Open Source Science for Large-Scale Data Mining in Earth Observation

Earth observation data AI processing system architecture, and international public-private partnerships concept

NASA workshop #2: State-of-the-Art in Mission Data Processing Systems
Mar 1-4, 2022

terrabyte initiative @ DLR & LRZ, Germany
presenter: Conrad M Albrecht

note: The presentation material is released under CC-BY, but all logos associated with institutions, corporations, and software stay protected under their respective copyright.
Background & Objectives

1. Large-Scale Data Mining in Earth Observation*
 ○ A key challenge for deep/machine learning in Earth observation is limited availability of labels for model training due to the human labor-intensive collection process
 ○ (among others) weakly-supervised learning concerns artificial intelligence methods to
 ■ Compress data for multi-purpose model training (self-supervised learning), and to
 ■ Handle auto-generated, noisy labels

2. The DLR terrabyte** Mission Data Processing System (MDPS)
 ○ What are your key and driving requirements?
 ■ Efficient data assembly of co-registered spatio-temporal geo-information for machine learning
 ■ Co-location of data and compute for Big Geo-Data processing
 ■ Geo-data discovery and cross-layer operations
 ■ Platform interoperability for federated system designs
 ○ Who are the customers and stakeholders/primary user?
 ■ Earth Observation Center of the German Aerospace Center (national research institute)
 ■ Other research centers of the Helmholtz Association (national research institutes)
 ■ Technical University of Munich (academia)
 ■ Collaboration with corporate research and industry
 ○ What external factors constrain your solution?
 ■ Hosting a mix of public and private datasets (data access management)
 ■ Implementation of the GDPR
 ■ Etc. (not in focus for this presentation)

** https://www.lrz.de/presse/ereignisse/2021-07-22-terrabyte_ENG
*** https://doi.org/10.1109/BigData52589.2021.9672060
High-Level Data Processing System Architecture: base system

- On the Fly Coding
- Bulk order frontend
- Container frontend

- GIS API
- Access & Processing

- Systematic Processing
 - WF Engine
 - Container Env.

- Data Discovery & Access
- Inventory
- Ingestion

- Online Storage
- Long Term Archive
- Cloud Services
- HPC Services

- Hardware

Access and Identity Management

On the fly computing

terabyte platform
Open-Source Software Stack (incomplete) sample list we evaluate

geospatial data cube services
- EDC
- SpatioTemporal Asset Catalog

geospatial & machine learning processing backends
- PyTorch
- TensorFlow
- xarray
- EO

compute resource & work flow management, monitoring
- Prometheus
- argo
- Kubernetes
- Docker
- ENROOT*
- Charliecloud
- SLURM
- DASK
- OnDemand

* https://github.com/NVIDIA/enroot
High-Level Data Processing System Architecture: details
High-Level Data Processing System Architecture: *hot* data cube extension

Objectives:
- **Accelerate academic research** serving up-to-date, retrievable open geospatial benchmark datasets for machine learning
- Seamless collaboration with international researchers through browser-based code-development interfaces
- Host geospatial data cubes for AI community challenges in Earth observation

Platform:
- IBM PAIRS
 - [Website](https://pairs.res.ibm.com/tutorial)
 - [DOI](https://doi.org/10.1007/978-3-030-55462-0_1)
Open-Source Software Stack *hot* data cube extension

User Interaction & Web-IDEs
- QGIS
- Python
- GeoServer

Spatio-temporal Analytics
- pdal
- Spark
- SQL
- GDAL

Distributed Geo-data Indexing & Curation
- Apache HBase
- PostGIS
- Geomesa
- Docker
PAIRS*: **: *Hot* Data Cube design

* architecture: https://doi.org/10.1109/BigData.2015.7363884

** sample applications: https://doi.org/10.1109/BigData.2016.7840910

+ data cube: unified, nested spatial grid
+ key-value store: scalable even for global and sparse datasets

geodata indexing

spatio-temporal data cube

distributed key-value store
Compute & Storage Infrastructure

- terrabyte system hosted at Leibniz Supercomputing Centre (LRZ) co-located with SuperMUC NG*

- cluster nodes partitioned into CPU and GPU machines attached to Infiniband (200Gb/s) storage system (~40PB HDD & ~1PB SSD) including S3 RESTful API access

- core datasets: global Sentinel and Landsat product data since mission start, available at terrabyte and near-line at *EOC National Satellite Data Archive (D-SDA)*

- additional cloud storage machines (storage: NL-SAS HDD & NVMe SSD)

- *hot* data cube with dedicated nodes enabling fine-grained, custom spatio-temporal indexing and cross-dataset queries of geo-information

* https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
System Interoperability: *Call to the Open Big-Geo Data Community*

1. existing OpenGeospatial Consortium standards
 - OpenGeospatialConsortium WebProcessingService: https://www.ogc.org/standards/wps
 - OpenGeospatialConsortium DataAccess(and)ProcessingAPI: https://www.ogc.org/blog/4665
 - SpatialTemporalAssetCatalogue API: https://github.com/radiantearth/stac-api-spec
 - SentinelHub processing API: https://docs.sentinel-hub.com/api/latest/reference/#tag/process

2. Cross-platform, cross-datalayer spatio-temporal data cube join RESTful API
 - follow-up on OGC initiative „Towards Data Cube Interoperability“: https://www.ogc.org/projects/initiatives/gdc
 - **Objective:** pursue a user-centric, pragmatic approach to define an (extendable) API for data cube filtering and joining
Implementation Strategy

- **focus of terrabyte** initiative is collaborative science projects and experiments with scalable **Big Geo-Data processing** solutions in **hybrid HPC-cloud** environment
- **software stack** is designed around the **open-source paradigm**
- opportunity to **collaborate with international partners** to establish cross-platform **WebAPI interface standards through OGC**
- LRZ implements information security management system according to standards ISO/IEC 20000-1 and ISO/IEC 27001
- **cost efficiency through** scalable GPFS file system coupled to an extendable cluster of C/GPU nodes added in multiple stages of project; terrabyte targets consolidation of DLR‘s in-house compute resources for AI workloads
Supporting Open-Source Science

NASA’s Science Mission Directorate defines open-source science as a **collaborative culture** enabled by technology that empowers the **open sharing** of data, information, and knowledge within the scientific community and the wider public to accelerate scientific research and understanding.

- **collaborative culture**: close interaction with academia wrt. the development of state-of-the-art AI methodologies in Earth observation on international level: https://ai4eo.de/partners
- **open sharing**: integration of scientific projects on terrabyte through national and German funding following the FAIR principles*
- **technological challenges**:
 - rapidly evolving plurality of open-source technologies with limited software life cycles
 - balance system security and open-source, open-access
- **accelerator to „open“**: lively international consortia embracing all relevant players of the geospatial domain to define technically solid, vendor-neutral industry standards

* https://www.go-fair.org/fair-principles
THX 2 …

- Marc Jochemich (DLR Washington, DC)
- Jonas Eberle & Maximilian Schwinger (German Remote Sensing Data Center @ DLR)
- Nicolay Hammer, Johannes Albert-von der Gönna, and Juan Durillo Barrionuevo (LRZ Big Data & AI team)
- Xiaoxiang Zhu („AI for Earth Observation“ lab @ TUM & DLR)
- Hendrik Hamann & Johannes Schmude (Physical Analytics @ IBM Research)

… for support, collaboration & discussions