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Abstract

6D Satellite pose estimation is a crucial step of many on orbit servicing missions. Ei-

ther for docking or debris removal, one need to know the pose of the target satellite.

Throughout the time many methods were proposed to solve this problem, till the recent

surge of monochrome based deep learning methods. We particularly get interested in data

demanding direct regression methods using neural networks. We generate photorealistic

data using Blenderproc and we divide many experiments to probe some architectural

designs improving the networks performance, such as the choice of representations, hy-

perparameters and loss functions. Using all the feedback from previous experiments we

go on optimizing the results.
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1 Introduction

Estimating the position and orientation of a spacecraft is an essential part of many on-

orbit missions e.g. debris removal, servicing or docking. Each of these has it’s own

scenario but all rely on a precise estimate of the relative pose between target object

and the reference as shown in Figure 3. Pose determination may entail a wide range of

engineering challenges, including the development of algorithms and sensor architectures

suitable for the mission. As detailed in a review [21], pose estimation techniques may

widely vary depending on the target object being cooperative or uncooperative. To help

pose estimation the target object can make use of a radio communication, or is designed

with referential passive/active markers (e.g. on it’s corners). In this case, many features

are acquired from sensor data and the object is so called cooperative. In the other case

of uncooperative objects, very little features are known a priori, hence the need of more

sophisticated methods to extract significant features for a precise pose estimate. Also these

techniques are often required to be reliable and robust against harsh lighting conditions

e.g. from very intense sun light to none, or against highly cluttered background, i.e earth.

In order to obtain the required pose precision and robustness, the use of some sensors

is preferred to others depending on mission scenario. For instance LiDAR technology

provides an advantage in long range operations over RGB cameras, and is already in use

in hybrid solutions like in TriDar [13]. While in uncooperative proximity operations,

RGB or RGB-D cameras remain the sensors of choice because of their relative simplicity,

low energy consumption and their low space and low mass compatibility with smaller

platforms e.g. nano-satellites.
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Figure 1: Deutsche Orbitale Servicing Mission

Among the vision based methods using these cameras, monocular pose estimation tech-

niques [9, 8, 7] are drawing a special attention for their wide range of applications par-

ticularly in on orbiting servicing mission i.e OOS, shown in Figure 1. Section 2 includes

a more detailed discussion on this type of application. Then Section 3 will briefly present

the main types of monocular 6DoF pose estimation methods. Most notably among these a

considerable interest is attributed to the subclass of supervised learning methods, which

have grown in popularity hand in hand with the advancement of deep learning in the

recent years.

Figure 2: Simulating the On Orbit Servicing mission in a black room at DLR
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Most of the state of the art monocular methods rely on deep learning [26] as their back

bone or a part of a hybrid solution. However Deep learning is limited by the amount

of data needed for training and validation, whereas real images of target space objects

are not only sometimes not possible to obtain before mission, they are scarce and costly.

Hence the need for simulated images, either in the lab e.g. at DLR as shown in Figure

2 or rendered from an available 3D model. My first contribution would be to propose

a simulator built on Blenderproc that renders synthetic satellite images. The aim is to

obtain a large data-set of photo-realistic RGB and depth images labeled by their relative

pose, based a 3D model of an OOS satellite. My second contribution, is to experiment

with training a Deep neural network for pose regression. I discuss the results of these

experiments in terms of the impact of hyper-parameter choice and some aspects of the

architecture that enhances the performance of the network. A special care is given to the

choice of the rotation representation to be regressed.

Figure 3: Illustration of the relative pose determination between camera and target object
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2 Application

Monocular pose estimation techniques prove to be particularly efficient as well as being

cost effective for proximity missions such as on orbit servicing. This type of mission might

include :

1. Repair : Fixing simple damage of a component, e.g. a failure to move a sensor or

extend an antenna

2. Upgrade : Replacement of outdated system components with components of the

latest technology.

3. Refueling : Resupplying consumable e.g. fuel, coolant at the target spacecraft

4. Orbit maneuver : Orbit correction of the target space borne object. During the

transfer stage of a satellite, it might get incorrectly positioned into another orbit

rendering it non-functional or putting it at risk of collision with other space objects.

Hence the need for a operation to put it back to the right intended orbit.

5. Space debris removal: Which is a serious issue since space debris continues to in-

crease, lower orbits are more and more congested and the risk of collision is getting

increasingly relevant. One collision generates thousands of damaging high energy

particles and a few collisions could cause a chain reaction. As a result space explo-

ration may no longer be possible if this issue remains ignored for long. Therefore

there is a dire need for disposing of all kind of space debris e.g. defective or obsolete

satellites, rocket parts and detached components.

6. Space construction : Less commonly, some proximity operations are aimed at build-

ing and assembling large structures in orbit to form an new ”space born” object.
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3 Related work

3.1 Direct regression

The recent advance in deep learning methods, particularly in image classification and

object detection have driven many pose estimation research projects in the direction of

direct regression or end-to-learning [27, 5, 17, 15, 18]. This methods use deep neural

networks to extract complex non-linear features and outputs the pose given the input

image. Although some works have achieved state of the art performance using a direct

regression paradigm, they still remain behind Geometry based solutions in accuracy.

3.2 Keypoints techniques

This the type of cooperative problems that ave been around for a while. Traditionally

these pose estimation methods usually use manually crafted descriptors or key points,

for example SIFT [20], SURF [2], and BRIEF [6]. The key idea is to create a set of

2D-3D and 2D-2D keypoint correspondences, then using non-linear optimisation from the

correspondence set a pose estimation step is carried out. Keypoint methods can fail when

there is a big variation in the pose, background textures, lightning condition. Most famous

of these are PnP solvers that are able to estimate the pose accurately and robustly, given

well crafted correspondence sets.

3.3 Feature extraction methods

Similar to keypoints methods, feature extraction method don’t rely on handcrafted de-

scriptors, which can not always be chosen optimally against a high variety of poses,



6 3 RELATED WORK

lighting condition and noise. They use rather machine learning methods to best identify

descriptors from different perspectives. BRIEF [6], and [22] uses naive Bayes classifier

to determine keypoints. Deep learning methods have also made a contribution to this

research direction as deep CNN network can extract powerful and complex features to fix

the 2D-3D keypoint correspondance, e.g. [24, 23, 28]. The complexity of a deep learning

netwoek leave door to many innovations, and a number of other papers share the same

idea although they differ in model architechture. Namely for example [23] defines and

uses semantic keypoints, and [28] is limited to the corners of the object’s bounding box

as for keypoints.
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4 Synthetic Data Generation

The recent popularity of deep learning methods is partly due to the increasing availability

of data. However this data is not always easy to harness and particularly not at all to

label. The cost to label data is usually high in terms of the necessary time and effort

which makes real annotated data scarce or sometimes unavailable. This is case in all

domains where neural networks could be used to solve problems, like 6d pose estimation

in robotics for instance. While the performance and robustness of neural networks relies

heavily on the quantity of the annotated data, a new approach have to be considered. One

way is simulation. That is creating synthetic data out of simulated environments that

matches the real domain as much as possible. The advantage being one can configure

the simulated but realistic environment as convenient as one can wish. Then one could

automate the extraction of the features needed from the simulated environment to build

the best labeled dataset to implement the deep learning task in question. More specifically

in the 6D pose estimation problem, given a 3D model of the satellite we can build a

simulation of the serviced satellite, the camera sensor from the servicing satellite and the

environment around including light conditions. Then we render the images of the satellite

from the camera view, as realistically as possible, at so many different positions, keeping

the relative camera-object 6D poses as the corresponding labels. As we can automate the

configuration of many features including satellite geometry, texture, background, camera

positions and lighting conditions we obtains a big and rich annotated dataset that would

maximize the networks performance on a variety of real scenarios.
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4.1 Blenderproc : Data generation framework

BlenderProc [3] offers exactly this possibility of generating synthetic data most needed in

deep learning applications. According to [11], Blenderproc is ”a fully configurable pipeline

for procedurally generating scenes and rendering photo-realistic training images. The

pipeline is built on top of Blender, an open-source project which offers a variety of relevant

features through a stable API with years of optimization and an active community”.

Blenderproc contribution complements Blender and goes even beyond fully automating

feature set. In a typical pipleline one could load many objects, sample their position, define

their geometry and texture proprieties, sample cameras at different positions, randomize

background texture, then finally it once could choose to output render color or depth

images, semantic segmentation or optical flows. As discussed in [10] and [11] Blenderproc

offers highly realistic renderings. The presented objective evaluation of how much realistic

the renderings is the comparison results on the performance of deep learning tasks, e.g.

segmentation on Blenderproc rendered data on the one hand, and on real data, on the

other. As well one can notice how the rendered images are qualitatively realistic as shown

in Figure 4.

Figure 4: Blenderproc reducing the gap between reality and simulation
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I’ve been introduced to BlenderProc as an internal project in DLR during development.

Now BlenderProc is an open source project growing in popularity. Many features in the

second version have been added and many are to come. I construct a synthetic annotated

satellite 6D pose estimation dataset based on Blenderproc2 in it’s current updated state.

4.2 Rendered images data

My first contribution in this thesis is to build a synthetic annotated dataset of images that

would help me train a deep learning model to estimate the 6D pose of a target satellite

in the context of a typical On Orbit Servicing mission. I build my rendering pipeline

using Blenderproc. Then I generate 20000 photo-realistic images with corresponding pose

as a vectorised SO3 rotation and location vector. I used 12000 images to for train and

validation and 8000 images for the test dataset. I’ll present here how I rendered these

images and how I organised them into datasets.

4.2.1 Rendering pipeline

To obtain the photo-realistic rendered images a whole pipeline has to be set in place using

the functionalities offered by BlenderProc. I have in my disposition a 3D model of an

OOS satellite cf. the serviced Satellite in Figure 1 and 2. Using the python interface of

Blenderproc I first load the 3D model, then I fix a position and orientation in the world’s

reference. I set a strong punctual light to simulate the sun light’s intensity and direction.

I load aluminium texture to simulate the Multi-layer insulation sheet on the front of the

satellite. I set texture parameters as defined in Blender, such as base color, roughness,

displacement, etc that would make more or less creases on the aluminium foil for example.
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Figure 5: Sampled camera positions (black dots) on a half sphere around the object (red
sphere)

Then I sample positions of the camera uniformly in the half shell around the fixed position

of the satellite as the Figure 5 shows. The shell is contained between two sphere of radius

1m and 4m respectively from the center of satellite. The camera is pointing towards the

center of satellite as well. Finally I render RGB and depth images and store them on

the form of a Bop dataset cf.[4] where I get RGB and depth images and corresponding

relative poses stored in a json file as a SO3 rotation 9D vector and a 3D location vector.



4.2 Rendered images data 11

4.2.2 The dataset

To build the dataset I need for training my neural network, I iterate the pipeline above

2000 using a GPU machine on a cluster in DLR and iterate this task 10 times. I obtain 10

folders on the Bop format then I aggregate all the data in one folder including the json files

in one json file including all poses. Checking for errors during this process is necessary,

re-indexing and copying many files can be subtle.So I make sure to check whether each

original rendered image corresponds to it’s original pose in the final aggregated folder.

Once I have 20000 data sample and their pose labels, I split into 12000 images train-

validation dataset and 8000 images dataset. Figure 6 shows some training samples and

Figure 7 shows a sample from test dataset.

Figure 6: Train dataset images samples
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Figure 7: Test dataset images samples

4.3 Validating Data

There is a restriction to qualitative judgement in the scope of this thesis when it’s about

validating the generated data. There is a small sample of real data and I use it to compare

it qualitatively to rendered synthetic data. Although there is some imperfections with

the 3D model, as shown in Figure 9 the aluminum texture has similar light reflection as

in the real images and is almost enough to substitute for Multi-layer insulation texture.

More improvement can be made to make the renderings even more realistic but this level

is enough for training a neural network.
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Figure 8: (a) Rendered images (b) Real images
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5 Satellite pose estimation

In this section we’ll discuss briefly about different concepts important for the presentation

of the results and their evaluation. Mainly we’ll define a continuous representation and

discuss it’s importance in network’s performance. We’ll see some common representations

and briefly point to their advantages and weaknesses. Then follows a small presentation

of presumably known concepts about neural networks. Finally a first description of the

training pipeline is described.

5.1 Pose representation and SVD

Directly regressing rotation is a hard problem, much harder that simply regressing a 3D

location vector. Depending on the choice of the regressed output the results could vary

greatly. That’s called the representation of rotation and it’s of crucial importance to

the results when following a direct regression approach of pose estimation. There is one

propriety of the representation that changes drastically the performance of a regressor

as discussed in [30]. That is the continuity of a representation. [30] rigorously defines

continuity as follows : ”Let R be a subset of a real vector space equipped with the

Euclidean topology. We call R the representation space: in our context, a neural network

produces an intermediate representation in R. Let X be a compact topological space (e.g.

space of 3d rotations SO3) . We callX the original space. In our context, any intermediate

representation in R produced by the network can be mapped into the original space X.

Define the mapping to the original space f : R→ X, and the mapping to the representation

space g : X → R. We say (f, g) is a representation if for every x ∈ X, f(g(x)) = x, that

is, f is a left inverse of g. We say the representation is continuous if g is continuous.”



5.1 Pose representation and SVD 15

5.1.1 SO(3) Rotation and SVD

More concretely on this definition, suppose the network regresses a 9D vector that’s

supposed to represent a rotation. Here the space of representation is R=R9 and X=

SO3. From the space of 3D rotation SO3 we can simply obtain a 9D vector (in R9)

writing the elements of the matrix as a vector. However the inverse operation of writing

a 9D vector as 3x3 matrix doesn’t necessarily give a 3D rotation matrix, because one

need to satisfy orthogonality. Hence this operation as a mapping from R9 to SO3, is not

always invertible, i.e. if composed with it’s the inverse operation as mapping from SO3 to

R9doesn’t always give the identity, and there is not continuous according to the definition

above.

To get a continuous representation an orthogonalization step is necessary after regression.

Gramm-schmit procedure could be used but a discussion in [19] disfavor it over an SVD

orthogonalization that yields better results on a regression task. Directly regressing a 9D

for rotation is not a good idea.

5.1.2 Euler angles

3D euler angles vector is neither a good idea for a representation to regress rotation.

Although it’s a straightforward way to understand rotation, it’s easy to observe the dis-

continuity of this representation. An Euler angle of θ=2π is the same as the angle θ=0

but if the network out put 0.1 and the ground truth would be 2π, then the loss would be

quiet big, penalising the whole network when it shouldn’t change that much since we are

regressing rotations and the predicted and ground truth are almost the same (0.1≈0= 2π

).
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5.1.3 The Quaternion

A unit quaternion q represents rotation as :

q = w + xi + yj + zk = w +


x

y

z

 = cos(α/2) + ~u sin(α/2) (1)

Where ~u is unit vector. This is a compact representation of rotation, not requiring

orthogonalisation as a normalization of the regressed 4D suffices. However if one rotates

around ~u with an angle α, it’s the same as rotation as when one rotates around -~u with an

angle 2π-α , yet it could be concluded from the right hand side of formula 1 that it give

a different unit quaternion -q. The quaternion representation is therefore discontinuous

however more convenient.

5.1.4 6d representation

In the work of [30] a 6D rotation representation is defined and proved to be continuous.

From an SO3 matrix you get this 6D representation from simply removing one column

or row vector. The inverse of this map is not unique as we retrieve back an SO3 matrix

by Gramm-schmit orgonalization procedure.

5.2 Modeling and training pose regression network

I present here the common model and training pipeline to all of the experiments that were

carried out and discussed in details in the next section. Each will slightly modify this

model out of a curiosity to know how the networks performance reacts to the changes.

5.2.1 Model

The model is an untrained VGG16 network with a modified encoder. the new ”classifier”

branches out from a Linear(512 * 7 * 7, 1024) layer, with an added Relu unit, to two
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separate ”classifiers”. One to predict rotation and the other one to regress location.

The rotation ”classifier” starts with a Linear(1024, 512) layers and chains to another

Linear(512, 256) layer and then to a Linear(256, 128) layer until finally regressing a 9D

vector with Linear(128, 9) layer. Relu unit are kept in between to add more non-linearity

while also adding a dropout of 0.5 each time to avoid over-fitting. Simultaneously the

location encoder also starts with a Linear(1024, 512) layer and progressed to another

Linear(512, 256) layer to finally regress the 3D vector with a linear Linear(256, 3) layer.

Rectified linear units and a 0.5 dropout are also added between layers.

5.2.2 Training Overview

Before feeding data to the network a pre-processing phase has to make sure data is well

conditioned. First of all the initial train dataset is split into a validation and training

dataset with 20% and 80% ratios of the initial dataset respectively. A training dataloader

then decomposes the data into batches of equal size and sampled randomly and feed it

to the network. During validation the random batch sampling is deactivated, as well as

the dropout phase. many metrics are computed then out of the prediction and ground

truth values and logged for network performance monitoring. The loss and the gradients,

and the updated weights are computed as well one batch a time and through the whole

epochs and the loop repeated again a number of epochs as the losses decrease and the

network learns.

5.2.3 Testing

In the test phase we go through the same pipeline as the validation with the exception

that we evaluate the model one time on all individual 8000 validation images. We store

these results in a json file for later use to validate the results qualitatively.
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6 Experiments and evaluation

Deep learning methods are limited by the data needed to train and validate them. In the

previous section I describe the generation process of pose annotated images using Blender-

Proc. I use 12000 training images to train and validate a deep neural network directly

regressing the pose in different configurations. A brief description of the experimental

settings follows.

6.1 Settings and training configurations

It’s important to present the experimental setting before an evaluation of the results to

be able to interpret them in the context of how they were produced. I used Pytorch

Lightning as the deep learning framework that follows a clear stylistic guideline for the

whole pipeline decomposing it in simple blocks. This simplicity doesn’t come at the cost

of generality as it offers customisation handles till the level of the GPU. Another advan-

tage offered by Lightning is the acceleration capabilities for Multi-GPU training which I

needed to run my code on a SLURM GPU cluster in the RM institute inside DLR. In a

first experiment I run the training for 4h20m on parallel on two different machines one

using 2xGeForce RTX 2080 Ti GPU and the other a 2xTITAN RTX GPU, in a second

experiment meant to improve results, I run the training on a 2xTITAN RTX GPU for

24 hours. For that I opted for the Distributed Data Parallel Multi-GPU training accel-

eration strategy. In all experiments I used 4 CPUs for each machine and a batch size of

16 images. This choice was mainly made because this configuration offered the best time

performance. With a learning rate of 0.001 I have obtained poor results so I fixed it to

0.0001 which already yielded a way better training and validation performance. Further-
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more, to optimize the performance, I inspected for a better learning rate using Lightning

auto lr find option that finds the best learning rate based on [25]. The optimizer I used

is Adam, which I preferred to an SGD because of the small batch size. To avoid the gradi-

ents exploding or vanishing at some point after a day long training, I used the scheduler,

ReduceLROnPlateau. The inputs I use are RGB images of size 224x224x3 which have

enough resolution to capture all the details including the small variations of the texture.

Using a higher resolution didn’t improve the results by much. I normalize the inputs

before feeding them to the network. The advantageous effect of this was lower loss values

at the start of training and validation, compare to no normalize step. To monitor the

performance of the network I used logged different relevant metrics and visualized them

with the python framework ”Weights and Biases” which offered a real time view on the

progression of the training, validation and testing.

6.2 Hyperparameter search

(a) (b)

Figure 9: learning rate graphs : with SVD (a) no SVD (b)

To increase to performance of training a learning rate search was done as shown in the

figures. Depending on whether or not we include an SVD transformation to the regressed

9D rotation vector, the optimal learning rate varies in the range [10−8, 10−4]. It could be

clearly observed from the graphs that 10−3 is bad choice of the learning results, which
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matches the intuition on the results before the learning rate search. However beyond

10−3 the search of the best learning rate gets tricky because the graphs almost flattens

for both case leaving a margin of doubts on the best learning rate. After a few runs, the

optimal choice was for learning rates in the smaller range [10−5, 10−4] as lower learning

values would yield worse results. The other hyperparameters where kept as they didn’t

present any enhanced performances, namely the batch size and the dropout rate.

6.3 Evaluation metrics

The choice of evaluation metrics is most crucial to make sens of the results and interpret

the networks performance, in terms of time, precision and generality. Most important

of all these metrics is the chosen loss that sets the direction of training as it’s gradient

governs all the weights updates during back-propagation.

6.3.1 Axis-angle rotation loss

Also refereed to as the geodesic loss. This is the most important metric to compute when

estimating a rotation. it’s computes the shortest distance between two rotations in SO3

as explained briefly [12] or [14] in more details. More concretely we compute the axis

angle of the product quaternion of the first rotation quaternion and the conjugate of the

second rotation quaternion. This angle appears in the graphs in degrees.

6.3.2 MSE losses

This section deals with the number of losses computed as a mean square error of two

vectors. In a first experiment the chosen loss for training the network is an MSE loss

of the 12 dimensional vector, 9 components for rotation and 3 components for location.

Additionally other MSE losses where chosen as a measure for network training perfor-

mance and include : the Quaternion vector loss, the 6d-representation vector loss, the 9D

rotation loss, the 3D location vector loss. In a second experiment, the chosen loss was a

hybrid loss of rotation and location inspired from [29] and [1]. Since we have the 3D model
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of the satellite, we take a uniform sample of all the vertices (10 percent of the number

of vertices) and compute their images with both the estimated rotation and the ground

truth rotations. An MSE loss is then used to compute the error between the estimated

output and the ground truth. Then an MSE loss component of the estimated and ground

truth location vectors is then added to made the hybrid loss.

Lhybrid(Ri, ti, R̂i, t̂i) = LR(Ri, R̂i) + ||ti − t̂i||, (2)

LR =
1

|M|
∑
x∈M

||(Rix− R̂ix)|| (3)

where M indicates the set of 3D model points. Here, we subsample 2172 points from

provided 3d point cloud. Ri is the ground truth rotation and ti is the ground truth

translation. R̂σ(i) and t̂σ(i) are the predicted rotation and translation, respectively.

6.3.3 Euler angles losses

Euler angles were introduced as an additional metric. However as expected they are not

the the best target for a rotation regressor because of the inherent discontinuity of this

representation, cf. Section 5.1.1.

6.4 Evaluation of training on Synthetic Data

Initially the intention behind experimenting with a network following a direct 6d pose

regression paradigm was to compare the choice of different representations of the regressed

output. However along the trials, many modifications to network architecture, while

preserving the simple direct regression paradigm, have proved to be crucial for network

performance. Moreover these made the difference between the effects of representation

choice even more evident. One particular choice that made a huge difference is adding

an SVD decomposition before regressing the final output, of namely the intermediate 9D

vector that is supposed to regress a rotation matrix. Once this choice was adopted and
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the comparison between different representation was established, the intention for the

subsequent experiments shifted toward making the results even more accurate. Although

no further experiments were carried out toward comparing the finals results to state-

of-the-art methods on benchmark data, the observed accuracy on the test dataset was

distinctively low on both rotation and location metrics.

6.4.1 The effects of rotation representations

To probe the importance of different representations in terms of regression convergence

speed and accuracy, I divided four experiments of neural network training running in par-

allel. The same settings where preserved for these to account only for the representation

changes among the reasons that would explain the apparent differences in the results.

Each have in the common the pipeline described in 5.2.2. Depending on representation in

question different additional layers have been added to the last 9D vector output meant

previously to directly regress the rotation matrix of the relative pose. In one experiment,

I add a linear layer of 4D vector output with an Rectified linear unit, to introduced more

non-linearity and 50% dropout rate to avoid over-fitting. In a second experiment, I map

the 9D output to another 9D vector representing an SO3 using an SVD based orthogo-

nalization method as described in [19]. Then I add a Quaternion representation as a 9x4

linear layer with Relu and 0.5 dropout. For the third and fourth experiments I repeat

these last two but I switch to a 6d rotation representation instead a Quaternion, by adding

rather a (9,6) linear layer with Relu and 0.5 dropout, once with an SVD orthogonalization

and once without. The loss used for training in these experiments is the MSE loss joined

rotation and location vector. It’s the quadratic error between predicted and ground truth

7D vector in the case of 4D quaternion vector and 3D location vector or the 9D in the

case of 6d rotation representation. The choice of the loss function will prove later to be

of crutial importance to the network’s performance.

As shown in the figure 10 the 6d representation (red line) provides a clear advantage over

the Quaternion representation (blue line) on all metrics. from one hand all the losses of
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the 6d representation converge, and progress faster toward a limit value. From the other

hand, the loss in the 6d representation case decreases smoothly as the curve does not

present any irregularities. The opposite could be said about the loss curves in the case

of the Quaternion representation. The loss curves in this case seem to converge however

slower and with much irregularities. For simplicity many other graphs of the tracked

metrics where omitted and only four metrics where kept here to show the progression of

the network’s performance during training and validation. other figures could be found

annexed.

Figure 10 also shows obvious performance margin between the use of the SVD orthog-

onalization method and without, especially in the case of Quaterninon. However in the

case of 6d representation the margin is a little bit less clear in terms of accuracy and

after many enough epochs as all the curves converge toward the same value soon or later,

using SVD or not. This convergence is slower nevertheless when not using the SVD as the

curve decreases from much higher initial values after more than 40 epochs before reach-

ing a comparable accuracy to when using SVD. It follows then the importance of using

SVD orthogonalization preferably coupled with a continuous representation starting 5D

or higher to avoid irregularities.

If these results underline the performance difference between representations and the

advantage of using an SVD orthogonalization, they do not compare to state-of-the-art

methods in solving the main problem, that is of 6D satellite pose estimation. Further

investigation for ways to optimize performance had to be carried out.
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(a) (b)

(c) (d)

(e) (f)

(g) (h

Figure 10: The evolution of different metrics during training and validation including (in
meters) the MSE loss of the joined rotation and location vector (a) & (b), MSE loss of
the rotation vector (c) & (d), the MSE loss of the location vector (e) & (f) and the mean
angular loss of the Euler angles (g) & (h) in degrees.
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6.4.2 Further optimization

In this section I present a trial to get the best result out of a direct pose regression

having learnt the benefits of a good representation, an SVD orthogonalization and having

discovered new advantages about the loss function choice inspired by [1]. First of all to

be able understand the level of performance of network two metrics are essential. First

the geodesic loss which is the best measure of how far two rotation are and is expressed

in degrees, and second the quadratic error between predicted and ground truth location

vectors.

Looking to optimize the networks performance, the first thing was to do a hyperparameter

search. Mainly a learning rate search yielded already better results as described in 6.2.

Although modifying the learning rate had a positive impact on performance, it wasn’t as

obvious as when I tried a different loss function. So I defined a new loss function that

takes into account both location loss and rotation loss, while in the same time being a

meaningful measure, expressed in meters, and a big boost to network performance. The

naive joint loss is relatively inefficient when trying to simultaneously learn position and

orientation, as well as it doesn’t make much sens as physical measure as it adds up two

quantities of different nature. The quest for a better loss was inspired by this paper [16]

defining a number of loss functions and exploring their efficacy for camera pose regression,

especially against the naive joint loss. I implemented my loss after further readings and

was inspired by [29] and [1] who also tried to implement a direct regression approach

for 6D estimation given a 3D model. According to 6.3.2 defining the Hybrid loss and

shown in equation 2 and 3 one gets over the ambiguity of the joint loss by computing the

quadratic sum of the image vectors of the 3D models vertices by the computed and label

pose. Since the 3d model contains over than 21000 vertices, only a much smaller uniform

sample (10% of total vertices) was kept and was already sufficient in getting way better

results.
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(a) (b)

(c) (d)

(e) (f)

Figure 11: The SVD model outperforming the no SVD model and scoring the lowest
accuracy score during both training and validation on the hybrid loss in meters (a) & (b),
the geodesic loss in degrees (c) & (d), and the location loss is meters (e) & (f).

To see the consequent difference in performance, I kept the Quaternion representation

and I implemented another version with the SVD orthogonalization block before finale

regression. As shown in figure 11 the network implementation without SVD, as the blue

line, performs really well and on all measures, compared to the one without the SVD, in

red line. The location loss of the SVD model even goes relatively down with a margin
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during the whole training while it was observed that’s it easier to regress location. Even if

the losses of both models converge, the one in SVD consistently do so at much lower level

and much more smoothly as shown by lack of irregularities on the loss curves contrarily to

the one without SVD. The performance of the SVD model in it’s own is quiet impressive

given the used simple direct regression scheme as it’s score pretty low on accuracy. Always

on the same figure, it could be seen that the geodesic loss goes below 5 degrees on the

validation and training set, while the location loss goes under 6mm on the training and

validation set. More specific losses are presented in figure 12, to highlight even more the

importance of the SVD orthogonalization. This figures are not meant nevertheless to

judge upon the importance of representation, as the the 6d loss presented is just an MSE

loss of the 6d representation vector obtained only after directly regressing the quaternions.

(a) (b)

(c) (d)

Figure 12: Comparison of both models during training and validation :
(a)&(b) Quaternion vector MSE loss.
(c)&(d) Quadratic error of the 6d representation vector.
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Among all experiments the one using the last described SVD model provides so far the

best results. These results also seem to generalize pretty good looking at the graphs in

figure 13 when comparing the same loss, location and geodesic, between the validation

phase and training phase. There is an apparent gap between the curves, although less in

location loss graph as models capacity is big enough to predict the 3d vector of location

than the any representation of rotation. In seems therefore that the performance goals

are reached both on the level of accuracy or generalization.

(a) geodesic loss training vs validation

(b) geodesic loss training vs validation

Figure 13: Generalisation of the best results
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(a) Hybrid loss values on the test dataset subset

Figure 14: of the best model (SVD)

Although it might seem that one can conclude from the graphs that the results are sat-

isfactory for most known applications, it remains still to hard test them further. With

this intention the following graphs in figure 15 show the performance of the network on

individual images from the test dataset containing in total 8000 items. The values are all

contained in a small band between sufficiently small values, similar or lower to results on

the validation dataset. The mean test geodesic loss is around 2,5 degrees, when location

loss oscillates around 5mm and the total hybrid loss around 1cm.
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(a) geodesic loss on a test dataset subset

(b) location loss on a test dataset subset

Figure 15: test results of the best model (SVD)
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(a) location loss on the test dataset

Figure 16: Test results on the entire test dataset, sorted by distance

After sorting the values of the losses in an ascendant way according to the distance of the

camera from the object, we observe the results in figures 18 and 16. As the graphs show

the network have a harder time predicting the pose of either close up images or the those

where the satellite is furthest. I give in figure 17 examples of these extreme cases.

(a) Far away shot :10.4° geodesic loss (b) Closeup shot : 15.2° geodesic loss

Figure 17: Hard cases
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(a) geodesic loss on the test dataset

(b) location loss on the test dataset

Figure 18: Test results on the entire test dataset, sorted by distance
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6.5 Visualisation : Axis projection

To highlight the pose we show the axes projected on the image given camera intrinsic

parameters.

Figure 19: Pose axes on corresponding sample images
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7 Conclusion

The goal of this thesis was to discover the Satellite 6D pose estimation problem under the

light of recent advances in direct regression methods using deep learning. To compensate

for the lack of data given the data hungry deep learning approach, I rendered annotated

photorealistic data using an initially DLR internal framework. Then I implemented a

direct pose regression method using deep neural networks. The initial goal was to under-

stand the importance of different representations and the crutial role of an intermediate

SVD orthogonalization in increasing the performance of the network. A further optimiza-

tion of the results was carried out and only made the positive performance difference

resulting from the latter choices even more relevant. Many trials lead to discovery of new

ideas, the implementation of a new loss and a better search of relevant hyperparameters.

Good results were obtained on both rotation and location regression metrics.
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