
Enabling hybrid tree-based Adaptive Mesh Refinement using Pyramids

David Knapp (German Aero- Spacecenter, Scientific Computing),
Johannes Holke (German Aero- Spacecenter, Scientific Computing),
Carsten Burstedde (University of Bonn)



Topics

Tree-based AMR

A very brief Introduction into t8code

SFC for pyramids

Results



Tree-based AMR

Figure: The coarse Mesh



Tree-based AMR

Figure: The coarse Mesh Figure: The fine Mesh



Tree-based AMR

k0 k1

p0 p1 p1 p2

k0

k1

Organize each tree via a space-filling curve



Tree-based AMR

k0 k1

p0 p1 p1 p2

k0

k1

SFC

1. Restricted to a level, the index is unique



Tree-based AMR

k0 k1

p0 p1 p1 p2

k0

k1

SFC

1. Restricted to a level, the index is unique

2. Refining does not decrease the index



Tree-based AMR

k0 k1

p0 p1 p1 p2

k0

k1

SFC

1. Restricted to a level, the index is unique

2. Refining does not decrease the index

3. Refining is local



t8code

High-level algorithms

- Adapt

- Partition

- Balance

- Ghost

- · · ·



t8code

High-level algorithms

- Adapt

- Partition

- Balance

- Ghost

- · · ·

Low-level algorithms

- Child

- Parent

- Neighbor

- Successor

- · · ·

The High-level algorithms are independent of the implementation of the elements.



Why do we need Pyramids?

source: https://commons.wikimedia.org/wiki/File:Seattle - Smith Tower 01.jpg



What about 3D?

Hybrid AMR

We want to use tetrahedra and hexahedra,

but we can not (directly) combine them.



What about 3D?

Hybrid AMR

We use prisms and pyramids as binding elements.



How to refine a pyramid

A pyramid refines into 5 pyramids (the corners), ...



How to refine a pyramid

A pyramid refines into 5 pyramids (the corners), 4 tetrahedra (gaps) ...



How to refine a pyramid

A pyramid refines into 5 pyramids (the corners), 4 tetrahedra (gaps) and another pyramid in the center.



The reference pyramid

Map every pyramid of the coarse mesh onto a reference pyramid

- Refining the pyramid, we refine the cube implicitly

- Every child of the pyramid lays in a child of the cube



Types of pyramids

T0

T3

P6

P7

c⃗0

Alltogether, we have 8 types of pyramids



The pyramid-index

We can identify a pyramid via the anchor-node, the type and level of an element



The pyramid-index

Identification

We can identify a pyramid via the anchor-node, the type and level.

Pyramid-index

The pyramid-index of a pyramid P ∈ P is given as the interleaving of the L-tuples, Z ,Y ,X and B:

mP(P) := Z⊥̇Y ⊥̇X ⊥̇B2⊥̇B1⊥̇B0 (1)

where X ,Y , and Z are the binary representation of the x-, y- and z-coordinate of the anchor coordinate. B0,B1

and B2 encode B in binary.



Interleaving?



Interleaving?

Interleaving!

x = (x2, x1, x0)
y = (y2, y1, y0)
z = (z2, z1, z0)
b = (b2, b1, b0)

z⊥̇y⊥̇x⊥̇b = (z2, y2, x2, b2, z1, y1, x1, b1, z0, y0, x0, b0)



The pyramidal SFC



Shape of an element

Problem

For High-Level algorithms, all elements in pyramidal refinement are pyramids



Shape of an element

Problem

For High-Level algorithms, all elements in pyramidal refinement are pyramids

Solution

The shape of an element

Two elements of the class pyramid, one in the shape of a pyramid, the other in the shape of a tetrahedron.



Example: The parent

Algorithm: t8 dpyramid parent

if Shape(P)=Pyramid then
Shift coordinates and compute type of parent;

else
if type(P) neither 0 nor 3 then

t8 dtet parent(P)

else
if P inside Tet then

t8 dtet parent(P)

else
Shift coordinates and compute type of parent;

end

end

end



Changes in High-level Algorithms

Old version New

- Compute first element i

- Compute tree of i via
⌊

i
8l

⌋
- Compute successor of i until last element is computed

Adaptation of New

- Iterate over levels:

- Refine one level
- Partition

Outlook

- Direct computation of the ranges of each process

- Computation independent of the level



Experiment to compare performance of elements in t8code



Runtimes of Adapt and Ghost

Up to 2e6 elements per process and up to 5.1e10 in total. Computation were done on the Jewels Supercomputer.



Runtimes of Partition and Balance

Up to 2e6 elements per process and up to 5.1e10 in total. Computation were done on the Jewels Supercomputer.



Hybrid Mesh

A ”plane” that is approximated by the recommendations in ”Mesh Generation for the NASA High lift Common
Research Model” by C.D. Woeber et al. There are 69,431 tetrahedra, 3,800 hexahedra, 29,520 prisms and 3,120
pyramids in the coarse mesh.



Hybrid Mesh

Example: Moving Wall

Summed over 14 iterations. Up to 1.1e10 elements arise.



Experiment



Experiment

Level 19

- 111.965.464.003 elements

- 5.480.470 pyramids

- 6144 Processes

- 1.8 million elements per
Process

- 14.3 seconds in total



t8code @ SIAMPP22

Meshing contest @IMR22

MS28 Thursday, 24th, 11:45 UTC-8 / 19:45 GMT 

A space-filling curve for pyramids

David Knapp, J. Holke, C. Burstedde

IMR22, Thursday, 24th, 17:10 GMT / 09:10 UTC-8

Constructing a Volume Geometry Map For

Hexahedra With Curved Boundary 

Geometries

Johannes Holke, S. Elsweijer, 

J. Kleinert, D. Reith



More about t8code, AMR and SFC

Code: https://github.com/holke/t8code

Article: An Optimized, Parallel Computation of the Ghost Layer for Adaptive Hybrid Forest Meshes, Submitted to
SIAM Journal on Scientific Computing, Johannes Holke and David Knapp and Carsten Burstedde

Thesis: A space-filling curve for pyramidal adaptive mesh refinement, Master thesis at University of Bonn, David
Knapp

Article: A Tetrahedral Space-Filling Curve for Nonconforming Adaptive Meshes, SIAM Journal on Scientific
Computing, Carsten Burstedde and Johannes Holke

PhD Scalable algorithms for parallel tree-based adaptive mesh refinement with general element types, PhD thesis
at University of Bonn, Johannes Holke

Thesis: The local discontinuous galerkin method for the advection-diffusion equation on adaptive meshes, Master
thesis at University of Bonn, Lukas Dreyer

Code: https://github.com/lukasdreyer/t8dg

and more


