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ABSTRACT:

Terrestrial sensors are commonly used to inspect and document the condition of roads at regular intervals and according to defined
rules. For example in Germany, extensive data and information is obtained, which is stored in the Federal Road Information System
and made available in particular for deriving necessary decisions. Transverse and longitudinal evenness, for example, are recorded
by vehicles using laser techniques. To detect damage to the road surface, images are captured and recorded using area or line scan
cameras. All these methods provide very accurate information about the condition of the road, but are time-consuming and costly.
Aerial imagery (e.g. multi- or hyperspectral, SAR) provide an additional possibility for the acquisition of the specific parameters
describing the condition of roads, yet a direct transfer from objects extractable from aerial imagery to the required objects or
parameters, which determine the condition of the road is difficult and in some cases impossible. In this work, we investigate the
transferability of objects commonly used for the terrestrial-based assessment of road surfaces to an aerial image-based assessment.
In addition, we generated a suitable dataset and developed a deep learning based image segmentation method capable of extracting
two relevant road condition parameters from high-resolution multispectral aerial imagery, namely cracks and working seams. The
obtained results show that our models are able to extraction these thin features from aerial images, indicating the possibility of using
more automated approaches for road surface condition assessment in the future.

1. INTRODUCTION

Road condition assessment is carried out in several countries
to maintain an acceptable level of quality for the transportation
system. For instance, since 1990, the German Federal Ministry
of Transport and Digital Infrastructure has carried out a condi-
tion survey and assessment (ZEB) for the road surfaces of all
federal roads in Germany1. To describe and document the con-
dition of the roads, a set of relevant parameters has been defined
and depending on the construction method of the road (asphalt
or concrete) different sets of parameter are used. To describe
the condition of asphalted roads, the following parameters are
used and acquired by the ZEB (all definitions are taken from
here2):
● Mesh cracks, crack clusters and single cracks: Longi-

tudinal and transverse cracks are fine to gaping fractures
in the asphalt slabs that do not occur exclusively in the im-
mediate vicinity of the slab corners or edges. Open and
cast/sealed cracks are considered equally.

● Working seams: Open gaps form along transverse or lon-
gitudinal seams (also along inlaid patches). Open/repaired
working seams are characterized by their linear course.

● Inlaid patches: Inlaid patches can be recognized by the
neatly cut or milled edges and the dark traces of edge
sealing which is included in the patch. In addition to the
mostly manually applied and sometimes unevenly shaped
repair patches, there are also machine-applied, mostly
rectangular patches and the sealants or grip-improving sur-
face treatments, some of which are applied over large areas
in the patching process.

∗ Corresponding author
1 https://www.bast.de/BASt_2017/DE/Strassenbau/

Fachthemen/gs4-zeb.html
2 https://itzeb.heller-ig.de/leitfaden/index.html

Figure 1. Image samples of the chosen asphalted road
parameters. Class one ”cracks ”(first row) and class two

”working seams” (last row).

● Applied patches: Applied patches are laid on the existing
road surface. When the patches have been laid, a part of
the road surface is first removed and then filled with as-
phalt flush with the old road surface.

● Excavation/pothole: Excavations mark punctiform or ex-
tensive areas in which parts of the surface course, binder
course or base course have broken off or become detached.

● Binder enrichment: In the case of unfavorable mixing
ratios (too much bitumen or too little binding aggregate)
or unsuitable materials, segregation can occur, resulting in
binder leaking from the surface of the pavement.

Commonly, terrestrial sensors such as laser scanners or line
scan cameras are used for the inspection of the roads and for
the detection of the above listed parameters. These conven-
tional techniques provide very accurate information about the
condition of the road and even millimeter-sized changes in the
road surface or objects can be detected. A drawback of terres-
trial sensors is that they are time-consuming and costly. In this

https://www.bast.de/BASt_2017/DE/Strassenbau/Fachthemen/gs4-zeb.html
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Figure 2. Simplification of the Dense-U-Net-121 (left side) and SkipFuse-Dense-U-Net-121 architecture (right side).

work, we aim to investigate the applicability of aerial imagery
in combination with deep learning methods for an automatic
and large-scale assessment of the road condition. Since not ev-
ery parameter captured by terrestrial sensors is visible in aerial
images, we focus on two of the above described parameters in
this paper, more precisely on the classes ”mesh cracks, crack
clusters, single cracks” and ”working seams”. Since we are
working on images with a ground sampling distance (GSD) of
up to 10 cm, the distinction between sealed or unsealed cracks
or working seams is sometimes not possible (see samples in
Figure 1 for illustration). Therefore, we adjust the above listed
parameters and divide them into the following two classes: 1)
cracks: open and sealed mesh cracks, crack clusters and single
cracks and 2) working seams: open and sealed working seams.

The extraction of thin structures with complex topologies has
been the focus of two research tracks from the fields of remote
sensing and medical imagery. Whether they be roads (Zhang et
al., 2018, Mosinska et al., 2020, Mosinska et al., 2018, Henry
et al., 2021a), pavement cracks (Mosinska et al., 2018), retinal
blood vessels (Gu et al., 2019, Zhang et al., 2021) or cell mem-
branes (Ronneberger et al., 2015, Mosinska et al., 2018, Gu
et al., 2019), some objects require carefully designed segmen-
tation architecture to be accurately extracted (i.e. completely
and without spurious predictions) due to their size, ambigu-
ous or noisy neighborhood and partial to total occlusion by
other nearby objects. Since the introduction of the first fully-
convolutional network (FCN) in (Long et al., 2015), researchers
have mostly converged towards the U-Net architecture (Ron-
neberger et al., 2015) which presents important advantages in
the context of the above-mentioned tasks: 1) it is lightweight
compared to most models used in common imagery and is
therefore fitting for training on smaller datasets, 2) it achieves
remarkable performance (Zhou et al., 2018) with simple back-
bones like ResNet (He et al., 2016) or DenseNet (Huang et al.,
2017), and 3) its overall architecture can be easily modified to
suit the needs of specific tasks by densifying its skip connec-
tions (Yu et al., 2018) or bridge layers (Zhou et al., 2018).

Following this trend, we adopt two U-Net-based networks for
the extraction of cracks and working seams, namely Dense-U-
Net (Henry et al., 2021a) and SkipFuse-Dense-U-Net (Henry
et al., 2021b), which already proved to be effective on aerial
imagery analysis tasks like road and parking area segmenta-
tion. We adopt these networks for the task of extraction thin
structures and investigate the influence of targeted training by
using road masks. As most of the common approaches are uti-

lizing mobile mapping systems (Stricker et al., 2019), smart
phones (Maeda et al., 2018, Varadharajan et al., 2014) or very
high resolution drone data (Pan et al., 2018), we generated a
new training data set consisting of 132 labeled high resolution
aerial images acquired over Germany. By training the networks
on our dataset, we show that the extraction of cracks and work-
ing seams from aerial images with a ground sampling distance
(GSD) of up to 10cm with this dataset is feasible. The presented
results show the good performance of our methods especially
with the existing diversity in the image locations, sensors and
the varying illumination conditions in our dataset.

2. METHODS

We implement two fully-convolutional architectures for the au-
tomatic extraction of cracks and working seams from areal im-
ages, called Dense-U-Net (Henry et al., 2021a) and SkipFuse-
Dense-U-Net (Henry et al., 2021b). These networks proved to
be effective on aerial imagery analysis tasks like road and park-
ing area segmentation. Since our study focuses on the extrac-
tion of very thin objects (compared to roads and parking areas)
and with a known location (on top of the road surface), we re-
alized some adjustments to the original methods.

Segmentation networks and input masking: As aerial im-
ages exhibit visual features outside from the road surface that
could naively be assimilated to crack-like or seam-like features,
we investigate a strategy to prevent the prediction of false posi-
tives on undesired locations. We therefore experiment with net-
works taking in masked and unmasked input images so that we
can systematically filter the regions of interest. To obtain these
binary filter for trafficable surfaces, we apply the SkipFuse-
Dense-U-Net model from (Henry et al., 2021b) trained on the
parking area detection dataset, presented in the same paper,
with auxiliary OSM input and retain only the segmented roads.
Such masks, while a good starting point for searching for signs
of road cracks and seams, are however not perfect, we must ex-
pect some of our objects of interest to lie outside their bound-
aries. One solution to overcome this problem is to use the mask
not as a filter, rather as a secondary input to a network capable
of data fusion like SkipFuse-Dense-U-Net, to both make the
extraction easier on already detected road areas while not arbi-
trarily preventing predictions in all other areas. This leads us
to proposing three approaches to our task at hand: (1) Dense-
U-Net-121 on masked images, (2) Dense-U-Net-121 on un-
masked images, (3) SkipFuse-Dense-U-Net-121 on unmasked



Figure 3. Illustration of the distribution of the aerial images within the training (∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎), validation (∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ ) and test (∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎) sets around the German
cities of Munich, Memmingen, Ulm (left) and Brunswick (right).

images but with road masks as additional input (cf. Fig. 2 for
an overview). More details about the architectures of the two
networks can be found in their respective papers.

Re-balancing the loss: Cracks and seams are thin objects that
often leads either to an increased difficulty in training a segmen-
tation model, or to low probability scores in the output, necessi-
tating careful post-processing steps. To overcome this, we fol-
low the suggestion from (Homayounfar et al., 2017) and (Henry
et al., 2018) to create a smooth ground truth instead of a binary
one: for each class separately, a Gaussian kernel is applied as
a 2D convolution to dilate a binary mask and convert its values
from 0, 1 to a smooth gradient in [0, 1] around its borders, with
value closer to 1 as pixels are closer to the boundary and con-
versely, with object values preserved as 1. Given a smoothing
radius R in pixels, we chose to use a Gaussian kernel of size
[2 ∗ R + 1, 2 ∗ R + 1] with a standard deviation of R

3
. After

the convolution, the values greater than 1 are thresholded to 1.
To train the model on this new regression task, we use an Mean
Squared Error loss (MSE) on the cracks and seams classes but
not the background class, weighted with a coefficient of 20 to
counter-balance the low frequency of both classes compared to
the background’s.

3. DATASET

As there is no public dataset available to train our segmentation
segmentation model, we created a new image dataset, which
contains 132 labeled aerial images acquired by the 3K (Kurz
et al., 2012), 4K (Kurz et al., 2014) and MACS (Brauchle
et al., 2019) camera system of the German Aerospace Center
(DLR) over Germany. Care was taken in the selection of the
images to create variation in terms of sun position, cloud cover,
weather (dry/wet), GSD, season, road categories, and scenery.
The selected images have a GSD between 2-10 cm and are ac-
quired between the years 2015 to 2020 during different seasons
with varying sun angles. Some statistical characteristics of the
dataset are provided in Figure 4. The image sizes vary between
4864×3232 px and 5616×3744 px. Most images were acquired
outside urban areas and contain motorways and main roads, but
urban and ancillary roads are also covered. An overview of the
image locations around the German cities of Munich, Memmin-
gen, Ulm and Brunswick is provided in Figure 3.

As described in previous sections, we defined the classes
”cracks” (sealed and unsealed) and ”working seams” (sealed

(a) (b) (c)

Figure 4. Overview of statistical characteristics of the data set:
(a) distribution of GSD, (b) distribution of images through the

year and (c) distribution of images within the day.

and unsealed). For each image a manual annotation was car-
ried out, where only visible areas were annotated. For this pro-
cess, an annotation policy was generated where the characteris-
tics of each class was defined. In most cases cracks and work-
ing seams can be differentiated by their shape (working seams
are commonly straight) but the main criteria we applied was
the following: the feature ”workings seams” stands more for
quality problems in the manufacturing process rather than for
a weakness of the substance as in the case of cracks; Working
seams are man-made whereas cracks appear over time due to
the weakness of the structure. In the end, a multi-level qual-
ity check was performed by experts to ensure the quality of the
dataset.

In order to train, validate and test our neural networks, we di-
vided the 132 images into three disjoint sets: 1) the training set
consisting of 105 images, 2) the validation set consisting of 15
images and 3) the test set consisting of 12 images. Some ex-
amples of the annotations for the training dataset is displayed
in Figure 5. The spatial distribution of each image within the
three sets is illustrated in Figure 3. Note that the images from
the three sets do not overlap even though the location of images
appear to be quite close in the figure.

4. RESULTS & DISCUSSION

The various networks described in Section 2 are trained for 50
epochs, with a patch size of 512 × 512px, an Adam optimizer
and a learning rate of 10−4. We performed experiments using
two different loss functions: 1) a cross-entropy (CE) loss when
dealing with the original GT and 2) a smooth MSE loss when
using the soft labels (see Section 2). The MSE loss is used
together with the soft labels as it typically shows a better per-
formance for regression tasks compared to the CE loss. For the



Figure 5. Illustration of the dataset with overlaid annotations for the two semantic classes: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ cracks and ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ working seams.

model network road small loss width IoU [%] average [%]
# architecture mask? training set? function dilation mean cracks seams recall precision

1 Dense-U-Net - - CE - 32.27 39.87 24.66 65.83 32.52
2 Dense-U-Net ✓ ✓ CE - 28.50 30.94 26.06 67.60 32.57
3 Dense-U-Net ✓ ✓ MSE 3 33.15 36.02 30.28 59.38 43.54
4 Dense-U-Net - - MSE 3 26.05 41.65 30.44 53.67 51.89
5 Dense-U-Net - ✓ MSE 3 36.45 42.38 30.52 59.74 47.88
6 Dense-U-Net - ✓ MSE 2 38.73 45.61 31.85 52.26 59.28
7 Dense-U-Net - ✓ MSE 1 26.95 38.10 15.80 29.72 69.84
8 SkipFuse-Dense-U-Net ✓ - CE - 28.51 35.51 21.51 66.66 33.48
9 SkipFuse-Dense-U-Net ✓ - MSE 3 34.07 40.70 27.44 48.46 53.34
10 SkipFuse-Dense-U-Net ✓ ✓ MSE 3 37.19 45.31 29.06 53.37 52.69
11 SkipFuse-Dense-U-Net ✓ ✓ MSE 2 39.00 46.82 31.17 48.57 65.18
12 SkipFuse-Dense-U-Net ✓ ✓ MSE 1 28.84 39.50 18.18 30.49 76.36

Table 1. Quantitative comparison of the Dense-U-Net and the SkipFuse-Dense-U-Net architecture using different input data (with
road masks vs. without road masks), different training datasets (usage of full training images vs. only patches close to roads) and

different loss functions (CE vs. MSE with different dilation radius).

smooth MSE loss we considered a radius between 1-3 pixels
for the Gaussian kernel (width of the dilation). When train-
ing the Dense-U-Net models a batch size of 12, while for the
SkipFuse-Dense-U-Net a batch size of 9 was used. The weights
of the RGB encoders are initialized with weights pre-trained on
ImageNet, whereas the weights of all other layer are initialized
randomly with a Xavier uniform distribution and their biases
are initialized to 0. The training of all models was performed
over the training dataset (see Section 3). As our training im-
ages contain large areas without any crack or working seam,
we investigated the influence of two setups: 1) training over the
whole image data and 2) training over a smaller training dataset
where all patches with no overlap with the corresponding roads
masks are discarded.

Table 1 provides on overview of the results obtained by apply-
ing all trained models (from epoch 50) on the test set images.

Overall, we achieved the best results (in terms of IoU) for the
SkipFuse-Dense-U-Net with a MSE loss and a dilation width of
2. For the class ”working seams” slightly better results can be
achieved with the Dense-U-Net architecture using the same loss
and dilation width. The usage of the road masks together with
the Dense-U-Net architecture does not lead to performance im-
provements. A possible explanation is that trough the usage of
the masked RGB images as input data, the network is lacking
a bit of context compared to the other setups. However, using
the road masks to compute the smaller training dataset (here all
patches without any overlap with the road mask have been dis-
carded) lead to a performance boost for the Dense-U-Net and
SkipFuse-Dense-U-Net models. By comparing the loss func-
tions, it can be observed that the smooth MSE loss has some
advantages over the CE loss. This could be explained by the
thickness of our objects. Since cracks and working seams are
relatively thin objects, the use of a smooth loss can support the



(a) aerial image (b) model #5 (c) model #6 (d) model #10 (e) model #11 (f) ground truth

Figure 6. Qualitative of the two best performing Dense-U-Net and the two best performing SkipFuse-Dense-U-Net architectures.
Details about the different models can be found via the model number in Table1. Categories colors are: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ cracks and ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ working seams.

learning process of the network by penalizing correct predic-
tions that have a small offset from ground truth less severely.

Qualitative results of the two best performing Dense-U-Net and
the two best performing SkipFuse-Dense-U-Net architectures
are shown in Figure 6. These image samples show the good
performance of all models for various scenes but also reveal
advantages and disadvantages of the different training setups.
Using a smooth loss with dilation width of 3 pixel lead in gen-
eral to thicker predictions (see second and fourth column of
Figure 6), but on the other hand to more complete predictions.
The usage of the road mask as an addition input branch in the
SkipFuse-Dense-U-Net architectures has the advantage of less

incorrect prediction outside the road areas. This can be seen in
the fourth and sixth row of Figure 6, where both Dense-U-Net
models (trained without the road masks) show several incorrect
predictions on a sport field and a roof top. Overall, the models
learned to differentiate well between the classes ”cracks” and
”workings seams” and between these classes and similar look-
ing features such as curbstones.

As working seams and cracks are relatively thin objects we in-
vestigated in another experiment the influence of a tolerant IoU
on the performance of our models. The idea of this tolerant IoU
is to define tolerance or buffer areas of certain sizes around the
labels of each class. In these buffered areas, all predictions that



model network road width IoU [%] 1px-IoU [%] 2px-IoU [%] 3px-IoU [%]
# architecture mask? dilation cracks seams cracks seams cracks seams cracks seams

5 Dense-U-Net - 3 42.38 30.52 55.81 39.97 61.93 44.16 63.98 45.58
6 Dense-U-Net - 2 45.61 31.85 52.65 37.81 54.62 39.58 55.35 40.11
10 SkipFuse-Dense-U-Net ✓ 3 45.31 29.06 57.73 37.58 62.28 40.85 63.55 41.85
11 SkipFuse-Dense-U-Net ✓ 2 46.82 31.17 54.41 36.04 56.28 37.33 57.01 37.71

Table 2. Quantitative comparison of the two best performing Dense-U-Net and the two best performing SkipFuse-Dense-U-Net
architectures using a tolerant IoU. All models are trained with a smooth MSE loss and on the smaller training dataset containing only

patches that overlap with the road mask.

are actually correct, but whose location differs from the ground
truth by a few pixels, are still considered as correct. For ex-
ample, if we have predictions for the class ”crack”, which are
lying within the buffer areas of the labels for the class ”crack”,
they will be counted as true positives. If we have predictions
for the class ”working seams” or the background class within
the buffer areas of the class ”cracks”, they will be counted as
true positives as well. The advantages of such a tolerant IoU is
that we obtain a better understanding of the location of the in-
correct predictions. Otherwise it is difficult to understand from
the numbers, if the incorrect predictions area only a couple of
pixel next to the ground truth or at completely different loca-
tions within the image.

The implementation of the tolerant IoU was realized through
a buffered version of the ground truth. The larger the buffer
around the ground truth, the more tolerant the metric is to cor-
rect predictions close to the ground truth. To create a buffered
version of the ground truth, we apply a similar dilation process
as for dilating the labels during the training, but to allow for
more control on the resulting values, we apply a different algo-
rithm. Based on the original mask, we apply successively three
morphological dilation operations with a 3×3 kernel and a cross
pattern (the so-called 4-connectivity pattern). The four masks
are merged by summation, i.e. the original masks holds values
4, the pixels at an L1-distance of 1 have values 2, at an L1-
distance of 2 values 1, and from L1-distance of 3 or more val-
ues 0. The computation of the buffered ground truth for a given
tolerance radius R is done by thresholding the values greater or
equal to (3 −R) to 1, and setting the rest of the values to 0.

Quantitative results of the two best performing Dense-U-Net
and the two best performing SkipFuse-Dense-U-Net architec-
tures using the described tolerant IoU are provided in Table 2.
For the four models, we computed the IoU and compared it to a
1-, 2- and 3-pixel tolerant IoU. For all models a gain of around
10% in the IoU can be achieved by applying the 3-pixel IoU.
This shows that our models tend to predict the objects thicker
than the actually are. The biggest changes in the numbers can
be observed for the models, which were trained with a smooth
loss and a dilation width of 3. This can be explained by the
fact that these models are less penalized during training if they
provide wider predictions.

5. CONCLUSION & FUTURE WORK

In this paper, we explore the possibility of using neural net-
works for road condition assessment. As a first step towards
this direction, we focused on an automatic extraction of two
relevant objects for describing the condition of asphalted road
surfaces, namely cracks and working seams. To train and test
our models, we generated a new dataset consisting of 132 la-
beled aerial images having a GSD between 2-10 cm. Since

our goal is to extract relatively thin objects with a known po-
sition (on the road surface), we adapted two network architec-
tures commonly used in remote sensing. More specifically, we
tested the use of a smooth mean square error loss and a road
mask (previously extracted from the aerial imagery) as addi-
tional input. The obtained results show that state-of-the-art seg-
mentation models are capable of extracting thin objects such
as cracks (46.82% IoU and 63.98% for our 3-pixel IoU) and
working seams (31.85% IoU and 45.58% for our 3-pixel IoU)
from aerial images and therefore have a high potential for a
fast and large-scale assessment of road surfaces. In the future,
the method will be tested on other areas within and outside Ger-
many and extended to include other relevant objects for describ-
ing road conditions such as potholes, applied and inlaid patches.
Additionally, the influence of the ground sampling distance as
well as the acquisition time and weather or seasonal differences
on the quality of the results will be investigated.
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