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Abstract

6D Satellite pose estimation is a crucial step of many on orbit servicing missions. Ei-

ther for docking or debris removal, one need to know the pose of the target satellite.

Throughout the time many methods were proposed to solve this problem, till the recent

surge of monochrome based deep learning methods. We particularly get interested in data

demanding direct regression methods using neural networks. We generate photorealistic

data using Blenderproc and we divide many experiments to probe some architectural

designs improving the networks performance, such as the choice of representations, hy-

perparameters and loss functions. Using all the feedback from previous experiments we

go on optimizing the results.
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1 Introduction

Estimating the position and orientation of a spacecraft is an essential part of many on-

orbit missions e.g. debris removal, servicing or docking. Each of these has it’s own

scenario but all rely on a precise estimate of the relative pose between target object

and the reference as shown in Figure 3. Pose determination may entail a wide range of

engineering challenges, including the development of algorithms and sensor architectures

suitable for the mission. As detailed in a review [21], pose estimation techniques may

widely vary depending on the target object being cooperative or uncooperative. To help

pose estimation the target object can make use of a radio communication, or is designed

with referential passive/active markers (e.g. on it’s corners). In this case, many features

are acquired from sensor data and the object is so called cooperative. In the other case

of uncooperative objects, very little features are known a priori, hence the need of more

sophisticated methods to extract significant features for a precise pose estimate. Also these

techniques are often required to be reliable and robust against harsh lighting conditions

e.g. from very intense sun light to none, or against highly cluttered background, i.e earth.

In order to obtain the required pose precision and robustness, the use of some sensors

is preferred to others depending on mission scenario. For instance LiDAR technology

provides an advantage in long range operations over RGB cameras, and is already in use

in hybrid solutions like in TriDar [13]. While in uncooperative proximity operations,

RGB or RGB-D cameras remain the sensors of choice because of their relative simplicity,

low energy consumption and their low space and low mass compatibility with smaller

platforms e.g. nano-satellites.
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Figure 1: Deutsche Orbitale Servicing Mission

Among the vision based methods using these cameras, monocular pose estimation tech-

niques [9, 8, 7] are drawing a special attention for their wide range of applications par-

ticularly in on orbiting servicing mission i.e OOS, shown in Figure 1. Section 2 includes

a more detailed discussion on this type of application. Then Section 3 will briefly present

the main types of monocular 6DoF pose estimation methods. Most notably among these a

considerable interest is attributed to the subclass of supervised learning methods, which

have grown in popularity hand in hand with the advancement of deep learning in the

recent years.

Figure 2: Simulating the On Orbit Servicing mission in a black room at DLR
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Most of the state of the art monocular methods rely on deep learning [26] as their back

bone or a part of a hybrid solution. However Deep learning is limited by the amount

of data needed for training and validation, whereas real images of target space objects

are not only sometimes not possible to obtain before mission, they are scarce and costly.

Hence the need for simulated images, either in the lab e.g. at DLR as shown in Figure

2 or rendered from an available 3D model. My first contribution would be to propose

a simulator built on Blenderproc that renders synthetic satellite images. The aim is to

obtain a large data-set of photo-realistic RGB and depth images labeled by their relative

pose, based a 3D model of an OOS satellite. My second contribution, is to experiment

with training a Deep neural network for pose regression. I discuss the results of these

experiments in terms of the impact of hyper-parameter choice and some aspects of the

architecture that enhances the performance of the network. A special care is given to the

choice of the rotation representation to be regressed.

Figure 3: Illustration of the relative pose determination between camera and target object
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2 Application

Monocular pose estimation techniques prove to be particularly efficient as well as being

cost effective for proximity missions such as on orbit servicing. This type of mission might

include :

1. Repair : Fixing simple damage of a component, e.g. a failure to move a sensor or

extend an antenna

2. Upgrade : Replacement of outdated system components with components of the

latest technology.

3. Refueling : Resupplying consumable e.g. fuel, coolant at the target spacecraft

4. Orbit maneuver : Orbit correction of the target space borne object. During the

transfer stage of a satellite, it might get incorrectly positioned into another orbit

rendering it non-functional or putting it at risk of collision with other space objects.

Hence the need for a operation to put it back to the right intended orbit.

5. Space debris removal: Which is a serious issue since space debris continues to in-

crease, lower orbits are more and more congested and the risk of collision is getting

increasingly relevant. One collision generates thousands of damaging high energy

particles and a few collisions could cause a chain reaction. As a result space explo-

ration may no longer be possible if this issue remains ignored for long. Therefore

there is a dire need for disposing of all kind of space debris e.g. defective or obsolete

satellites, rocket parts and detached components.

6. Space construction : Less commonly, some proximity operations are aimed at build-

ing and assembling large structures in orbit to form an new ”space born” object.
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3 Related work

3.1 Direct regression

The recent advance in deep learning methods, particularly in image classification and

object detection have driven many pose estimation research projects in the direction of

direct regression or end-to-learning [27, 5, 17, 15, 18]. This methods use deep neural

networks to extract complex non-linear features and outputs the pose given the input

image. Although some works have achieved state of the art performance using a direct

regression paradigm, they still remain behind Geometry based solutions in accuracy.

3.2 Keypoints techniques

This the type of cooperative problems that ave been around for a while. Traditionally

these pose estimation methods usually use manually crafted descriptors or key points,

for example SIFT [20], SURF [2], and BRIEF [6]. The key idea is to create a set of

2D-3D and 2D-2D keypoint correspondences, then using non-linear optimisation from the

correspondence set a pose estimation step is carried out. Keypoint methods can fail when

there is a big variation in the pose, background textures, lightning condition. Most famous

of these are PnP solvers that are able to estimate the pose accurately and robustly, given

well crafted correspondence sets.

3.3 Feature extraction methods

Similar to keypoints methods, feature extraction method don’t rely on handcrafted de-

scriptors, which can not always be chosen optimally against a high variety of poses,
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lighting condition and noise. They use rather machine learning methods to best identify

descriptors from different perspectives. BRIEF [6], and [22] uses naive Bayes classifier

to determine keypoints. Deep learning methods have also made a contribution to this

research direction as deep CNN network can extract powerful and complex features to fix

the 2D-3D keypoint correspondance, e.g. [24, 23, 28]. The complexity of a deep learning

netwoek leave door to many innovations, and a number of other papers share the same

idea although they differ in model architechture. Namely for example [23] defines and

uses semantic keypoints, and [28] is limited to the corners of the object’s bounding box

as for keypoints.
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4 Synthetic Data Generation

The recent popularity of deep learning methods is partly due to the increasing availability

of data. However this data is not always easy to harness and particularly not at all to

label. The cost to label data is usually high in terms of the necessary time and effort

which makes real annotated data scarce or sometimes unavailable. This is case in all

domains where neural networks could be used to solve problems, like 6d pose estimation

in robotics for instance. While the performance and robustness of neural networks relies

heavily on the quantity of the annotated data, a new approach have to be considered. One

way is simulation. That is creating synthetic data out of simulated environments that

matches the real domain as much as possible. The advantage being one can configure

the simulated but realistic environment as convenient as one can wish. Then one could

automate the extraction of the features needed from the simulated environment to build

the best labeled dataset to implement the deep learning task in question. More specifically

in the 6D pose estimation problem, given a 3D model of the satellite we can build a

simulation of the serviced satellite, the camera sensor from the servicing satellite and the

environment around including light conditions. Then we render the images of the satellite

from the camera view, as realistically as possible, at so many different positions, keeping

the relative camera-object 6D poses as the corresponding labels. As we can automate the

configuration of many features including satellite geometry, texture, background, camera

positions and lighting conditions we obtains a big and rich annotated dataset that would

maximize the networks performance on a variety of real scenarios.
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4.1 Blenderproc : Data generation framework

BlenderProc [3] offers exactly this possibility of generating synthetic data most needed in

deep learning applications. According to [11], Blenderproc is ”a fully configurable pipeline

for procedurally generating scenes and rendering photo-realistic training images. The

pipeline is built on top of Blender, an open-source project which offers a variety of relevant

features through a stable API with years of optimization and an active community”.

Blenderproc contribution complements Blender and goes even beyond fully automating

feature set. In a typical pipleline one could load many objects, sample their position, define

their geometry and texture proprieties, sample cameras at different positions, randomize

background texture, then finally it once could choose to output render color or depth

images, semantic segmentation or optical flows. As discussed in [10] and [11] Blenderproc

offers highly realistic renderings. The presented objective evaluation of how much realistic

the renderings is the comparison results on the performance of deep learning tasks, e.g.

segmentation on Blenderproc rendered data on the one hand, and on real data, on the

other. As well one can notice how the rendered images are qualitatively realistic as shown

in Figure 4.

Figure 4: Blenderproc reducing the gap between reality and simulation
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I’ve been introduced to BlenderProc as an internal project in DLR during development.

Now BlenderProc is an open source project growing in popularity. Many features in the

second version have been added and many are to come. I construct a synthetic annotated

satellite 6D pose estimation dataset based on Blenderproc2 in it’s current updated state.

4.2 Rendered images data

My first contribution in this thesis is to build a synthetic annotated dataset of images that

would help me train a deep learning model to estimate the 6D pose of a target satellite

in the context of a typical On Orbit Servicing mission. I build my rendering pipeline

using Blenderproc. Then I generate 20000 photo-realistic images with corresponding pose

as a vectorised SO3 rotation and location vector. I used 12000 images to for train and

validation and 8000 images for the test dataset. I’ll present here how I rendered these

images and how I organised them into datasets.

4.2.1 Rendering pipeline

To obtain the photo-realistic rendered images a whole pipeline has to be set in place using

the functionalities offered by BlenderProc. I have in my disposition a 3D model of an

OOS satellite cf. the serviced Satellite in Figure 1 and 2. Using the python interface of

Blenderproc I first load the 3D model, then I fix a position and orientation in the world’s

reference. I set a strong punctual light to simulate the sun light’s intensity and direction.

I load aluminium texture to simulate the Multi-layer insulation sheet on the front of the

satellite. I set texture parameters as defined in Blender, such as base color, roughness,

displacement, etc that would make more or less creases on the aluminium foil for example.




