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Abstract. This paper reports experimental investigations of 3D woven 
carbon/epoxy composites on quasi-static and dynamic tensile properties in 
the longitudinal (warp) and transverse (weft) directions. Firstly, quasi-static 
tests were conducted to determine a baseline tensile strength and to find out 
the adequate specimen geometry required for dynamic testing. Secondly, 
dynamic tensile properties at intermediate strain rates (nominal strain rates 
from 0.1 to 200 s-1) were investigated alongside the corresponding failure 
mechanisms. Detailed information on failure patterns is obtained with strain 
field measurements from Digital Image Correlation (DIC) and CT scans. 
The results show that 3D woven composites are strain rate insensitive and 
the crack initiation is located near weft yarns and binding interlacement 
points due to the presence of resin rich areas. 

1 Introduction 

There is the tremendous interest in using lightweight composite materials for load bearing 
structures in transportation applications. This is driven by the need for a reduction in energy 
consumption and subsequent compliance with environmental regulations. The design of 
transportation structures using composites instead of metallic materials may help to reduce 
energy consumption by decreasing structural weight. To make such a transition from metallic 
to composites, it is necessary to ensure the ability of newly introduced composite structures 
to meet current safety legislation and certification processes on crashworthiness. Therefore, 
knowledge about the dynamic properties at intermediate strain rates (1-200 s-1) is particularly 
important to understand behaviour during automotive crash events [1].  

 
Dynamic testing at intermediate strain rates is inherently difficult due to intrinsic 

problems associated with inertia effects and stress wave propagation. Neither the traditional 
quasi-static approach nor the classical Split-Hopkinson Tensile Bar (SHTB) techniques are 
suitable to acquire dynamic material properties at intermediate strain rates [2]. The inertial 
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effect, known as system ring, is one of the significant obstacles to obtaining true dynamic 
properties at intermediate strain rates. When the load is introduced to the specimen, high 
amplitude stress waves are generated in the test machine and test specimen resulting in high 
oscillations in force measurement at the natural frequency of the system. Those undesirable 
oscillations complicate the interpretation of force measurement [3].  

 
3D fibre reinforced composites are known to offer several advantages for transportation 

structures over traditional 2D laminate composites in terms of delamination resistance, 
damage tolerance and design flexibility [4-6]. However, there is a lack of available literature 
on rate dependent properties of 3D woven composites due to experimental challenges, 
especially on specimen size [7]. Therefore, there is a need to investigate dynamic test 
procedures that can obtain reliable and accurate strain rate dependent properties for 3D 
woven composites. In this study, we investigate quasi-static and dynamic tensile properties 
in the longitudinal (warp) and transverse (weft) directions of 3D woven carbon/epoxy 
composites tested at nominal strain rates up to 200 s-1. The main aim of this work is to 
investigate experimental techniques for strain rate dependent properties of 3D woven 
composites. A unique testing approach, involving adhesive clamping methods and DIC 
techniques, is used to overcome aforementioned testing challenges. Also, CT scans are used 
to understand the failure mechanisms of this 3D woven architecture. This study will be the 
first step towards exploring the influence of specimen size on dynamic testing of 3D woven 
composites and will lead to the development of a reliable dynamic material characterization 
technique.   

2 Materials and Methods 

2.1 Materials 

Fig. 1 (a) shows the textile architecture of a 3D woven layer-to-layer architecture generated 
using ScotWeave design software. The chosen architecture consists of a weft density of 10 
wefts/cm and a warp density of 12 warps/cm. The 3D woven preforms were constructed with 
T700S-50C-12k carbon fibres from Toray Industries, Inc.  
 

 

Fig. 1. 3D woven layer-to-layer architecture (a) A textile design pattern (red: binder yarns, Blue: warp 
yarns, light green: weft yarns) and (b) A microscopy image of warp direction cross-section. 

 

The unit cell size of repeating geometry from a dry preform was found to be 12 mm in 
both the warp and weft directions. The preform was infused by Resin Transfer Moulding 
(RTM) with epoxy resin (PRIME™ 20LV from Gurit) and cured at 50 °C for 16 hours at 1 
bar pressure. Fig. 1 (b) shows a microscopic image for an internal structure in the warp 
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direction, and the summary of preform properties is reported in Table 1. The details of the 
3D woven layer-to-layer architectures can be found in [8]. 

 

Table 1. Summary of the preform properties of 3D woven layer-to-layer architecture. 

Areal 
Density 
[kg/m2]  

Yarn content 
[%] 

 
% Tow Crimp 

 

Unit cell size 
[mm] 

Warp Weft Binder Warp Weft Warp/Weft 

1.45 27.2 45.5 27.2 3.7 1.4 12/12 

 
Fig. 2 (a) shows a schematic of the specimen geometry used for quasi-static testing. 

Specimens, with a nominal length and width of 165 mm and 10 mm respectively, were cut 
with a water-cooled diamond saw. Tabs made of glass fabric/epoxy laminates cut in the 45° 
direction were bonded to facilitate smooth load introduction into the test specimen without 
initiating premature failure. Fig. 2 (b) shows the dynamic tension specimens which were cut 
in a dog-bone shape with a gauge length of 10 mm to encourage specimen failure at the 
central gauge section.  

 

 

Fig. 2. Schematic of specimen geometries for tensile testing at (a) quasi-static condition, and (b) 
intermediates strain rates (Unit is in mm). 

 
The dynamic impulse from load introduction can excite the testing system at its natural 

frequency. This effect results in oscillations in the load measurement that obscure the 
interpretation of the test data. To reduce the system ringing, the grips can be modified to 
increase the natural frequency of the system through lightweight design concepts. To increase 
the natural frequency of the test system, a lightweight clamping method was used which 
involves using slotted grips for adhesive bonding. These slotted grips had threaded end-caps 
that allowed connection of the specimens to the slack adapter. The clamping technique using 
adhesives was inspired by [9, 10], where it was used to connect the material specimen to 
SHTB. A two components epoxy (Scotch Weld DP490 from 3M™) was used to establish 
proper bonding between specimens and grips. After that, the bonded specimens were post-
cured in the furnace at 65 °C for 2 hours to improve the performance of the bond (according 
to the manufacturer’s recommendation). The selection of the geometry was based on quasi-
static tensile strength of tested materials and shear strength of the adhesive.  

 

2.2 Test methods 

For the quasi-static loading case, tensile tests were carried out using a universal test machine, 
Zwick/Roell 1484 equipped with a 200 kN load cell and hydraulic specimen grips. 
Rectangular specimens were used to carry out the testing with a displacement control of 2 
mm/min and a clamping pressure of 200 bars. A 2-element rosette strain gauge (a gauge 
length of 3 mm), FCA-3-11-1L from Tokyo Sokki Kenkyujo Co., Ltd. was attached to the 
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centre of the specimen on the backside to measure the strain. Surface strain was acquired 
using digital image correlation (DIC) with a Cannon EOS 60D CCD camera. Images were 
then processed with GOM® Correlate software. The resolution of the CCD camera was 1088 
x 1920 pixels, and the frame rate was 25 frames per second. The surface field was created 
with a facet size of 10 pixels and a point distance of 10 pixels. The strain was calculated from 
the strain field and used to establish stress-strain data. Five specimens were tested. 

 
Dynamic tensile tests at nominal strain rates from 0.1 to 100 s-1 were carried out with a 

high-speed servo hydraulic testing machine of type Instron® VHS 100/20. A piezo-electric 
load cell (Kistler-9317B, Kistler Instrumente GmbH) was used to measure the force, which 
was then amplified with a Kistler type 5011B charge amplifier. The strain and strain rates 
were obtained from the DIC technique. The DIC images were captured with a high-speed 
camera (FASTCAM SA-Z, Photron®) and were then processed with GOM® Correlate 
software. The processing parameters were chosen identical to the quasi-static cases to 
minimise variation in results. The resolution was varied with respect to the frame rate to 
ensure the number of output data points (i.e., the resolution of 384 x 216 pixels with 160,000 
frame rates was used at nominal strain rate of 200 s-1). In addition, high-speed images were 
synchronised with force signals thorough NI-DAQ (USB-6251 BNC, National 
Instruments™). Furthermore, it is worth mentioning that no filtering was applied to the 
measured stress-strain data, and that three specimens were tested at each strain rate. 

 
It should be noted here that the strain gauge is only sufficient for local spatial resolution 

in the woven material. The textile repeat pattern is 12 mm (refer to Table 2) but the strain 
gauge length is 3 mm so the cell size is much greater than the strain gauge dimension. For 
that reason, the DIC technique, which is a full-field optical measurement, is used here in 
addition to the strain gauge. Limitations of using strain gauges with 3D woven composites 
have also been described in [4, 5, 11], where the authors reached the conclusion that the DIC 
method is preferred over strain gauges.  

3 Results and Discussion 

3.1 Quasi-static tension properties 

Since a smaller specimen geometry is generally preferred for dynamic testing due to the 
concerns with dynamic stress equilibrium and system ringing [1], it was necessary to consider 
a specimen geometry for quasi-static tests, which is close to the specimen geometry used for 
dynamic testing. Fig. 3 shows quasi-static transverse tensile results of 3D woven composites 
from a universal testing machine (Zwick) and a high-speed servo-hydraulic machine (VHS). 
Detailed quasi-static mechanical properties are reported in Table 2.  
 

Experimental results from testing at strain rates of 0.1 s-1 and 4∙10-4 s-1 are shown in fig. 
3 and table 2 and show no significant difference between test speeds (both tests are 
considered to be in the quasi-static regime which is defined as being from 10-4 s-1 to 10-1 s-1 
according to [12]).  

 

4

EPJ Web of Conferences 250, 01029 (2021)
DYMAT 2021

https://doi.org/10.1051/epjconf/202125001029



 
Fig. 3. Measured quasi-static stress-strain data of 3D woven composites for longitudinal and 
transverse tension properties using different testing machines. 

 

Table 2. Summary of tension properties of 3D woven composites in longitudinal and transverse 
directions under quasi-static testing condition gained from different testing machines. 

Direction 
Strain rates 

[s-1] 

Young’s modulus 

[GPa] 

Tensile strength 

[MPa] 

Failure strain 

[-] 

Longitudinal 

0.0004 (QS1) 60.8 ± 5.0 958.00 ± 54.53 0.017 ± 0.001 

0.1 (QS 2) 56.7 ± 2.7 923.94 ± 38.33 0.018 ± 0.001 

Transverse 
0.0004 (QS1) 39.4 ± 3.5 583.59 ± 28.17 0.018 ± 0.002 

0.1 (QS 2) 37.0 ± 2.0 559.61 ± 39.85 0.019 ± 0.002 

3.2 Dynamic tension properties 

Fig. 4 and Fig. 5 depict the dynamic tensile properties of 3D woven composites in the 
longitudinal and transverse direction, respectively at nominal strain rates up to 200 s-1. The 
materials exhibit almost linear strain-stress relationships in both directions. A comparison of 
all results is shown in Fig. 6. The experimental results indicate that the current layer-to-layer 
3D architecture is insensitive to strain rate variation. This is coherent with the fact that 
longitudinal carbon fibre shows no strain-rate sensitivity [13, 14]. Also, Tran. et al. [15] 
reported strain-rate insensitivity of 3D carbon/epoxy composites in a similar strain rate range. 
These results show that the proposed test procedures using the developed slack adapter and 
an adhesive bond clamping method can generate ‘clean’ dynamic mechanical test data for 
3D woven composites.  
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Fig. 4. Measured stress-strain data of 3D woven composites in longitudinal (warp) direction at 
different strain rates from quasi-static to 200 s-1. 

 

 
Fig. 5. Measured stress-strain data of 3D woven composites in transverse (weft) direction at different 
strain rates from quasi-static to 200 s-1. 

 

 

(a) (b) 
Fig. 6. Strain rate dependent properties of 3D woven composites in longitudinal and transverse 
directions for (a) Young’s modulus, and (b) tensile strength (dot lines indicate the quasi-static value 
as reference). 

3.3 Failure mechanism 

Fig. 7 (a) shows superimposed images of a pristine specimen in the longitudinal direction 
and the corresponding surface strain field obtained from DIC images. The images show that 
high strain values develop near binding points (weave crimping regions) and weft yarns (in 
red). Dahale. et al. [8] investigated quasi-static tension in a similar 3D layer-to-layer 
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architecture in glass/epoxy composites and found that resin rich areas around weft yarns and 
binding interlacement points induced cracks as stress concentration in quasi-static tension 
testing. Thus, it can be said that surface cracks observed in DIC images are matrix cracking 
resulting from the resin rich areas around binder interlacement points where the binder 
changes the direction and within weft yarns. 
 

(a) 

 

(b) 

 

Fig. 7. Superimposed images of specimen surface and DIC images (strain values are referring to Fig. 
4), and (b) surface image of failed specimen with corresponding CT images of 3D woven composites 
tested in longitudinal direction. 

 
Fig. 7 (b) shows the surface image of the failed specimen tested in the longitudinal 

direction and its corresponding CT scans. The straight transverse failure and longitudinal 
fibre fractures are clearly observed. Based on experimental observation at the macroscale, 
the crack growth path can be explained as follow: (i) the matrix crack starts at the 
interlacement points between binder and weft yarns where a resin-rich area exists, which can 
be confirmed by Fig. 7 (a). (ii) the matrix cracks coalesce into a lager transverse crack and 
binder yarn straightening leads the delamination along the boundary of the binder yarns. (iii) 
the delamination leads to longitudinal fibre (warp yarns) breakage. Furthermore, consistent 
failure patterns (transverse failure) were observed in failed specimens from dynamic testing 
at intermediate strain rates. Those results can be explained by the fact that the failure mode 
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in the longitudinal direction is fibre dominant, which is also related to almost identical stress-
strain curves from quasi-static to nominal strain rates up to 200 s-1.  

4 Conclusions 

Comprehensive dynamic mechanical characterisation of 3D woven composites in the 
longitudinal and transverse directions was performed from quasi-static to strain rates up to 
200 s-1. Results of the experimental investigation are: (i) the longitudinal tensile properties 
of the 3D architecture in the warp direction show a linear stress-strain relationship, and 
transverse tensile properties show a similar stress-strain relationship. (ii) strain rate 
insensitivity of the architecture, up to a nominal strain rate of 200 s-1.  

 
It can be concluded that reliable and concise experimental data can be obtained using the 

proposed dog-bone specimen geometry (100 mm × 16 mm). The test procedures in this work 
have allowed acquisition of reliable dynamic mechanical properties of 3D woven 
carbon/epoxy composites. In future work the key factors to determine optimal specimen 
geometry will be investigated with a concurrent consideration between obtaining a 
homogenous stress field via a small gauge section size and a sufficient covering of unit cell 
of the specific 3D architecture.  

 

This work was supported by the EU Horizon 2020 Marie Skłodowska-Curie Actions Innovative 
Training Network ICONIC: Improving the crashworthiness of composite transportation structures 
[grant agreement No. 721256]. 
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