frequency ωres, linewidth γ = t2ωres,
and critical output power Pc above which the Duffing curve becomes multiple valued. These can be directly
extracted from the measurement. The two numerical parameters α and β are the only fitting parameters,
that are found to be of order unity. (α = 2 and β = 1.6). With this model, we can reproduce all features of
the experimental results for the transmission amplitude S21, as shown by the simulation results in the insets
of figure 10.
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Figure 15. Simulated power propagation of the initial state mainly occupying the left-most resonator. Note that the energy scale
in is normalized in each image according to the highest value (which slightly decreases due to loss effects).

Appendix H. Simulation of the energy diffusion

Our simulations elaborate on future experiments possible with a lattice of coupled microwave resonators as
the one we produced, though not experimentally possible with the given instantaneous bandwidth of the IQ
mixers in our lab. By choosing the 15 highest peaks in the second energy band shown in the main text’s

figure 9(b) (between 4.8 and 8 GHz) and their corresponding wave functions
−→
ψ m (presumed to be

eigenmodes of the system), we simulate the evolution of

→
χ(0) =

∑
m

αm

→
ψm, (28)

where −→χ (0) denotes the state, where only one of the corner-resonators in the lattice is excited. Ideally, if−→
ψ m was a complete set of orthonormal eigenmodes, we would expect

−→
ψn ·

−→
ψn

∗ = δn,m. This would imply
that

αm =
→
ψ∗

m · →χ(0). (29)

In reality, the main text’s figure 9 shows only modes with considerable energy in the two resonators used for

input and output respectively. Thus
−→
ψ m does not obey equation (29), but approximates it as the

unnormalized wavefunctions holds |−→ψ n|2 �
−→
ψ n ·

−→
ψ ∗

m �=n. The limitation of this approximation is visible in
figure 15(a), where our attempt to excite only the first resonator also leads to weak excitations in other
resonators. The evolution of the states over time and the propagation of the energy throughout the lattice is

given by −→χ (t) =
∑

mαm
−→
ψ me−2iπfm and is depicted in figure 15.

ORCID iDs

Samuel Goldstein https://orcid.org/0000-0002-0739-1046
Naftali Kirsh https://orcid.org/0000-0002-2928-7872
Ciprian Padurariu https://orcid.org/0000-0001-9568-2080
Björn Kubala https://orcid.org/0000-0001-6685-0233
Joachim Ankerhold https://orcid.org/0000-0002-6510-659X
Nadav Katz https://orcid.org/0000-0002-9264-078X

17

https://orcid.org/0000-0002-0739-1046
https://orcid.org/0000-0002-0739-1046
https://orcid.org/0000-0002-2928-7872
https://orcid.org/0000-0002-2928-7872
https://orcid.org/0000-0001-9568-2080
https://orcid.org/0000-0001-9568-2080
https://orcid.org/0000-0001-6685-0233
https://orcid.org/0000-0001-6685-0233
https://orcid.org/0000-0002-6510-659X
https://orcid.org/0000-0002-6510-659X
https://orcid.org/0000-0002-9264-078X
https://orcid.org/0000-0002-9264-078X


New J. Phys. 24 (2022) 023022 S Goldstein et al

References

[1] Dmitriev A Y, Shaikhaidarov R, Antonov V, Hönigl-Decrinis T and Astafiev O 2017 Nat. Commun. 8 1–6
[2] Wang X-L et al 2016 Phys. Rev. Lett. 117 210502
[3] Zhong H-S et al 2020 Science 370 1460–3
[4] Yang Y, Jin Y, Xiang X, Li W, Liu T, Zhang S, Dong R and Li M 2021 arXiv:2101.04078
[5] O’brien J L, Furusawa A and Vučkovíc J 2009 Nat. Photon. 3 687–95
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