Challenges regarding the cross-validation of nighttime sensors

Martin Bachmann⁽¹⁾, Kevin Alonso⁽¹⁾, Emiliano Carmona⁽¹⁾, Tobias Storch⁽¹⁾ – with contributions by Mary Pagnutti⁽²⁾

- (1) DLR German Aerospace Center, EOC Earth Observation Center, Oberpfaffenhofen
- (2) I2R Innovative Imaging and Research, US

Martin.Bachmann@dlr.de
Tobias.Storch@dlr.de

Content

Within the following slides, common approaches for validation of airborne and spaceborne missions are presented w.r.t.

- geometry
- spectral characteristics
- radiometric characteristics

as examples for day- and nighttime missions.

... first a brief introduction to DESIS (DLR Earth Sensing Imaging Spectrometer)

Teledyne

Data Products, Quality and Validation of the DLR **Earth Sensing Imaging Spectrometer (DESIS)**

Kevin Alonso 10, Martin Bachmann 20, Kara Burch 3, Emiliano Carmona 1, Daniele Cerra 10, Raquel de los Reyes ¹, Daniele Dietrich ², Uta Heiden ², Andreas Hölderlin ⁴, Jack Ickes ⁵, Uwe Knodt 6, David Krutz 70, Heath Lester 5, Rupert Müller 1,*0, Mary Pagnutti 3, Peter Reinartz 10, Rudolf Richter 10, Robert Ryan 3, Ilse Sebastian 7 and Mirco Tegler 2

... first a brief introduction to DESIS

• Hyperspectral instrument consisting of a Three-Mirror-Anastigmat (TMA) telescope combined with an Offner-type spectrometer

Mission Instrument	MUSES/DESIS		
Target lifetime	2018-2023		
Off-nadir tilting (across-track, along-track)	-45° (backboard) to +5° (starboard), -40° to +40° (by MUSES and DESIS)		
Spectral range	400 nm to 1000 nm		
Spectral Sampling (res., acc.,bands)	2.55 nm, 0.5 nm, 235 bands, 118 (bin 2), 79 (bin 3), 60 (bin 4)		
Software Binning (sampling distance, number bands)	Binning 2 (5.1 nm, 118 bands) Binning 3 (7.6 nm, 79 bands) Binning 4 (10.1 nm, 60 bands)		
Radiometry (res., acc.)	13 bits, ~10%		
Spatial (res., swath)	30 m, 30 km (@ 400 km)		
SNR (signal-to-noise)	195 (w/o bin.) / 386 (4 bin.) @ 550 nm		
Instrument (mass)	93 kg		
Capacity (km, storage)	2360 km per day, 225 GBit		

Ar

Data Products, Quality and Validation of the DLR Earth Sensing Imaging Spectrometer (DESIS)

Kevin Alonso ¹[©], Martin Bachmann ²[©], Kara Burch ³, Emiliano Carmona ¹, Daniele Cerra ¹[©], Raquel de los Reyes ¹[©], Daniele Dietrich ²[©], Uta Heiden ²[©], Andreas Hölderlin ⁴, Jack Ickes ⁵, Uwe Knodt ⁶, David Krutz ⁷[©], Heath Lester ⁵, Rupert Müller ^{1,*}[©], Mary Pagnutti ³, Peter Reinartz ¹[©], Rudolf Richter ¹[©], Robert Ryan ³, Ilse Sebastian ⁷ and Mirco Tegler ²

Geometric Calibration & Validation

Railroad Valley, USA 13-12-2018 18:23:11 UTC 38.4467°N 115.7512° W Sun: 64.14°, 160.58° Incident Angle: 0.8°

Geometry

Geometry

- Daytime: automatic ICP retrieved during image-to-image matching allows for scenewise position RMSE
- Nighttime: positioning error along track can't be recovered because matching not working with dark scene
- Nevertheless, <u>interactive</u> checks for some locations are possible

DESIS nighttime, Kuwait City, 14.09.2020

- Using on-board calibration sources (LEDs)
 - Pre- and post-launch characteristics
 - Incl. temperature stability & other HK / telemetry data

 Importance as Spectral Response Function (SRF) can change during mission Example: VIIRS DNB due to degradation of mirror coating

- Using on-board calibration sources (LEDs)
 - Pre- and post-launch characteristics
 - Incl. temperature stability & other HK / telemetry data

- Vicariously using atmospheric absorption features
 - Incl. smile pre- and post-launch
 - But: requires daytime imagery!

RGB: 535nm, 651nm, 859nm

For nighttime imagery:

- Vicarious val. using emissive lights
- Example: airborne ProSpecTIR-VS data for Las Vegas (1998) plus reference measurements by Kruse & Elvidge et al.

DOI: 10.1109/AERO.2011.5747396

RGB: 535nm, 651nm, 859nm

RGB: 535nm, 651nm, 859nm

RGB: 535nm, 651nm, 859nm

 DESIS L1B, statistical enhancement (work in progress)

 DESIS L1B, statistical enhancement (work in progress)

Background "noise" spectra magnitude typically <8 DNs

 DESIS L1B, statistical enhancement (work in progress)

Night time lights peak typically 12 - 20 DNs

Aspects:

- Known illumination (Sun)
- Measured atm. composition (Aeronet, Sun photometer, ...)
- Measured target reflectance @ BOA
- Tagets being (best):
 - bright and spectrally homogeneous
 - Lambertian surface or with characterized BRDF
- Reduced adjacency effects by using large targets

CEOS Tuz Golu 2009

Radiometric In-Flight Calibration using ATCOR Calibration: $c_0(i), c_1(i)$ Radiometry $L_T(i) = c_0(i) + c_1(i) DN_T(i)$ $L(i) = c_0(i) + c_1(i) DN(i)$ Calculated Radiance $L_T(i)$ Sensor Sensor Spatial Model $---- \downarrow L_T(i) = \int R_i(\lambda) L_T(\lambda) d\lambda / \int R_i(\lambda) d\lambda$ Target $DN_T^{image} \Rightarrow true DN_T$ Background RT Code $L_T(\lambda, \rho, \theta_S, \theta_V, \phi)$ adjacency effect PSF Measurement of Atm. Atm. transmittance (Aerosols, WaterVapor, ...) Target Ref. Targets Ground Spectrometer $\rho(\lambda)$ Measurement **Radiative Transfer Model Spatial Model BRDF** Target reflectance adjacency

Radiometry (operational Cal/Val for daytime imagery)

- Established automated network CEOS Radiometric Calibration Network www.radcalnet.org
- Automated provision of BOA_ref modeled TOA_ref and atm. parameters (AOT, WV) for 5 sites each 30 minutes incl. uncertainties

RadCalNet Images from Buvet et al., 2020

Aspects:

- Unknown illuminations (var. lamps, Moon)
- Measured atm. composition
 (Aeronet, Sun photometer, ...)
 (Most often) unknown atmosphere
- Measured target reflectance @ BOA
- Tagets being (best):
 - homogeneously illuminated
 - bright and spectrally homogeneous
 - Lambertian surface or with characterized BRDF
- Reduced adjacency effects by using large targets or dark surroundings

... even more uncertainties exist

Scaled validation approach

Upscale airborne - spaceborne

Purpose:

"Mitigate" non-homogeneous sites Pro: Full scene / larger areas can be used => better statistics!

Sensor is stable, "air truth". Con: Campaign set-up.

 $2x\ atm.\ modeling\ /\ correction$

necessary

"Direct" BOA-ref measurement

Purpose:

Demonstration that airborne L2A data is indeed valid Pro: Only small (but suitable) reference targets needed. Method well understood.

Con: Only few pixels possible

Purpose:

Pro: Method well understood & proven for spatially invariant sites.

Only 1x atm modelling / correction required

Con: No PICs near OP.

Statistics for only 2-3 pix can be dubious (site standard deviation @ 30m GSD)

In-situ spectrometer measurements

 Examples from Munich campaign (07/2019) using ASD and OceanOptics spectrometer

Figure 3.1: Variation in emission spectra for different lamp types with (a) incandescent lamps; (b) highpressure sodium lamps; (c) low-pressure sodium lamps; (d) mercury vapour lamps; (e) metal halide lamps; (f) fluorescent lamps; (g) warm LED lamps (CCT \leq 4000 K); and (h) cool LED (CCT \leq 4000 K). Note that the y-axis represents relative irradiance values.

Figure 3.3: Moon spectral irradiance values for lunation 1194 in Munich, Germany. New moon on 2 July 2019, 19:16 UTC, first quarter on 9 July 2019, 10:54 UTC, and full moon on 16 July 2019, 21:38 UTC.

Airborne measurements

Munich central, sensor: airborne 3K camera, RGB composite - radiometrically *uncalibrated* Not simultaneous with field campaign

- Problems using Daytime approaches
 - Largely different radiance levels
 (e.g., VIIRS Day/NightBand: difference up to 7 orders of magnitude resp.
 TDI setttings of 3 (low gain) to 250 pix (high gain))
- · Cross-talk, echo, straylight
 - · Lab. Characterization for straylight
 - Validation using point sources
 offshore gas flares, bridges & boats (CAO & BAI 2016 doi:10.3390/rs61211915)
 or
 high-contrast scenes (VIIRS DNB @ Antarctic Dome C, QUI et al., doi:10.1080/01431161.2017.1338786)

Simplified:

- Upward-pointing light source with known spectral / radiometric properties
- Site with dark surrounding, avoiding adjacency
- New moon phase
- Only atmosphere is (often) unknown

Terra Vega Calibration Source

- I2R developed a field deployable NISTtraceable active light source under a NOAA-funded SBIR research grant
 - Integrating sphere (1m diam-BaSO₄)
 - Four 1KW High Pressure Sodium Lamps
- Compliments the calibration/validation of the VIIRS DNB under low light level conditions
- Provides expanded capability
 - Validate night imaging products
 - Enable time series assessments

Shu	ıtter
Humidity Sensor Temp. Sensors Pressure Sensor HPS I	Sphere gon led Radiometer led ffle Radiometer Electronics HPS Lamp Supply
RPi Cor	nputers Housing &
Battery	Environmental Control
Outside Power External C	Computer

Performance
> 3x10 ⁻⁹ W cm ⁻² sr ⁻¹
< 1%
Accurate to within 5%
± 30°

Terra Vega Deployment Sites/Different Dates

- Lat/Long: 44.41 N/97.125 W
- Avg. Background Radiance:
 2.43x10⁻¹⁰ Wcm⁻²sr⁻¹

near Picayune MS

- Lat / Long: 30.48 N/ 89.60 W
- Avg. Background Radiance:
 5.38x10⁻¹⁰ Wcm⁻²sr⁻¹

Terra Vega VIIRS DNB TOA Radiance Comparisons

- In-band radiance generated by Terra Vega is propagated through the atmosphere using a MODTRAN modeled atmosphere
 - Aerosol measurements taken using a nearby AERONET CIMEL sun photometer (average of two daytime measurements taken 1-day before and 1-day after overpass)
 - Series of MODTRAN measurements made varying visibility, water vapor, ozone, with either a MLW of MLS model atmosphere
 - Least squares approach taken to spectrally best match AERONET measurements

Satellite	Date & Time	VIIRS Measured Radiance	Terra Vega TOA Radiance	% Diff
NOAA-20	8/11/18 8:43:37 UTC	1.41 x10 ⁻⁸	1.50 x10 ⁻⁸	-6.4%
NOAA-20	8/17/18 8:31:08 UTC	2.08 x10 ⁻⁸	2.06 x10 ⁻⁸	1.0%
NOAA-20	8/22/18 8:37:25 UTC	2.40 x10 ⁻⁸	2.24 x10 ⁻⁸	6.7%
			NOAA-20 Mean	0.4%
Suomi NPP	9/28/17 8:38:28 UTC	2.49 x10 ⁻⁸	2.42 x10 ⁻⁸	2.8%
Suomi NPP	10/20/17 8:25:59 UTC	2.20 x10 ⁻⁸	2.44 x10 ⁻⁸	-10.9%
			Suomi NPP Mean	-4.1%

Some conclusions...

Validation of

- Geometry
 - for nighttime imagery not automated
- Spectral characteristics:
 - using established on-board sources
 - vicariously using artificial light sources (if spectral resolution is sufficient)
- Radiometric characteristics
 - daytime calibration approaches hardly usable as large differences in radiation levels plus: different gain settings / integration times, linearity issues, ...
 - nevertheless, similar field measurement approaches as for daytime possible
 - calibrated active light sources (Terra Vega) can further improve this
 - better knowledge on atm. characteristics during nighttime needed

Thank you for your attention!

Acknowledgements:

- Mary Pagnutty, I2R, for Terra Vega information
- Franz Kurz, DLR, for 3K nighttime imagery of Munich

mpagnutti@i2rcorp.com

Contact:

- Martin.Bachmann@dlr.de
- Kevin.AlonsoGonzalez@dlr.de
- Emiliano.Carmona@dlr.de
- Tobias.Storch@dlr.de

