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Abstract: A P-band SAR moisture estimation method is introduced for complex soil permittivity and
penetration depth estimation using fully polarimetric P-band SAR signals. This method combines
eigen- and model-based decomposition techniques for separation of the total backscattering signal
into three scattering components (soil, dihedral, and volume). The incorporation of a soil scattering
model allows for the first time the estimation of complex soil permittivity and permittivity-based
penetration depth. The proposed method needs no prior assumptions on land cover characteristics
and is applicable to a variety of vegetation types. The technique is demonstrated for airborne P-band
SAR measurements acquired during the AirMOSS campaign (2012–2015). The estimated complex
permittivity agrees well with climate and soil conditions at different monitoring sites. Based on
frequency and permittivity, P-band penetration depths vary from 5 cm to 35 cm. This value range
is in accordance with previous studies in the literature. Comparison of the results is challenging
due to the sparsity of vertical soil in situ sampling. It was found that the disagreement between in
situ measurements and SAR-based estimates originates from the discrepancy between the in situ
measuring depth of the top-soil layer (0–5 cm) and the median penetration depth of the P-band waves
(24.5–27 cm).

Keywords: AirMOSS; polarimetric decomposition; soil moisture; multi-layer SPM

1. Introduction

Soil moisture is one of the essential climate variables (ECVs) [1] “that critically con-
tribute [ . . . ] to the characterization of [the] Earth’s climate” [2] and its changes. Hence,
it plays a crucial role within the hydrological and biogeochemical cycles [1,3–7]. Many
approaches exist to retrieve soil moisture from air- or space-borne remote sensing obser-
vations, taking advantage of the sensitivity of active (radar) and/or passive (radiometer)
microwave signals to soil moisture [8–12]. These studies allow an estimation of soil mois-
ture predominantly from L-band measurements: on the one hand, because of the larger
penetration capabilities compared to higher frequency bands, such as C- or X-band, and
on the other hand, due to the availability of global L-band satellite data, e.g., from Soil
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Moisture and Ocean Salinity (SMOS) (since 2009) [10] or Soil Moisture Active Passive
(SMAP) (since 2015) [8] missions. Lower frequency bands such as P-band have only rarely
been used to estimate soil moisture from space, mainly due to the lack of sensors operating
at P-band frequencies. Nevertheless, with the European Space Agency (ESA) BIOMASS
mission in 2023, the first P-band sensor in space will be launched [13]. In addition, the first
on-orbit demonstration of the remote sensing technique will be started by the National
Aeronautics and Space Administration (NASA) SigNals of Opportunity: P-band Investiga-
tion (SNoOPI) mission in 2022 [14,15]. Moreover, P-band airborne datasets, e.g., from the
Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) campaign, are
already available [16]. Hence, P-band data can also be employed for estimating soil moisture,
e.g., by decomposing fully polarimetric radar signals into individual scattering mechanisms.

Incoherent decomposition theorems have been developed to decompose scattering
from natural media and disentangle the different scattering contributions of the signal.
Fully polarimetric synthetic aperture radar (PolSAR) provides measurements of the Earth’s
surface represented by a complex scattering matrix [S], based on which the 3× 3 covariance
[C] or coherence [T] matrices can be calculated [9,17–19]. Among many decomposition
methods, two basic categories can be distinguished: eigen-based, introduced by [20], or
model-based, established by [21]. The first is based on the eigenvalue decomposition of
the [C] or [T] matrix, leading to three parameters: the polarimetric entropy H, expressing
the randomness of the polarimetric scattering process, the polarimetric anisotropy A,
characterizing the secondary scattering processes, and the polarimetric scattering angle α,
representing an intrinsic scattering mechanism [17,22,23].

The model-based decomposition simulates backscattering as the linear sum of mul-
tiple, mostly simple physical scattering mechanisms of canonical objects (e.g., spheres,
dipoles) [18,22,24]. Here, [C] or [T] are decomposed into three components: surface, dihe-
dral (double-bounce), and volume scattering. More detailed reviews of the decomposition
theorems can be found in [25–30].

In order to take advantage of both, a combination of eigen- and model-based inco-
herent decomposition techniques was suggested by [24,31]. By including a generalized
volume scattering model and under the assumption of scattering reflection symmetry
(
〈
SHHS∗HV

〉
= 0 &

〈
SVVS∗HV

〉
= 0), an iterative hybrid decomposition method was pro-

posed, combining eigen- and model-based techniques to decompose [T] into the three
canonical scattering components: surface [Ts], dihedral [Td], and volume [Tv] [24]. As-
sumed scattering reflection symmetry may only be violated significantly in urban or high
mountain regions [27]. The authors of [24] demonstrated the feasibility of the proposed
iterative hybrid decomposition method and the inversion algorithm for soil moisture es-
timation across various agricultural vegetation covers, based on L-band airborne SAR
data of the operational discharge and flooding predictions in head catchments (OPAQUE),
Synthetic Aperture Radar within TERENO framework (SARTEO), and AgriSAR campaigns
from 2006 to 2008. Within this decomposition, two iterations to determine the appropri-
ate initial permittivity and the best physically “constrained volume intensity component
fV” [24] are necessary. Although the results showed that the separation of volume scat-
tering from ground scattering components is physically meaningful compared to in situ
measurements, this iterative approach is complex in algorithmics, computationally ex-
pensive, and requires certain assumptions on initial conditions. Hence, [3] presented an
adapted hybrid decomposition technique by combining the model-based decomposition
technique of [18,21] with the eigen-based decomposition technique, as proposed in [24,27].
By employing observations of the AirMOSS campaign, [3] were the first to apply the hybrid
decomposition method on P-band SAR data across a wide range of vegetation covers (from
grasslands to dense forests). Further, no assumptions on initial vegetation conditions are
made in that study, since “[volume] scattering is modeled using a cloud of randomly-
oriented dipoles” [3]. For the decomposition of the total backscattering signal into the three
scattering components [Ts], [Td], and [Tv], the volume scattering intensity fV is estimated
from the cross-polarized signal directly [31] by fixing the vegetation representations to
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dipoles that are randomly distributed [3] (cf. Section 3.2). The authors of [19] further
explored the proposed hybrid decomposition approach by comparing results based on L-
and P-band SAR observations from the AirMOSS campaign. Both studies demonstrated
the applicability of the hybrid decomposition technique to P-band data of various biomes.
Thus, results for soil and dihedral scattering contributions proved the usability of such
hybrid techniques for designing soil moisture retrieval algorithms using polarimetric low
frequency observations [3,19]. However, the authors concluded that the approach can be
further improved by considering more than just one vegetation representation [3]. In the
end, one main disadvantage of decomposition approaches is the well-known problem
of overestimating the volume scattering component due to “discrimination [problems]
between vegetation and oriented buildings” [32], leading to negative powers (physically
impossible) [9,22,27,33].

The change in direction of the electromagnetic wave when it enters a dielectric medium
can be related to its relative electric permittivity εr [–], formerly also called the dielectric
constant [34,35]. In this study, the relative permittivity of soil is denoted by εs, which is a
complex number with a real εs

′ and an imaginary part εs ′′ . In most studies, only the real
part of εs is considered and investigated, e.g., [24,31,36–38]. However, in general, soils are
lossy media, where εs ′′ is of significant importance when describing the soil permittivity
and, hence, is investigated in this study.

The advantage of microwave remote sensing is the ability of electromagnetic waves
to penetrate through vegetation or into the soil. In general, the lower the frequency, the
larger the penetration into the soil, e.g., [5,35,39,40]. However, the penetration ability of
microwaves is more complex and depends on varying factors besides frequency, such as
the sensor itself, as well as soil or vegetation cover characteristics (e.g., incidence angle,
polarization, soil texture, density, moisture, and surface roughness). Since the penetration
depth is defined as depth after which the power density of the propagating electromagnetic
radiation is reduced by a factor of 1/e (≈0.37), e.g., [35,39,41], it is an important measure
and indication in microwave remote sensing. For example, if the penetration depth is low,
the contribution of the underlying soil to the backscattered waves is questionable and,
hence, the signal may be insensitive to estimated soil moistures [42].

Dependent on εs, several more or less complex formulations to calculate the microwave
penetration depth δp have been published, e.g., in [35,41,43–45]. Many of them depend
mainly on the permittivity of the medium, the wavelength (frequency), and incidence
angle of the incoming wave and, hence, do not account for scattering effects, system
(e.g., sensitivity, calibration uncertainty), or medium (e.g., dielectric discontinuity) charac-
teristics, but only attenuation effects of the medium [39]. Ref. [39] compared penetration
depths at L-band (1.26 GHz) and P-band (430 MHz) frequencies across varying top-layer
permittivities and concluded that δp “significantly underestimates the depths that radar
backscatter can actually detect” [39]. One reason is that δp does not account for discrep-
ancies between decreasing wave intensity with depth and the depth contribution to the
total radar signal. However, in the case the radar signal-to-noise ratio is sufficiently high,
variations beyond δp will be detected [46]. Furthermore, results showed smaller penetration
capabilities of L-band frequencies compared to P-band [39]. Similarly, [40] determined
the moisture retrieval depth from polarimetric L-band (1.400–1.426 GHz) and P-band
(0.742–0.752 GHz) radiometer data, measured during the P-band Radiometer Inferred Soil
Moisture (PRISM) project in 2019 at Core Lynn, Australia. The study was conducted to
investigate the assumption of increasing moisture retrieval depths for longer wavelengths,
and thus to show the potential of P-band wavelengths to retrieve soil moisture at larger
depths than L-band. Their results overall confirmed that this assumption proves the poten-
tial of P-band measurements for subsurface soil moisture retrievals. However, the results
also indicated that the moisture retrieval depth is not only dependent on frequency but
also on the soil moisture gradient with depth, which diminishes the differences in retrieval
depths of P- and L-band for higher moistures in the top soil layer [40]. Smaller penetration
capabilities of L-band frequencies compared to P-band are also confirmed by the studies
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of [40,41,47], concluding that at P-band, influences of soil surface roughness and vegeta-
tion canopy are diminished. Nevertheless, numerical results from [48] revealed limited
influence of small scale roughness on P-band backscatter simulations, but an increasing
complexity between P-band signals and soil roughness at spatially larger scales.

In the literature, P-band is assumed to be able to estimate soil moisture across the root-
zone of the soil (up to approx. 2 m depth) [5,49,50]. Consequently, a wide range of P-band
penetration and sensing depths can be found in the literature, from some centimeters up to
one meter or more [5,39,46,51]. Following the assumption that soil depths are accessible
“in the order of one half to one tenth of the [employed] wavelength [52]” [45,47,53], P-band
penetration depths of 6.97 to 34.86 cm at 430 MHz (λ = 69.72 cm) are potentially realistic.
This value range was estimated, e.g., by [46] in a ten-year study based on P-band data near
the Ameriflux site at Vaira Ranch, CA, USA. Additionally, within the AirMOSS P-band root-
zone, soil moisture (RZSM) product sensing depths of typically 45 cm are considered [51].
Here, RZSM is estimated based on AirMOSS measurements together with simulations
from a vegetation, surface, and subsurface scattering model by assuming a second-order
polynomial function of the profile [54].

In this study, an adapted non-iterative hybrid P-band SAR decomposition method for
moisture estimation is proposed to separate scattering mechanisms in fully polarimetric
SAR data (Section 3.2). The proposed method utilizes a soil scattering model, which is
suitable for P-band wavelengths (Section 3.1). The decomposition results are used in a
consecutive step for the estimation of the complex permittivity, which in turn is applied
for penetration depth calculations (Section 3.3). Thus, this study seeks to estimate complex
permittivity from decomposed SAR signals and to determine permittivity-based P-band
penetration capabilities to better understand P-band microwave behavior in soil along
depth. For that, the proposed P-band SAR moisture estimation method continues the
efforts of [3,24], and is the first of its kind, to the best of our knowledge, for complex soil
permittivity estimation from (P-band) SAR data.

2. Materials

The polarimetric P-band SAR observations employed in this study were acquired
during the AirMOSS campaign (a NASA Earth Venture-1 project) from 2012 to 2015 over
nine different biomes across ten sites in Northern and Central America. This campaign
was the first P-band airborne mission designed to estimate RZSM. The monitoring sites
comprise varying land cover classes from bare soils to tropical rain forests. Each site covers
an area of approximately 25 × 100 km at ~100 m spatial resolution and was revisited at
least two to four times every year during the campaign. The P-band instrument operated at
a center frequency of 430 MHz (λ ≈ 69.72 cm). With a high radiometric calibration accuracy
(0.5 dB) and a noise equivalent σo of −40 dB, the AirMOSS dataset provides P-band SAR
measurements, which are very well suited for estimating soil and vegetation parameters [3].
Detailed information on the campaign can be found in, e.g., [3,16].

The AirMOSS dataset provides measurements for a total of 168 dates at ten sites, each
of them covering an area of 25 × 100 km. Hence, in this study, only a subset of the dataset
was processed and analyzed, with focus on the three AirMOSS monitoring sites “MOISST”
in Oklahoma, “Walnut Gulch” in Arizona, and “Harvard Forest” in Massachusetts, USA.
By choosing these three monitoring sites, varying vegetation types and climatic conditions
are analyzed. Furthermore, every study area is filtered for pixels classified as water, snow,
wetlands, developed ground, bare soil, and pasture/hay, as well as for incidence angles
smaller than 30◦ and greater than 50◦, to narrow down the amount of data to be processed
and to focus on vegetated soils.

Lastly, only four dates per year and monitoring site are evaluated, in the case data for
more than four dates are available (Figure 1). Walnut Gulch in Arizona is characterized by
an arid to semi-arid climate of a hot desert (BWh), MOISST in Oklahoma by a temperate
climate with hot summers (Cfa), and Harvard Forest in Massachusetts by a cold humid
continental climate with warm summers (Dfb) [55].



Remote Sens. 2022, 14, 2755 5 of 25

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 26 
 

 

as for incidence angles smaller than 30° and greater than 50°, to narrow down the amount 
of data to be processed and to focus on vegetated soils. 

Lastly, only four dates per year and monitoring site are evaluated, in the case data 
for more than four dates are available (Figure 1). Walnut Gulch in Arizona is characterized 
by an arid to semi-arid climate of a hot desert (BWh), MOISST in Oklahoma by a temperate 
climate with hot summers (Cfa), and Harvard Forest in Massachusetts by a cold humid 
continental climate with warm summers (Dfb) [55]. 

 
Figure 1. Timeline of processed AirMOSS dates per year and for every monitoring site. (A) Walnut 
Gulch, AZ, USA. (B) MOISST, OK, USA. (C) Harvard Forest, MA, USA. 

In Figure 2, the land cover types according to the National Land Cover Database 
(NLCD) [56], as provided within the AirMOSS datasets, are shown for every monitoring 
site. The percentages in Table 1 represent the respective number of pixels per land cover 
class in comparison to all processed pixels (after filtering). Walnut Gulch (Figure 2A) is 
mostly covered by shrub/scrub (92.5%) while other classes represent less than 5% of all 
pixels (Table 1). The monitoring site MOISST (Figure 2B) is mainly covered by 
grassland/herbaceous (51.5%) and cultivated crops (38.3%), while Harvard Forest (Figure 
2C) is covered by deciduous (49%), mixed (30.4%), and evergreen (25.1%) forests (Table 
1). 

Figure 1. Timeline of processed AirMOSS dates per year and for every monitoring site. (A) Walnut
Gulch, AZ, USA. (B) MOISST, OK, USA. (C) Harvard Forest, MA, USA.

In Figure 2, the land cover types according to the National Land Cover Database
(NLCD) [56], as provided within the AirMOSS datasets, are shown for every monitoring
site. The percentages in Table 1 represent the respective number of pixels per land cover
class in comparison to all processed pixels (after filtering). Walnut Gulch (Figure 2A)
is mostly covered by shrub/scrub (92.5%) while other classes represent less than 5% of
all pixels (Table 1). The monitoring site MOISST (Figure 2B) is mainly covered by grass-
land/herbaceous (51.5%) and cultivated crops (38.3%), while Harvard Forest (Figure 2C) is
covered by deciduous (49%), mixed (30.4%), and evergreen (25.1%) forests (Table 1).
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Table 1. Distribution of NLCD land cover classes at every AirMOSS monitoring site (%) (in relation
to the total of all processed pixels after filtering).

NLCD Land Cover
Class

AirMOSS Monitoring Site

Walnut Gulch MOISST Harvard Forest

Grassland/herbaceous 2.2 51.5 0.3
Shrub/scrub 92.5 0 1.8

Cultivated crops 2.2 38.3 0.3
Deciduous forest <0.1 8.3 49
Evergreen forest 3 1.7 25.1

Mixed forest <0.1 0.3 30.4

For a later comparison of SAR-based estimates, the daily averages of in situ soil
moisture measurements from five different networks at 17 stations are used as shown
in Figure 2. At Walnut Gulch, five stations from the FLUXNET2015 dataset [57] and
four stations from the Cosmic-ray Soil Moisture Observing System (COSMOS) [58,59] are
employed. At MOISST, one station from the Soil moisture Sensing Controller And oPtimal
Estimator (SoilSCAPE) project [60], and COSMOS, two stations from the US Climate
Reference Network (US-CRN) [61], and three stations from the Plate Boundary Observatory
to study the water cycle (PBO H2O) project [62] are used. Lastly, at Harvard Forest, one
station from COSMOS is employed (Figure 2).

3. Methods

In this study, the proposed P-band SAR moisture estimation method consists of a hy-
brid decomposition method and a subsequent moisture estimation procedure. The hybrid
decomposition method combines eigen- and model-based decomposition techniques to
separate P-band SAR signals into individual scattering mechanisms. For the determination
of the scattering components, the method is supported by a soil scattering model, the
first-order multi-layer small perturbation method (SPM) [63]. Subsequently, based on
the decomposed scattering components, the complex soil permittivity is estimated. The
individual processing steps of the method are shown in Figure 3 and explained in detail in
the following.
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3.1. Soil Scattering Based on Multi-Layer SPM

The first-order multi-layer SPM [63] is employed to model the scattering angle αModel
s ,

needed within the proposed hybrid decomposition method (cf. Section 3.2).
As shown on the right side of Figure 3, modeled complex backscatter channels, denoted

by σpp [–] for horizontal or vertical polarization, are required to estimate the model-based
αModel

s . In this study, σpp are modeled with the first-order solution of the multi-layer
SPM [63], which computes backscatter coefficients based on soil characteristics for multiple
soil layers with depth. The ability of this model to consider backscattering from multiple
subsurface layers qualifies it to be more suitable for analyzing P-band soil interactions than
a soil surface-only scattering model such as the SPM, also called Bragg model [27,64], as
shown in [63]. The multi-layer SPM computes first-order scattering from layered surfaces
by considering “multiple scattering processes between the boundaries” [63]. Since the
model was originally designed to compute backscattering coefficients σo

pp, it was adapted

in order to simulate complex backscatter channels σpp, where σo
pp =

∣∣σpp
∣∣2 holds. The

complex backscatter channels σpp are estimated by:

σpp =

√√√√√4πk2
0cos2θsξ2 ∗

(α
f1
pp
(
ks
⊥
)
∗ α

f ∗1
pp
(
ks
⊥
))

W f1

(
ks
⊥ − ki

⊥
)
+ 2R

{
α

f1
pp
(
ks
⊥
)
α

f ∗2
pp
(
ks
⊥
)}
∗

W f1 f2

(
ks
⊥ − ki

⊥
)
+
(

α
f2
pp
(
ks
⊥
)
∗ α

f ∗2
pp
(
ks
⊥
))
∗W f2

(
ks
⊥ − ki

⊥
)

 (1)

with α
f1
pp
(
ks
⊥
)

and α
f2
pp
(
ks
⊥
)

as coefficients related to the incident field, W f1(k⊥) and W f2(k⊥)
as the power spectral densities of the rough boundaries, and with W f1 f2(k⊥) as their joint
spectral density [63]. In detail, if the incident electric field is p-polarized, the first-order
p-polarized scattered electric field in the direction ks is a linear function of the Fourier
transforms of the rough boundary functions f1 and f2, with the corresponding coefficients
denoted by α

f1
pp
(
ks
⊥
)

and α
f2
pp
(
ks
⊥
)
. Lastly, the square root of a complex number is calculated

according to Moivre’s theorem [65]. The reader is referred to [63] for detailed information
on backscatter coefficient calculations.

In Table 2, the required input parameters of the multi-layer SPM for simulating σpp are
listed together with their respective values used in this study. Please note that the chosen
values are one possible approximation for the acquisition scenario in this study and may
need to be adapted for different scenarios and other studies.

Table 2. Required input parameters of the multi-layer SPM for σpp simulations with the applied
values in this study.

Parameter Value

Frequency, f [MHz] 430
Number of layers, N [–] 2

Incidence angle in range, θi, and azimuth, ϕi [◦] θi from AirMOSS; ϕi = 0
Scattering angle in range θs, and azimuth, ϕs

[◦] θs = θi; ϕs = 180

z-coordinates of the respective boundary layer,
d1 [cm] d1 = λ/2 = 34.86

Surface roughness parameters of each layer
[cm]

(vertical RMS height s, horizontal correlation
length l)

s1, l1, s2, and l2 are dependent on roughness
indicator derived from TanDEM-X (Table 3,

right column)

Autocorrelation function, ACF [–] Exponential
Complex permittivity εs = ε′s − jε′′s of each

layer [–]
εs1 : ε′s ∈ [6, 40], ε′′s ∈ [0, 10]

εs2 = εs1 + (10 + j0.5)
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Table 3. Surface roughness parameter sets of each layer (vertical RMS height s, horizontal correlation
length l) as input for the multi-layer SPM based on TanDEM-X derived roughness indicator RTDX .

Roughness Indicator from TanDEM-X [m] Input Roughness Parameters [cm]

RTDX < 5 s1 = 0.5; l1 = 30; s2 = 0.25; l2 = 60
5 ≤ RTDX < 10 s1 = 1.5; l1 = 25; s2 = 0.75; l2 = 50

10 ≤ RTDX < 15 s1 = 2; l1 = 20; s2 = 1; l2 = 40
RTDX ≥ 15 s1 = 3; l1 = 15; s2 = 1.5; l2 = 30

Following findings by [48] (cf. Section 1), the surface roughness parameters, required
for modeling P-band backscatter channels, are not fixed to static values in this study.
However, since no information on surface roughness is available for AirMOSS monitoring
sites with comparable spatial resolution, the DLR TanDEM-X DEM at 90 m resolution [66],
downloadable at https://download.geoservice.dlr.de/TDM90/ (accessed on 5 March 2021),
is used to derive a first-order roughness indicator for each site. For this, TanDEM-X
elevations were resampled to the AirMOSS resolution, converted to roughness values
with the GDAL DEM utility algorithm [67] in QGIS© [68], and scaled according to the
employed wavelength (λ = 69.72 cm). The resulting roughness values, giving the degree of
irregularity of the surface, serve as roughness indicators in this study. Hence, depending on
this roughness indicator RTDX (Table 3, left column), typical surface roughness parameter
sets for each layer (Table 3, right column) were fixed as model input to account for varying
roughness during simulations (from smooth to rather rough). It can be seen that the chosen
values for vertical RMS height s vary from 0.25 to 3 cm, and for horizontal correlation
length l from 15 to 60 cm. These values were fixed based on several sensitivity analyses
and after reviewing the literature.

Lastly, complex backscatter channels σpp, for respective horizontal and vertical polar-
ization, are used to calculate αModel

s . In this study, the formulation by [27] is used, valid for
0 ≤ αs ≤ π

2 :

αModel
s = tan−1

(
σHH − σVV
σHH + σVV

)
. (2)

In this study, αModel
s is calculated for realistic ranges of complex soil permittivity εs [–]

(real part: ε′s ∈ [6, 40], imaginary part: ε
′′
s ∈ [0, 10], with 0.1 < ε

′′
s /ε′s < 0.5).

3.2. Polarimetric Hybrid Decomposition Method

The hybrid decomposition method was originally introduced by [24] as an iterative
approach (cf. Section 1) specifically designed for L-band data. However, it is adapted
here to be applied in a non-iterative way to P-band observations, and for estimating
complex permittivity. As illustrated in Figure 3, the hybrid decomposition method separates
polarimetric SAR observations into individual scattering components (surface, dihedral,
and volume).

First, the polarimetric coherency [T] matrix is defined as:

[T] =

T11 T12 0
T∗12 T22 0
0 0 T33

 (3)

with T∗12 as complex conjugate. By assuming reflection symmetry of the observed media, the
correlation terms between co- and cross-polarized signals are zero (T13, T23, T31, and T32).
Reflection symmetry can be assumed for one, because the correlation terms that are set to
zero (due to reflection symmetry) are neither important for the decomposition, nor for the
soil permittivity estimation. Second, areas where this symmetry may be violated, such as
urban or high mountain regions, are not considered during the analyses (cf. Section 2) [27].

https://download.geoservice.dlr.de/TDM90/
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[T] can be decomposed into the three canonical scattering components of surface [Ts],
dihedral [Td], and volume [Tv]:T11 T12 0

T∗12 T22 0
0 0 T33

 = [Ts] + [Td] + [Tv]. (4)

The rank-3, model-based vegetation volume component [Tv] is described by:

[Tv] =
fv

2 + 2A2
p

V11 V12 0
V∗12 V22 0
0 0 V33

 (5)

with fv as volume scattering intensity, and Ap [–] as particle anisotropy, which describes the
shape of vegetation volume scatterers from vertical dipoles (Ap = 0) and spheres (Ap = 1)
to horizontal dipoles (Ap = ∞). fv is given by:

fv=
4V12cos(2αs)(T∗12−T12+(T12+T∗12)cos(2αs))+(T11−T22)(V11−V22)(cos(4αs)−1)−

√
RT

4V2
12−V2

11+2V11V12−V2
22+(4V2

12+(V11−V22)
2)cos(4αs)

(6)

with RT =
∣∣∣(2(T12− T∗12

)
(V11−V22)sin(2αs) +

(
2(T11− T22)V12−

(
T12 + T∗12

)
(V11−V22)

)
sin(4αs)

)2∣∣∣,
and the polarimetric scattering angle αs as model-based αModel

s [24,31] (cf. Section 3.1).
Further, the parameters for estimating the vegetation volume component are given by:

V11 =
(

Ap + 1
)2, (7)

V12 =
(

A2
p − 1

)
sinc(2∆ψ), (8)

V22 =
1
2
(

Ap − 1
)2
(1 + sinc(4∆ψ)), (9)

V33 =
1
2
(

Ap − 1
)2
(1− sinc(4∆ψ)), (10)

with ∆ψ [◦] as width of the orientation angle distribution, which describes the degree of
orientation of the vegetation volume from oriented (∆ψ = 0◦) to random (∆ψ = 90◦).

Hence, (4) can be rearranged together with (5) in order to determine the soil pa-
rameters from the individual soil scattering components ([Ts], [Td]), by subtracting the
volume component:

[Ts] + [Td] =

T11 T12 0
T∗12 T22 0
0 0 T33

− fv

2 + 2A2
p

V11 V12 0
V∗12 V22 0
0 0 V33

. (11)

As already mentioned, [24] originally proposed an iterative estimation procedure to
find the most suited volume descriptions, namely fv, Ap, and ∆ψ. However, since this
approach is computationally expensive and needs certain assumptions (bare soil regions in
the observation area) to be initialized, a non-iterative way for estimating fv is proposed here,
independent of bare areas, by employing the model-based αModel

s and a realistic parameter
space for vegetation volume parameters, with Ap ∈ [0, 1] and ∆ψ ∈ [0◦, 90◦].

Thus, together with αModel
s , the SAR measurements are decomposed into the two

eigen-based scattering angles αs and αd [◦], as well as the scattering intensities of surface
fs, dihedral fd, and volume fv [–] for multiple Ap− ∆ψ combinations. The ability of the
method to estimate five variables (αs, αd, fs, fd, and fv) out of four SAR observations
(|SHH |2, |SVV |2, |SHV |2, |SVH |2) is possible, since the ambiguity for αs and αd is solved
by assuming an orthogonality condition with αs = π/2− αd [27], meaning, if the decom-
posed polarimetric scattering angle α is smaller than or equal to 45◦, surface scattering is
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assumed, denoted by αs, whereas in the case α is greater than 45◦, dihedral scattering is
assumed, denoted by αd [24]. This way, in contrast to model-based-only approaches, the
proposed method needs no prior assumptions on vegetation characteristics, and provides
the advantage of incorporating actual SAR measurements.

The surface [Ts] and dihedral [Td] scattering components are defined in (12) and (13),
respectively, assuming that both are orthogonal rank-1 components [3,24]:

[Ts] = fs

 cos2αs −sinαs 0
−cosαs sin2αs 0

0 0 0

, (12)

[Td] = fd

sin2αd cosαd 0
sinαd cos2αd 0

0 0 0

. (13)

Finally, (11) can be reformulated to:

T11 T12 0
T∗12 T22 0
0 0 T33

− fv

V11 V12 0
V∗12 V22 0
0 0 V33

 =

 fscos2αs + fdsin2αd ( fd − fs)cosαd,ssinαd,s 0
( fd − fs)cosαd,ssinαd,s fdcos2αd + fssin2αs 0

0 0 0

 (14)

with the surface scattering intensities given by [24]:

fs,d
= 1

2 (T11 + T22 − fv ∗ (V11 + V22)

±
√∣∣∣−4

(
T22(T11 − fvT11) + (T12 − fvT12)

(
fvV12 − T∗12

)
+ fv( fvV11 − T11)V22

)
+ (T11 + T22 − fv ∗ (V11 + V22))

2
∣∣∣) (15)

and the eigen-based scattering angle α to separate contributions from surface and dihedral
scattering, given by [24]:

αs,d = acos


1 + 4 ∗

(
T∗12 − fvV12

T11 − T22 − fvV11 + fvV22 ±
√

RT

)2
− 1

2
 (16)

with RT =
∣∣∣T2

11 +(T22 + fvV11)
2 +4(T12− fvV12)(T∗12− fvV12)−2T11(T22 + fv(V11−V22))−2fv(T22 + fvV11)V22 + f2

vV2
22

∣∣∣.
In summary, from polarimetric SAR observations and simulated αModel

s , the decomposi-
tion results for αs, αd, fs, fd, and fv can be estimated for varying εs and individual Ap− ∆ψ
combinations. Hence, the proposed method overcomes the computationally expensive
iterative procedure as proposed in [24], and provides the possibility of including multiple
vegetation characteristics (Ap, ∆ψ) as suggested by [3] (cf. Section 1). In this study, not all
Ap− ∆ψ combinations are applied. Firstly, to ensure non-negative decomposed powers,
scattering intensities for any Ap−∆ψ combination that are smaller than zero are eliminated
for subsequent analyses in order to avoid possible overestimation of the volume scattering
component (cf. Section 1.). Secondly, the radar vegetation index (RVI) is used to exclude
unrealistic Ap− ∆ψ combinations. Here, the RVImodel is modeled according to [31,69] for
all Ap− ∆ψ combinations used within the approach. Afterwards, the data-based RVIdata is
calculated for every pixel based on the respective SAR backscatter observations. Finally,
all Ap − ∆ψ combinations, where the RVImodel deviates from RVIdata around the aver-
age value (RVImodel) of all RVImodel (RVImodel /∈ RVIdata ± RVImodel), are excluded from
further analyses.

3.3. Complex Permittivity Estimation

The P-band SAR moisture estimation method proposed in this study provides the
advantage of complex permittivity estimation. The real part of the permittivity εs

′ is
associated with energy or heat storage, and the imaginary part of the permittivity εs ′′
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is associated with energy or heat loss, often called dielectric loss factor [35,70]. Since
model-based αModel

s is used to estimate fv during the decomposition of polarimetric SAR
observations, decomposition results can be calculated for a realistic range of soil permittivity
values. Subsequently, by determining the closest fit between decomposed data-based
αData

s and model-based αModel
s for individual Ap− ∆ψ combinations (cf. Section 3.2.), the

corresponding εs value can be estimated.
For that, the absolute value of the modulus r [–] and phase angle φ [–] of the real (α′s)

and imaginary (α′′s ) parts of αData
s and αModel

s , respectively, are calculated:

rαs(εs, Ap, ∆ψ) =

∣∣∣∣√α′s2 + α
′′
s 2
∣∣∣∣, (17)

φαs(εs, Ap, ∆ψ) =

∣∣∣∣tan−1
(

α
′′
s

α′s

)∣∣∣∣. (18)

Afterwards, the smallest sum of the absolute differences between data- and model-
based rαs and φαs is used to determine εs:

εs(Ap, ∆ψ) = argmin
(∣∣∣rαData

s
− rαModel

s

∣∣∣+ ∣∣∣φαData
s
− φαModel

s

∣∣∣). (19)

Since complex εs are estimated for multiple Ap− ∆ψ combinations to cover realistic
vegetation volume characteristics (cf. Section 3.2), the final complex εs is the average
value of εs(Ap, ∆ψ) for all remaining realistic Ap−∆ψ combinations (non-negative surface
scattering powers, modeled RVImodel around data-based RVIdata) (cf. Section 3.2).

For comparison, permittivity can be converted to soil moisture and vice versa, by
employing dielectric mixing models, such as the one by Topp et al., [71], Dobson et al., [72],
or Mironov et al., [73]. An extended review of dielectric mixing models for soils can be
found in [74]. In this study, ε′s results are converted to soil moisture θ [vol.%] according to
the dielectric mixing model of [71].

Based on estimated complex εs from decomposed polarimetric SAR observations, one
possible application is the estimation of the penetration depth δp [cm]. In this study, the
well-known formulation of [75] is adapted to calculate δp [44]:

δp =
1
2
∗

 λ

2π
∗

 2

ε′s ∗
(√

1 + tan2
(
ε
′′
s /ε′s

)
− 1
)


1
2
. (20)

This formulation was chosen because almost all available equations to estimate δp
are comparable and mainly dependent on the attenuation factor α, a measure for the
penetration depth of an electromagnetic wave in a medium. However, this is one of the
first to be published and well known.

Sensitivity studies and analyses with other published formulations for δp,
e.g., [41,43,45,76], showed overall similar results (R2 > 0.99) with small deviations
(σ < 5 cm). In fact, deviations were only noticeable at very low permittivity.

Since δp is only dependent on complex permittivity and wavelength (frequency)
(cf. Equation (20)), it is considered in this study as permittivity-based penetration depth to
analyze potential depths for P-band signals. For a better understanding of how δp behaves
across varying permittivity levels at P-band (430 MHz), modeling results are displayed in
Figure 4. It can be seen that δp decreases with increasing permittivity, as expected. Further,
δp estimates significantly decrease with increasing ε

′′
s , proving the importance of ε

′′
s for

δp calculations.
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4. Results

In this section, the results of the P-band SAR moisture estimation method are presented,
comprising filtered and decomposed SAR signals, estimated complex permittivity, and
soil moisture, as well as permittivity-based penetration depths. Furthermore, the results
are related to in situ measurements from various networks (cf. Section 2) to compare the
complex permittivity estimates.

4.1. Decomposition Results

Based on the proposed hybrid decomposition method, the relative indices Ps/Pt, Pd/Pt,
and Pv/Pt for soil, dihedral, and volume are estimated to analyze the normalized contribu-
tion of each scattering mechanism. The indices are calculated based on the decomposition
results for scattering angles and intensities according to [3].

In Figure 5, only the dominant scattering mechanisms, characterized by their relative
indices, are shown for each AirMOSS monitoring site. Apparent data gaps (white areas in
Figure 5) in the results originate from filtering for specific land cover classes and incidence
angles prior to the processing (cf. Section 2). Here, brown regions represent dominant soil
scattering, meaning the normalized contribution of soil scattering is the highest of all three
contributions. Accordingly, beige regions represent dominant dihedral scattering, while
dark green regions represent dominant volume scattering.

It can be seen that Walnut Gulch is mainly characterized by volume scattering, with
dihedral scattering in the eastern part of the site, where cultivated crops are the main
land cover class, as well as soil and dihedral scattering in the western part of the site
near the Green Valley south of Tucson (Figure 2, Section 2). In this particular region, the
influence of the incidence angle is evident since dominant volume scattering is mixed with
dominant soil scattering, despite the same land cover class (shrublands). Here, the incidence
angles vary across the entire possible range, from 30◦ to 50◦, and the terrain heights are
lowest, which leads to dominant soil scattering components instead of dominant volume
scattering contributions (Figure 5A). At the monitoring site MOISST, dihedral scattering
is dominant in the eastern part around the city Stillwater (Figure 5B), where the land is
predominantly covered by grassland/herbaceous and smaller evergreen forests (Figure 2,
Section 2). In contrast, regions mainly characterized by cultivated crops show dominant
volume scattering, e.g., in the center of the site. Again, the results are influenced by the
varying incidence angles, for instance, in the center of the site, where higher incidence
angles lead to rather dominant soil scattering (Figure 5B). Lastly, Harvard Forest shows
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primarily dihedral scattering with only some regions in the northern part of the monitoring
site, where soil or volume scattering are dominant (Figure 5C).
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Figure 5. Estimated normalized, relative power indices representing dominant soil (Ps/Pt), dihedral
(Pd/Pt), or volume (Pv/Pt) scattering at the AirMOSS monitoring sites. The average values of the most
dominant scattering mechanism of all dates are displayed (Figure 1, Section 2). White data gaps originate
from initial filtering of the input parameters. (A) Walnut Gulch, AZ, USA. (B) MOISST, OK, USA.
(C) Harvard Forest, MA, USA.

For a comparison of all decomposition results for varying years, Figure 6 displays the
average probability distribution function (PDF) of the normalized scattering contributions
at each monitoring site. It can be seen that the PDF for soil scattering peaks at the lowest
value but with the highest probability at Harvard Forest, while at Walnut Gulch and
MOISST the normalized soil scattering is located between dihedral and volume scattering
as second dominant scattering contribution, respectively (Figure 6, first row).

The dihedral scattering contribution is lowest at Walnut Gulch and MOISST but highest
at Harvard Forest (Figure 6, second row), while the volume scattering contribution is highest
at Walnut Gulch but lowest at Harvard Forest, with MOISST in between (Figure 6, third
row). Moreover, there are hardly any differences in the estimated PDFs of all three relative
indices between the years 2013 and 2015. Only the PDF for soil scattering contribution at
Harvard Forest slightly decreases from 2013 to 2015, whereas the PDF for dihedral and
volume scattering slightly increases (Figure 6, right column).

In summary, the monitoring site mainly covered by shrub/scrub (Walnut Gulch)
displays the lowest dihedral and the highest volume scattering, while the monitoring
site covered by forests (Harvard Forest) displays almost exclusively dihedral and the
lowest vegetation scattering. The mixed monitoring site covered by grassland/herbaceous
or cultivated crops (MOISST) shows almost balanced contributions of soil or volume
scattering with dihedral scattering being predominant in regions of grassland/herbaceous
and volume scattering in regions with extensive agriculture.
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4.2. Results for Complex Soil Permittivity and P-Band Penetration Depth

In Figure 7, the real ε′s and imaginary ε
′′
s part of the estimated complex soil permittivity

εs, determined with the proposed P-band SAR moisture estimation method (cf. Section 3.3),
are displayed for the main land cover classes for each monitoring site and date (Table 1).

Walnut Gulch, covered by shrub/scrub (cf. Section 2), shows the overall lowest
permittivity results with a median value of εS = 11.2− j1.5. At the monitoring site MOISST,
the main land cover class grassland/herbaceous shows slightly higher permittivity results
with a median value of εS = 14.9− j1.7. The latter is in contrast to the second dominant land
cover class cultivated crops (cf. Section 2) with a median value of εS = 13.8− j1.5. However,
the results for cultivated crops span the largest value ranges of all classes and monitoring
sites with the real part of permittivity varying from 6 to 31 and the imaginary part of
permittivity varying from 1 to 3.2. The three main land cover classes, deciduous, mixed, and
evergreen forest (cf. Section 2), at Harvard Forest display the overall smallest value ranges
and the highest permittivity results with comparable median values of ~εS = 16− j1.8.
Hence, the forest site Harvard Forest, characterized by a cold humid continental climate
(cf. Section 2), shows the highest permittivity with the smallest deviations, while the driest
monitoring site, mainly covered by shrub/scrub due to the arid climate (Walnut Gulch),
shows the lowest permittivity results. The monitoring site characterized by a temperate
climate and grassland/herbaceous or cultivated crops (MOISST) displays permittivity
results in between.
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Figure 7. Estimated real ε′s (left) and imaginary ε′′s (right) part of complex soil permittivity for main
land cover classes of the AirMOSS monitoring sites Walnut Gulch, MOISST, and Harvard Forest. The
results are displayed for all acquisition dates (Figure 1, Section 2). x̃ represents the respective median
value, n is the total amount of values per boxplot.

Converted to soil moisture, Walnut Gulch revealed values in a range from 12.6 vol.%
to 34 vol.% with a median value of 18.8 vol.%. At MOISST, values ranged from 12.6 vol.%
to 47.5 vol.% with a median value of 27.5 vol.%, and at Harvard Forest from 25.6 vol.% to
32.6 vol.% with a median value of 29.3 vol.%.

Based on the complex permittivity results, the penetration depth δP for each monitor-
ing site is estimated according to Equation (20) (cf. Section 3.3). In Figure 8, areal results for
δP are displayed for every AirMOSS monitoring site. At all sites, δP varies in comparable
ranges from 5.7 cm, 5.4 cm, or 7.7 cm to 35 cm, with the majority of values from 20 cm to
35 cm. Walnut Gulch and MOISST show higher variations in results according to varying
land cover classes, for instance, lower depths in regions where grassland/herbaceous or
forests are dominant, and greater depths where shrublands or cultivated crops are domi-
nant (Figure 2, Section 2). In contrast, at Harvard Forest only small deviations in results are
observed with the majority of δP values being at around 25 cm. The two slightly apparent
vertical stripes in the results with overall higher δP values originate from varying incidence
angles of the sensing system across the monitoring site (Figure 8C).

In detail, variations in δP are largest, where land cover is rather heterogeneous. For
instance, the monitoring site Harvard Forest, which is almost fully covered by forests
(Figure 2, Section 2), displays the smallest deviations in results and a homogeneous map
of δP across the entire site (Figure 8C). In contrast, in the eastern part of the monitoring
site Walnut Gulch around the city Elfrida, highest variations in δP are estimated because
in that region the land cover is a rather heterogeneous mixture of cultivated crops, grass-
land/herbaceous, and shrub/scrub. Further, in the center of the site Walnut Gulch at the
Whetstone Mountains, which are covered by forests, the estimated δP are lower than in the
surrounding areas, where shrub/scrub is dominant (Figure 2, Section 2). In the western
part of Walnut Gulch, at the dip east of the Green Valley (Figure 2, Section 2), δP are lowest
(Figure 8A).
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originate from initial filtering of the input parameters. (A) Walnut Gulch, AZ, USA. (B) MOISST, OK,
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For detailed analyses, δP results are displayed in Figure 9 for the main land cover
classes of the three monitoring sites. As can be seen in the upper plot of Figure 9, the land
cover classes for forests (deciduous, evergreen, and mixed) at Harvard Forest have the
lowest δP values of all landcover classes at ~24.6 cm, with the smallest variations in results,
varying from ~22.8 cm to ~26.4 cm only. In contrast, at Walnut Gulch the highest median
δP value is estimated at 27 cm, varying in the range from 16.8 to 35 cm. The results at
the monitoring site MOISST display a median δP of 25.1 cm for grasslands/herbaceous
and 25.7 cm for cultivated crops with the largest deviations in the latter land cover class
(varying from 13.6 to 35 cm). Accordingly, PDFs in the lower plot of Figure 9 display the
highest densities with the narrowest distributions for forest land cover classes, peaking
from 24 to 25 cm, while other land cover classes reveal more distributed results, covering a
broader range of δP estimates at lower densities (Figure 9).

4.3. Comparison of Permittivity Estimates with In Situ Measurements

For a comparison of the estimated soil permittivity with in situ soil moisture measure-
ments at single locations (cf. Section 2), the results for ε′s are converted to soil moisture
θ [vol.%] according to the dielectric mixing model of [71].

In Figure 10, retrieved θ, based on the proposed P-band SAR moisture estimation
method and P-band SAR measurements, are compared with in situ measured θ at the driest
AirMOSS site, Walnut Gulch in Arizona. While retrieved values are in the range from
12.6 vol.% to 34 vol.% with a highest PDF from 12.5 vol.% to 19 vol.%, in situ measurements
vary from 2.6 vol.% to 15.4 vol.% with the PDF peaking at 6.7 vol.%. Conducted statistical
tests between retrieved and in situ measured θ values with a correlation coefficient (R2) [–]
and medium root-mean square error (RMSE) [vol.%] of R2 = 0.2 and RMSE = 14.1 vol.%
confirm a clear overestimation of retrieved θ compared to in situ measurements. The main
reason for the low correlation could be the discrepancy between measuring depths since
available in situ values are measured near the soil surface at ~0–5 cm, while for retrieved θ,
based on decomposed P-band SAR observations, penetration depths proved to vary from
16.8 cm to 35 cm with median δP at 27 cm (Figure 9).
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Figure 10. Comparison of retrieved soil moisture values, estimated with the proposed P-band SAR
method and converted from permittivity according to the dielectric mixing model from [71], with in situ
measured soil moisture values from various networks (cf. Section 2) at the AirMOSS monitoring site
Walnut Gulch, AZ. x̃ represents the respective median value, n is the total amount of values per boxplot.

In Figure 11, the comparison is shown for the AirMOSS test site Harvard Forest.
While retrieved θ vary in the range from 25.6 vol.% to 32.6 vol.%, with the PDF peaking at
29.3 vol.%, in situ measurements vary from 25.6 vol.% and 38.8 vol.%, with a median value
of 32.4 vol.%.
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Figure 11. Comparison of retrieved soil moisture values, estimated with the proposed P-band SAR
method and converted from permittivity according to the dielectric mixing model from [71], with in
situ measured soil moisture values from various networks (cf. Section 2) at the AirMOSS monitoring
site Harvard Forest, MA. x̃ represents the respective median value, n is the total amount of values
per boxplot.

Hence, with estimated R2 = 0.5 and RMSE = 4.6 vol.%, results show that the humid
forest site displays a higher correlation and lower error between retrievals and in situ
measurements compared to the arid site Walnut Gulch (Figure 10), despite the same
discrepancy between measuring depths. In situ measurements are again only available
from the soil surface at ~0–5 cm, while retrieval results showed average penetration depths
around 24.6 cm, overall varying from 22.8 to 26.4 cm (Figure 9).

Lastly, the comparison of θ values is conducted for MOISST (Figure 12). Only for this
site, in situ measurements for comparisons are available from the soil surface (~0–5 cm)
and also for greater soil depths at ~5–10 cm and ~10–20 cm. The median values of in situ
measured θ are increasing with greater measuring depths, from 16.4 vol.% near the soil
surface to 24 vol.% at a soil depth of ~10–20 cm. Concurrently, the in situ value ranges are
decreasing with greater soil depths, displaying the smallest deviations in measurements at
a depth of ~10–20 cm, varying from 19.3 vol.% to 32.3 vol.%. In comparison, retrieved θ vary
between 12.6 vol.% and 47.5 vol.% with a median value of 26.4 vol.%. Conducted statistics
show R2 = 0.09 and RMSE = 13.5 vol.% for 0–5 cm, R2 = 0.13 and RMSE = 12 vol.% for
5–10 cm, and R2 = 0.09 and RMSE = 12.2 vol.% for 10–20 cm. Hence, retrieval results
correlate slightly worse with in situ measurements from the top-soil at ~0–5 cm com-
pared to other measuring depths, and display the smallest difference in median values of
~2.4 vol.% with in situ measurements at the greatest measuring depth (~10–20 cm). How-
ever, estimated θ at MOISST showed a median penetration depth of 25.7 cm, with most
values varying from 13.6 to 35 cm for landcover class cultivated crops (Figure 9). Hence,
there is still a discrepancy between measuring depths, which explains a remaining differ-
ence between in situ (10–20 cm) and SAR-based soil moisture estimates.
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5. Discussion

In comparison to model- or eigen-based decomposition methods, the hybrid decompo-
sition technique proposed in this study combines both methods and further employs a soil
scattering model suitable for P-band. Hence, the proposed P-band SAR moisture estimation
method continues the efforts of [24], an iterative approach for soil moisture estimation
applied to L-band observations, and of [3], the first hybrid decomposition method applied
to P-band SAR data by assuming volume scattering as a cloud of randomly oriented dipoles
(cf. Sections 1 and 3.2). Furthermore, the method proposed here is non-iterative with re-
duced algorithm complexity and, hence, computationally less expensive. It needs no prior
assumptions on initial vegetation conditions since it allows the application of a wide range
of vegetation cover characteristics in comparison to [3]. Lastly, it is the first of its kind, to
the best of our knowledge, for complex soil permittivity estimation from (P-band) SAR
data. The well-known problem of decomposition methods to overestimate the volume
scattering components (cf. Section 1), e.g., [9,27,33], is solved by excluding any vegeta-
tion characterization from further analyses, where scattering intensities become negative
(cf. Section 3.2). However, this is only feasible since multiple vegetation characterizations
can be considered.

By applying the proposed P-band SAR moisture estimation method to SAR observa-
tions at three AirMOSS monitoring sites with varying land cover classes, the scattering
contributions of surface, dihedral, or volume mechanisms could be estimated. Results show
dominant dihedral scattering over forests at the site Harvard Forest in Massachusetts, and
dominant volume scattering over shrub/scrub at the site Walnut Gulch in Arizona as well
as over cultivated crops at the site MOISST in Oklahoma. Further, it is interesting to notice
that cultivated crops at Walnut Gulch in Arizona show dominant dihedral scattering while
cultivated crops at MOISST in Oklahoma display dominant volume scattering (Figure 5).
This may be due to the different types and phenological stages of cultivated vegetation.
Hence, results in this study suggest dominant dihedral scattering for increasing vegetation
volume (height, density) at P-band. These results concur with previous studies. For exam-
ple, [77] found strong dihedral scattering for P-band measurements across a boreal forest
in Canada. They concluded that at P-band the ground and trunks contribute with more
relevance to the SAR signal than the branches and leaves, since with “smaller scatterers
compared to the wavelength” [77], these layers become more transparent to the incident
wave compared to higher frequencies such as L- or C-band. This is supported by findings
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of [19] across the AirMOSS monitoring site MOISST, where results also demonstrated that
vegetation is more transparent at P-band than at L-band, and that woody vegetation is
needed for dihedral scattering to appear in P-band. Similarly, Ref. [78] estimated dominant
dihedral scattering contributions due to mainly trunk–ground interactions in P-band SAR
signals across eucalyptus species in woodlands on the east coast of Australia. Analogue
results at L- or C-band, however, revealed predominant volume scattering from branches
and leaves (C-band) or a mix of dihedral and volume scattering, depending on the polariza-
tion (L-band). They concluded that with multiple frequencies and polarizations, individual
subsets of forest structures could be analyzed [78]. In contrast, findings from [3], which are
based on the same AirMOSS dataset employed in this study, showed increasing volume
scattering with increasing vegetation. In the case of the monitoring site Harvard Forest,
they found mainly volume scattering and less dihedral scattering, contrary to the results
presented. One reason may be that the applied method in [3] only considers one type of
vegetation (randomly oriented dipoles) across the entire study area, and did not employ
any soil scattering model for the determination of the volume intensity component prior to
the decomposition of SAR signals. However, the results in this study are supported by the
fact that overall lower penetration depths into the soil could be estimated across forests
compared to shrub/scrub (Figure 9, Section 4.2.). Over forests, such as at Harvard Forest,
P-band microwaves are able to penetrate through vegetation but less into soils, and interact
more with trunks. In smaller and less densely vegetated areas such as shrub/scrub at
Walnut Gulch, P-band microwaves are able to penetrate deeper into soils but interact more
with present branches and leaves due to the absence of trunks (2nd scattering center for
dihedral scattering), and thus display a higher volume scattering contribution in contrast to
forests. Hence, the characterization of vegetation types within the decomposition method
should be carefully addressed. Choosing only one type of representative will likely lead to
a biased estimation of volume scattering in P-band SAR signals.

Based on the best fit between simulations and decomposition results, the complex soil
permittivity was estimated. Analyses concur with the investigated land cover classes and
the climatic circumstances at each monitoring site. Lowest soil permittivity was estimated
across shrub/scrub in the hot deserts of Arizona, while the highest permittivity with the
smallest deviations in results was determined over forests in Massachusetts, characterized
by cold humid continental climates. Accordingly, results at the monitoring site in Oklahoma
with a temperate climate displayed soil permittivity in between the former ranges. Lastly,
the smallest deviations in results are found in the forest land cover classes, while the largest
deviations in results are found for pixels classified as cultivated crops. This fits varying
phenological stages of different vegetation types and irrigation situations on agricultural
managed lands (Figure 7, Section 4.2).

Converted permittivity to soil moisture was then compared at single locations with in
situ measurements. Unfortunately, in situ soil moisture values mainly of the top-soil layer
(0–5 cm) are available for comparison, while P-band SAR penetration depth estimates
indicate deeper penetration into the soil (mainly around 20–30 cm). Thus, the highest
correlation with the lowest deviations was found at Harvard Forest, and the lowest corre-
lations at MOISST, but with slightly increasing correlations for measurements at greater
soil depths. Overall, correlations are low and RMSEs are high. The main reason for this
is the discrepancy between sensing depths. While in situ soil moisture values are mainly
measured near the soil surface at ~0–5 cm, the estimated soil moisture is based on P-
band SAR observations, which proved to have penetration depths mainly from 20 cm to
35 cm. Thus, retrievals correlate less with near-surface soil moisture measurements but will
more likely correlate with measurements at deeper soil depths, as indicated at MOISST
(Figure 12, Section 4.3). At Walnut Gulch, for instance, retrievals are clearly overestimating
in situ measurements, showing the highest error (cf. Section 4.3). Several studies revealed
increasing soil moisture with greater soil depth until a certain point, e.g., [51,79–81]. For
example, [80] showed increasing soil moisture values with increasing soil depth from 5 cm
to 30 cm at Kendall, Arizona (Figure 2, Section 2). Further, in hot desert regions such as
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Walnut Gulch, the soil surface layer as a land–atmosphere boundary is highly influenced
by climate and weather conditions and, hence, the surface tends to dry out faster than the
soil layers below [79]. Another source for error is the spatial discrepancy between field
measurements and SAR-based observations. While the in situ measurements are point
values from single locations (cf. Figure 2, Section 2), the estimated results based on the
AirMOSS dataset have a spatial resolution of ~100 m.

Based on the estimated complex soil permittivity, permittivity-based penetration
depths were calculated, leading to overall P-band depths from 5 to 35 cm. Highest varia-
tions occur in regions, where the land cover is rather heterogeneous or where influences
of different phenological stages of the vegetation or irrigation situations lead to varying
permittivity estimates. In detail, at the humid forest site the smallest penetration depths at
a median value of 24.5 cm with the smallest deviations in results were estimated. Corre-
spondingly, the driest monitoring site shows the greatest variations in penetration depths
over cultivated crops, varying mainly from 16.8 to 35 cm around a median value of 27 cm.
This is in accordance with previous studies. The authors of [40] showed that P-band can
provide soil moisture retrievals for a depth greater than 10 cm when using a frequency
lower than 0.5 GHz, while [46] estimated similar P-band penetration depths, varying from
15 to 36 cm, showing significant annual seasonality depending on the soil moisture content.

Lastly, following the assumption of [52], P-band penetration depths between 6.97 and
34.86 cm are realistic (cf. Section 1), which is almost exactly the value range estimated
in this study (5 to 35 cm). Hence, depending on soil permittivity and vegetation cover
characteristics, P-band is able to penetrate several decimeters into the soil, enabling the
estimation of RZSM.

6. Conclusions and Outlook

In this study, a method for complex soil permittivity and permittivity-based penetra-
tion depth estimation based on P-band SAR data is proposed and implemented. For that,
a hybrid decomposition technique is set up for separating fully polarimetric P-band SAR
observations into individual scattering mechanisms (soil, dihedral, volume).

The proposed method extracts the soil scattering component by applying a hybrid
(eigen- and model-based) decomposition method and incorporating a soil scattering model
suitable for P-band frequency, the multi-layer SPM. To the best of our knowledge, this
method is the first of its kind for complex soil permittivity estimation from P-band SAR
data. The approach is only limited to fully polarimetric SAR observations as co- and
cross-polarized coherency matrix elements are needed within the decomposition. Further,
although the proposed approach provides the ability to consider many different types of
vegetation structures, the characterization of varying vegetation types within the hybrid
decomposition method should be carefully addressed.

Comparisons of retrieved soil moisture with in situ measurements show lower to
medium correlations, proving the overall larger penetration of P-band microwaves into
soils, since results match less with top-soil layer measurements but more with deeper
(~20 cm) measurements. The lack of possibility to analyze retrieval results, presented in
this study, with comparable soil moisture measurements, originating at least from similar
soil depths, proves the need for measurements at greater soil depths. Overall, P-band
penetration depths from 5 to 35 cm were estimated, depending on regional climate and
land cover characteristics and heterogeneity.

In summary, the proposed method was further adapted and revised in order to over-
come many drawbacks of previous decomposition methods (e.g., overestimation of volume
scattering component, consideration of one single vegetation type, missing multi-layer
structures for soil scattering at P-band), and to be applicable for complex soil permittivity
estimation. Presented decomposition and complex permittivity results agree well with
climate and soil conditions at the three different monitoring sites, proving the feasibility of
the method. Further, estimated P-band penetration depths are in accordance with previous
studies and confirm the overall higher penetration ability of P-band compared to L-band
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microwaves. In addition, strong dihedral scattering contributions in the SAR signal at
P-band over forests, as shown in Figure 8 (cf. Section 4.2), are encouraging the development
of an approach for soil moisture estimation under forests based on the dihedral scattering
component instead of the soil scattering component, as proposed by [82].

Finally, since the proposed method only needs fully polarimetric P-band SAR mea-
surements, it can be used to estimate complex soil permittivity and potential P-band
penetration depths from space based on the SAR data of the upcoming BIOMASS mission
(cf. Section 1) [13].
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