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Abstract

Agricultural activities and vegetation growth cause rapid small-scale vegetation

changes which dynamically alter habitat suitability. Time series enable to track

down such variations of vegetation structure and are promising to examine

their impact on animals’ life. Nevertheless, their potential to characterize vege-

tation dynamics in ways pertinent to animals’ fine-scale habitat use has not

been adequately explored and ecologically meaningful proxies are lacking. To

address this gap, we exemplary investigated foraging activities of breeding white

storks in an agricultural landscape. Reflecting on the understanding that storks

require short vegetation to access prey, we examined if good foraging condi-

tions – early growth and post-harvest/mowing periods – are detectable using

the points between local minima/maxima in NDVI profiles (half-maximum).

We processed 1 year of Landsat imagery to identify half-maximum periods

(HM: good prey access) and non-half-maximum periods (non-HM: poor prey

access) on field-scale in croplands and grasslands. Additionally, we mapped

used/unused fields and retrieved foraging duration/daily visitation rates from

GPS tracks of the storks. We then explored habitat use, compared habitat use

with habitat availability and tested temporal predictors distinguishing between

HM/non-HM in habitat selection models. Examining habitat use, storks revis-

ited croplands and grasslands significantly more often during HM than during

non-HM, while foraging duration was only prolonged in croplands during HM.

However, comparing habitat use with habitat availability, we observed that

storks used croplands and grasslands in significantly higher proportions during

HM than during non-HM. Additionally, we found that temporal information

affected storks’ habitat selection and improved model performance. Our find-

ings emphasize that the half-maximum proxy enables to coarsely distinguish

temporal resource variations in storks’ foraging habitats, highlighting the poten-

tial of time series for characterizing behaviorally-relevant vegetation dynamics.

Such information helps to create more species-centered landscape scenarios in

habitat models, allowing to unravel effects of small-scale environmental changes

on wildlife to ultimately guide conservation and management.
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Introduction

Animal habitats are continuously altered by natural and

man-made processes (Foley et al., 2005; Newbold

et al., 2015; Vitousek, 1997). Remote sensing time series

can capture a wide range of these environmental dynam-

ics from small to large spatiotemporal scales (Kerr &

Ostrovsky, 2003). Linked to animal behavior, movement

and habitat use retrieved from GPS-telemetry, they pro-

vide unparalleled means to analyze effects of environmen-

tal alterations on animals’ lives (Kays et al., 2015; Nathan

et al., 2008; Pettorelli et al., 2011). At present, time series-

derived proxies remain relatively underused in wildlife

studies (He et al., 2015) and are primarily applied to

characterize vegetation phenology at large spatial scales

(Neumann et al., 2015; Pettorelli et al., 2014). Studies

investigating the green wave hypothesis, for example often

used the instantaneous rate of green-up to demonstrate

that many herbivorous species synchronize their foraging

habitat selection with the peak in vegetation green-up

during spring migration (Bischof et al., 2012; Merkle

et al., 2016; Wang et al., 2019). Fine-scale movements

and behaviors of animals are in contrast to migration,

much less affected by phenology (Neumann et al., 2015)

and rather influenced by short-term changes in vegetation

structure, for example through human activities. How-

ever, characterization of these small-scale dynamics using

temporal proxies is, to our knowledge, not yet established

in ecological research.

In addition to phenology, vegetation characteristics in

the small-scale landscape mosaic are influenced by agricul-

tural practices (Latus & Kujawa, 2005; Rodrı́guez

et al., 2013). Activities like vegetation removal through

mowing/harvest can significantly alter habitat suitability in

the short term (Dunning et al., 1995; Johst et al., 2001;

Pfeifer & Brandl, 1991). One positive result is a temporary

increase in abundance and a restored accessibility of prey

for species relying on short vegetation for foraging (Peggie

et al., 2011; Vickery et al., 2001). By contrast, negative con-

sequences arise for meadow breeders whose nesting sites

and broods often succumb to agricultural practices (Green

et al., 1997; Grübler et al., 2008). Gaining a comprehensive

understanding of how small-scale environmental drivers

influence animals’ habitat use, selection and distribution as

well as their individual fitness and population demograph-

ics is critical for animal ecology and conservation. Conse-

quently, temporal information on small-scale vegetation

dynamics are urgently needed to monitor, understand and

predict their effects on wildlife to ultimately guide conser-

vation and management (Dunning et al., 1995; Kerr &

Ostrovsky, 2003; Pettorelli et al., 2014; Pressey et al.,

2007).

To date, the dynamics in the small-scale landscape

mosaic have often been overlooked (Johst et al., 2001) or

the proxies used have not been tailored to the behavioral

needs of the studied species (Cord et al., 2013; Roever

et al., 2013). One example of such shortcomings are stud-

ies exploring foraging activities of breeding white storks; a

synanthropic species that benefits from agricultural prac-

tices. Due to the growing human footprint, the storks’

European breeding territories are increasingly composed

of croplands and grasslands (Johst et al., 2001; Olsson &

Rogers, 2009). Part of these potential foraging habitats is

not available throughout their breeding season (~April–
August) because vegetation becomes too tall during sum-

mer, making it difficult for storks to access prey (Böhn-

ing-Gaese, 1992; Pfeifer, 1989). Mowing and harvest

activities, however, re-expose their prey, though often for

limited periods (Pfeifer, 1989; Pfeifer & Brandl, 1991).

Although well recognized (Alonso et al., 1991; Moritzi

et al., 2001; Olsson & Rogers, 2009; Rachel, 2006), these

vegetation dynamics received no attention in quantitative

research. Earlier studies characterized storks’ breeding

areas primarily with landcover classifications such as

CORINE (Gadenne et al., 2014; Radovic & Tepic, 2009),

seldomly supplemented by single-date vegetation indices,

typically NDVI from MODIS time series (Zurell

et al., 2018). Foraging habitats were therefore either

viewed statically or at specific points in time. Addition-

ally, due to the low spatial resolution of MODIS (250 m)

and CORINE (10 ha) data, vegetation properties from

small fields have likely been blended together frequently

(Bischof et al., 2012; Gao et al., 2017). Previous analyses

have therefore failed to capture the small-scale vegetation

structure and dynamics critical for storks’ prey accessibil-

ity, which according to Johst et al. (2001), can lead to

erroneous conclusions regarding their habitat selection

strategy.

Time series from medium-resolution sensors enable

to characterize effects of natural and human-induced

vegetation dynamics (Kerr & Ostrovsky, 2003; Nagendra

et al., 2013) and hold promise for studying fine-scale

animal behaviors (Neumann et al., 2015; Pettorelli

et al., 2011). The currently active Landsat satellites pro-

vide free imagery with 30 m spatial resolution and a

default revisit rate of 8 days (Chastain et al., 2019).

Using these data, intra-annual vegetation profiles, like

daily-resolved NDVI, can be derived for fine-scale habi-

tat features like individual fields (Fig. 1) (Gao

et al., 2017; Roy & Yan, 2018). These allow characteriz-

ing intra-annual vegetation development (Pettorelli

et al., 2005) and can capture effects of harvest/mowing

which are known to cause a decline of NDVI (Estel

et al., 2015; Gao et al., 2017; Griffiths et al., 2020). As
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an established indicator for leaf-unfolding/loss of

canopy structure, the so-called half-maximum (Fig. 1)

marks the points between local minima/maxima in

NDVI profiles (Bradley et al., 2007; Fisher et al., 2006).

It has been successfully applied and validated to delin-

eate spring green-up/post-harvest periods in croplands

(Estel et al., 2016) and should also be applicable in

grasslands where the detection of mowing events under-

lies similar principles (Estel et al., 2018; Griffiths

et al., 2020). Although the Landsat-based half-maximum

cannot determine exact harvest/mowing dates, it should

allow to roughly identify periods with good prey acces-

sibility – hereafter termed half-maximum periods (HM)

(Fig. 1) – for species whose foraging success depends

on short vegetation. Nevertheless, the potential of time

series for deriving such ecologically relevant dynamic

information remains to be tested.

Here, we aim to characterize small-scale vegetation

dynamics in an agricultural landscape with time series

and explore their potential for studying animals’ fine-

scale habitat use. As a test case, we focus on landscape-

oriented foraging activities of breeding white storks. We

use Landsat time series to derive information on intra-

annual vegetation dynamics that we assume are related to

differences in prey accessibility for storks: the half-

maximum proxy on field level. Used and unused fields,

foraging duration and daily visitation rates are obtained

from GPS-telemetry data of storks breeding in Germany.

We first investigate storks’ habitat use by comparing for-

aging duration/daily visitation rates of fields during HM

with those of fields during non-half-maximum periods

(non-HM) (Fig. 1). Next, we explore whether the

observed daily proportions of foraging time in these habi-

tats result from their relative availability or instead are

indicative for selection/avoidance. Finally, we contrast for-

aging habitat selection models fitted with and without

temporal predictors that allow discriminating between

HM/non-HM. We base our hypotheses on studies show-

ing that breeding storks primarily forage on croplands

and grasslands after agricultural activities or during the

early growing season when vegetation is short (Alonso

et al., 1991; Böhning-Gaese, 1992; Rachel, 2006; Thomsen

& Struwe, 1994). Assuming the investigated time series

and proxy allow us to identify these favorable conditions,

we expect (1) to observe longer foraging duration/higher

daily visitation rates on fields during HM compared to

non-HM; (2) fields during non-HM to be avoided as

these should limit prey accessibility; and (3) that temporal

predictors that enable a discrimination between HM/non-

HM are associated with foraging habitat selection and

improve model performance compared to predictors

without such temporal information.

Figure 1. Hypothetical (Gaussian) representation of an intra-annual NDVI profile of a single field with half-maximum (HM) and non-half-

maximum periods (non-HM). The half-maximum marks the point between local minima and maxima in NDVI profiles and has been applied to

discriminate early vegetation growth and harvest phases (Bradley et al., 2007; Estel et al., 2016; Fisher et al., 2006). The index might therefore be

useful for identifying periods of potentially good or poor conditions of prey accessibility for species whose foraging success depends on short

vegetation.
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Materials and Methods

Study areas

The breeding areas of the studied storks are located in north-

eastern Germany between Berlin, Hanover and Hamburg

(Fig. 2A). The considered sites are dominated by agricultural land

use with high shares of croplands (47–56%) and low to medium

amounts of cultivated grasslands (6–32%) (Supplementary

Material of Zurell et al. (2018)). We delimited the extent of our

study areas using a radius of 3.3 km around the nest of each

stork. This distance corresponds to the 95th percentile of the

measured nest distances of all foraging locations recorded during

the considered breeding season (see next section).

Telemetry: derivation of foraging locations,
duration and visitation rates

To retrieve storks foraging locations, foraging duration

and daily visitation rates we utilized e-obs telemetry data

of 18 breeding individuals from 2014, with a 5-min tem-

poral resolution and a movement behavioral class pro-

vided for every location (Rotics et al., 2016) (Fig. 2B).

Initially, we excluded the migration periods, i.e. days with

covered distances larger than 100 km (Flack et al., 2016),

to limit the observations to the breeding season. The lat-

ter was bounded by the days between the first stork arriv-

ing at (27 March 2014) and the last stork leaving the

breeding territory (18 August 2014). Since storks forage

while walking and stop only for short resting periods

(Carrascal et al., 1990), we sampled locations classified as

walking/resting. We allocated the samples to individual

foraging bouts which were subdivided when a stork had

returned to its nest or the distance covered between two

locations exceeded 500 m (Alonso et al., 1991) and

excluded resting periods lasting longer than 10 min. Con-

tinuous movement trajectories provide more reliable esti-

mates of habitat use than individual locations (Fleming

et al., 2016). Hence, we applied continuous-time move-

ment modeling (using the R package ctmm (Fleming &

Figure 2. Overview of the locations of the breeding areas of the studied white storks in north-eastern Germany (A) and the data utilized for the

analyses (B–D). The latter comprise e-obs telemetry data of 18 white storks of 2014 (Rotics et al., 2016) (B), time series of Landsat 7 and Landsat

8 data from 2014 (D), a digital landcover model with field geometries from 2012 (BKG, 2016) (D) and a landcover classification from 2014 (Mack

et al., 2016) (C). Map data basis in (A): Global Urban Footprint (GUF) (Esch et al., 2017).
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Calabrese, 2020)) to simulate up to 1000 – until conver-

gence – movement paths per foraging bout. To detect for-

aging locations and quantify habitat use, we spatially

linked the simulation sets with field geometries retrieved

from the Digital Landcover Model of Germany

(BKG, 2016); a vector database of environmental objects

from 2012 (Fig. 2D). The foraging duration in a field per

foraging bout and stork corresponds to the median drawn

from one simulation set. The daily visitation rate per field

equals the number of daily foraging bouts in which the

storks used a given field divided by the number of storks

that visited that field on that day. See Text_S1 for

methodological details.

Remote sensing: derivation of vegetation
dynamics on field-level

To characterize small-scale vegetation dynamics, we used

time series of Landsat 7 Enhanced Thematic Mapper+
(ETM+) and Landsat 8 Operational Land Imager (OLI)

data (Fig. 2D). We acquired all available ETM+ and OLI

scenes (Level 1 – Tier 1) with cloud coverage below 100%

for the year 2014, covering the storks’ breeding areas. In

total, we used 128 scenes (ETM+: 55 and OLI: 73) dis-

tributed among five spatial tiles with the number of sce-

nes per tile ranging from 20 to 31 (Fig. 3A and B). We

pre-processed each scene (see Text_S2) and computed the

NDVI. Next, we linked the time series with the field

geometries (Digital Landcover Model of Germany

(BKG, 2016)) and derived the spatial median of NDVI

for every field and time step. To ensure temporal repre-

sentativity of vegetation dynamics over the breeding sea-

son, we only retained fields with at least six valid

acquisitions during that time (Fig. 3C–F), as suggested in

Franke et al. (2012). We used a pre-existing Landsat-

based landcover classification from 2014 (Mack

et al., 2016) to sample cropland and grassland fields and

eliminated objects with different landcover type (Fig. 2C).

Next, we generated interpolated NDVI profiles with 1-day

temporal resolution for every field through thin-plate

spline curve fitting (Duchon, 1977), using the R package

fields (Nychka et al., 2017). Aggregated NDVI profiles

retrieved from the individual cropland and grassland

fields are displayed in Figure 3G and H. We extracted the

half-maximum to delimit the periods that we assumed to

be related to differences in storks’ prey accessibility.

Unlike previous studies (Bradley et al., 2007; Estel

et al., 2016; Fisher et al., 2006), we did not determine a

global half-maximum for the whole year (Fig. 1), but

instead derived local half-maxima between successive

minima and maxima from the NDVI profiles of each

field. We labelled days with NDVI below the local half-

maximum day NDVI as HM and those above as non-

HM. We expected these periods to represent good (HM)

and poor (non-HM) foraging conditions for storks,

respectively.

Habitat use related to vegetation dynamics

We examined habitat use in croplands and grasslands

based on the individual foraging duration and daily visi-

tation rate per field. Storks are known to forage longer in

fields with favorable foraging conditions and/or to visit

them more often (Alonso et al., 1991; Johst et al., 2001).

To explore if the foraging duration/daily visitation rate

per field are higher in fields during HM than during non-

HM, we compared the distributions of these measures

against each other. The significance of the differences

(HM > non-HM) was determined using the Wilcoxon

signed-rank test. Storks’ foraging duration increases natu-

rally as the breeding season progresses, because adults can

spend longer times away from the nest when the offspring

reaches a certain age (Böhning-Gaese, 1992; Moritzi

et al., 2001). We therefore analyzed habitat use on a

monthly basis. Foraging duration and daily visitation

rates from March and April were combined as the breed-

ing season started at the end of March (27 March 2014).

Comparison of habitat use versus habitat
availability

Next, we explored if storks’ use of the four studied habi-

tat types – croplands and grasslands during HM and

non-HM – reflects their relative availability or instead

resulted from selection/avoidance. We compared use/

availability on a daily basis, focusing on the entire stork

population (18 individuals) but incorporating use/avail-

ability shares of each individual separately (design III

following (Thomas & Taylor, 1990)). We derived

population-level selection ratios using the Manly Selectiv-

ity Index (Manly, 2002). This index can be computed for

each habitat with the following equation:

ŵi ¼ uiþ= ∑
n

j¼1

πij uþj

where ui+ is the proportion of foraging time on habitat i

of all storks, u+j is the total foraging time of the jth stork

and ij is the available proportion of habitat i to stork j.

For each stork, we defined the proportion of available

habitat as the number of fields of habitat type i compared

to the total number of cropland and grassland fields

within its breeding area. ŵi can range from zero to infin-

ity and values close to one suggest that use is propor-

tional to the availability. Values that are significantly

below or above one are indicative for avoidance or
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selection, respectively. We tested the significance of ŵi by

estimating its standard error SE (ŵi), calculating the fol-

lowing statistic:

ðŵi−1Þ=SEðŵiÞf g2

and comparing it with critical values for the chi-squared

distribution with one degree of freedom (Manly, 2002).

The computation of ŵi, their statistical significance and

95% confidence intervals with Bonferroni correction

(Manly, 2002) were performed using the R package ade-

habitatHS (Calenge, 2006). Lastly, we examined which

habitat type – HM or non-HM – was used at higher pro-

portions relative to its availability in croplands and grass-

lands. Thus, we compared the daily distributions of ŵHMj

and ŵnon-HMj values (single-stork selectivity indices) per

landcover type and used the Wilcoxon signed-rank test to

determine if either of them had significantly higher values

than the other. See Text_S3 for methodological details.

Habitat selection modeling

Finally, we investigated if the probability of fields being used

as foraging habitats by storks can be associated with tempo-

ral proxies that enable to discriminate HM/non-HM, and if

these can improve model performance compared to com-

mon predictors. We employed a binary response variable

that distinguishes visited and non-visited fields throughout

the breeding season. As no true absences (non-visited fields)

were known, we followed the approach suggested by Zurell

et al. (2018): for each cropland/grassland field that the

storks’ visited during a foraging bout (presences), we ran-

domly sampled three fields (pseudo-absences) of the same

landcover type within 1 km distance, making sure the three

selected were not used within 4 weeks around the visit. For

every presence/pseudo-absence field, we derived a set of five

predictor variables (Fig. 4): Distance (1) and NDVI (2) are

common proxies in studies addressing storks foraging habi-

tat selection. They characterize the decrease in habitat qual-

ity for central place foragers – like breeding storks – with

increasing distance from their nest (Olsson & Bolin, 2014)

and the vegetation status of the fields at the visiting day

(Zurell et al., 2018), respectively. We further introduced two

proxies that enable to differentiate between HM/non-HM:

The half-maximum amplitude (HM_Amp) (3) measures

the relative difference between NDVI during a visiting day

and NDVI at the closest local half-maximum day(s) (Fig. 4).

It is positive during HM and negative during non-HM. The

half-maximum distance HM_Dist (4) measures the absolute

distance (days) of a visiting day to the nearest local

half-maximum day on the fields (Fig. 4). Additionally,

NDVI_Range (5) quantifies the absolute difference between

the absolute minimum/maximum of an NDVI profile and

thus indirectly captures information on vegetation manage-

ment (Esch et al., 2014; Franke et al., 2012). We modeled

habitat selection using all presence/pseudo-absence fields

together (croplands and grasslands = combined LC) as well

as separately for each landcover type (croplands or grass-

lands = single LC) with generalized linear mixed models

(GLMMs). For every combination (combined and single

LC), we fitted seven GLMMs (binomial distribution;

maximum-likelihood-estimation) with varying degrees of

temporal information (Table 1). Stork identity was included

as random effect on the predictors’ intercepts/slopes (Muff

et al., 2019) and the normalized field-size was considered as

offset. Additionally, we added the landcover type in the

combined LC models. Prior to modeling, we checked for

collinearity between the predictors and did not consider

NDVI and HM_Amp together in one model because they

were correlated (Pearson’s r > 0.5). We used the R package

lme4 (Bates et al., 2015) for model fitting and assessed the

proportion of total variance explained by the fixed model

terms and hence, model performance, with the marginal R2

(Nakagawa & Schielzeth, 2012).

Results

Throughout their breeding season in 2014, the studied

storks spent 3290 � 405 h (total � standard deviation

(SD) of simulated movement paths) (~27.5%) of their for-

aging time in croplands and 8668 � 994 h (~72.5%) in

grasslands. This time was distributed among 7980 and

20 133 field visits, respectively.

Habitat use related to vegetation dynamics

In croplands, we found that foraging duration was longer

in fields during HM and that storks tended to visit these

fields more frequently than those during non-HM (Fig. 5:

Figure 3. Overview of the temporal coverage of the study area with Landsat 7 (ETM+) and 8 (OLI) imagery and the resulting NDVI profiles of the

fields under consideration. (A) A map with the location of the four study regions and breeding areas as well as their spatial coverage by Landsat

tiles. (B) A weekly breakdown of Landsat data availability for each Landsat tile in 2014. (C–F) The cropland and grassland fields considered within

this study together with information on the number of valid images that were available for each field during the breeding season 2014.

Aggregated NDVI profiles of the studied cropland and grassland fields including their variance (mean and 25th–75th percentile) are displayed in

(G and H), respectively. Mean, 25th and 75th percentile were derived for each day (DOY 86–230) using the interpolated NDVI values from all

fields (separately for croplands (2855 fields) and grasslands (2908 fields)) in the storks’ breeding areas. Map data basis: Global Urban Footprint

(GUF) (Esch et al., 2017). ETM+, Enhanced Thematic Mapper+; OLI, Operational Land Imager.
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1A/B). In grasslands, we also observed higher daily visita-

tion rates of fields during HM than during non-HM in

most months (Fig. 5: 2B). However, in terms of foraging

duration, no lasting pattern of preference for grassland

fields during HM became apparent (Fig. 5: 2A).

Comparison of habitat use versus habitat
availability

Throughout most parts of the breeding season, storks sig-

nificantly avoided croplands during non-HM (ŵi < 1,

P < 0.05: 80.1% of all days) (Fig. 6: 1). Significant selec-

tion over a longer period mainly occurred in grasslands

during HM in the middle of the breeding season (~May

until mid-July) (ŵi > 1, P < 0.05: 46.4% of the breeding

season) (Fig. 6: 2). In contrast, storks’ use of croplands

during HM and of grasslands during non-HM was mostly

proportional to the availability of those habitats (ŵi ~ 1,

P ≥ 0.05: cropland 63.6%; grassland 82.1% of the breed-

ing season) (Fig. 6: 1/2).

In both landcover types, the individual storks’ field use

during HM occurred throughout large parts of the breed-

ing season in higher proportions than field use during

non-HM, compared to the relative availability of those

habitats (ŵHMj~ > ŵnon-HMj~) (Table 2: a/c) (Fig. 6: 1/2).

For grasslands, however, this difference was significant

primarily from mid-May to mid-July, whereas throughout

April, storks even used grassland fields during non-HM

in significantly higher proportions than fields during HM

(ŵnon-HMj~ > ŵHMj~) (Fig. 6: 2).

Habitat selection modeling

We found that the best-performing habitat selection mod-

els – combined and single LC – were the ones fitted with

temporal predictors (see detailed model outputs Table 3

[combined LC] and Table_S2 [single LC]). Among those,

the models with HM_Amp instead of NDVI could

explain a higher share of the overall variance (margin-

al_R2 (combined LC): M2 = 0.256 vs. M3 = 0.270).

Figure 4. Hypothetical (Gaussian-mixture) representation of an intra-annual NDVI profile of a single field and the proxies we considered for

foraging habitat selection modeling within this study. NDVI on a visiting day and distance to the nest have been frequently used to study white

storks foraging habitat selection but do not or only indirectly contain information on vegetation development. Half-maximum amplitude

(HM_Amp) and half-maximum distance (HM_Dist) are proxies that use temporal information and enable to relate foraging visits relative to HM

and non-HM of a field. We assume those periods to be associated with good and poor conditions for prey accessibility of storks, respectively. The

NDVI_Range measures the difference between the absolute minimum/maximum of a field and does therefore indirectly capture information on its

vegetation management.
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Distance and HM_Amp were always – in the combined

and single LC models – significant model terms (M3/M5/

M7). In particular, our results suggest that storks’ habitat

selection is negatively influenced by the distance from the

nest (combined LC M5: −5.86 � 1.06 [estimate�SE]) and

positively affected by the HM_Amp (combined LC M5:

4.23 � 0.58) (Fig. 7A/C). HM_Dist (M5) showed a nega-

tive, yet only slight effect on habitat selection (combined

LC M5: −1.08 � 0.29) (Fig. 7D), though was not a signif-

icant term in all single LC models. Adding the NDVI_R-

ange (M7) positively affected habitat selection in the

single LC cropland model but worsened model perfor-

mance and was not significant in the combined LC

and single LC grassland model. Despite its poorer perfor-

mance relative to HM_Amp, including NDVI in the com-

bined LC and single LC cropland model (M2) improved

performance compared to the model considering only

non-temporal predictors (M1) (marginal_R2 (combined

LC): M1 = 0.234 vs. M2 = 0.256). Here, we identified a

significant negative effect of NDVI on storks’ habitat

selection (combined LC M2: −1.53 � 0.29). Interestingly,

NDVI had no significant effect in grasslands. Finally, the

combined LC models showed that storks tended to select

grasslands over croplands (combined LC M5: Landcover

[Grassland] 0.50 � 0.02) (Fig. 7B).

Discussion

Phenology and agricultural activities alter the small-scale

vegetation structure of the landscape mosaic, thereby

affecting prey accessibility and availability for species such

as the white stork (Johst et al., 2001; Pfeifer &

Brandl, 1991; Tryjanowski et al., 2005). Since the

landscape-oriented foraging behavior of storks is well

studied, we used this species to explore the potential of

time series for characterizing behaviorally-relevant vegeta-

tion dynamics. Reflecting the understanding that storks

generally prefer short vegetation for foraging (Moritzi

et al., 2001; Sackl, 1989; Struwe & Thomsen, 1991), we

attempted to identify early vegetation growth and post-

harvest/mowing periods (HM = good conditions) with

the half-maximum proxy. Although not all our findings

were significant, we found that storks tended to favor for-

aging during HM over non-HM (=poor conditions) in

croplands and grasslands throughout large parts of their

breeding season. Hence, we propose that time series are

indeed suitable for deriving ecologically relevant informa-

tion on small-scale vegetation dynamics.

Storks generally prefer grasslands over croplands (Gad-

enne et al., 2014; Pfeifer & Brandl, 1991; Radovic &

Tepic, 2009). Accordingly, the birds spent more foraging

time in grassland fields and were more likely to select

grasslands instead of croplands, as indicated by the habi-

tat selection models. However, given the dynamics in

agricultural landscapes, both habitat types vary in impor-

tance throughout their breeding season (Moritzi

et al., 2001). Storks can achieve the largest foraging suc-

cess during harvest/mowing activities (Thomsen &

Struwe, 1994) when prey gets disturbed or killed by agri-

cultural machinery (Peggie et al., 2011).

In croplands, vegetation is removed during harvests

and prey retreats quickly after (Catry et al., 2014; Peggie

et al., 2011; Sackl, 1989). Although the habitat is known

to be visited not only around harvests, foraging condi-

tions beyond this time are unfavorable due to vegetation

height and limited prey availability (Alonso et al., 1991;

Böhning-Gaese, 1992; Rachel, 2006). Correspondingly,

our results showed long foraging duration/high visitation

rates in fields during HM and a significant avoidance of

fields during non-HM throughout the breeding season.

Although the birds’ use of croplands during HM was

mostly proportional to its availability, we sporadically

identified selective use in early May/August. An explana-

tion is given by Rachel (2006), who observed a

Table 1. Overview of foraging habitat selection model parameters

and their degree of temporal information.

Model

Fixed effect(s)

combined LC

Fixed effect(s)

single LC

Temporal

information

Random

effect(s)

Response: presence/pseudo-absence (visit)

M1 Landcover type

Distance Distance

No

No

Stork_ID

(Intercepts

and Slopes)

M2 Landcover type

Distance

NDVI

Distance

NDVI

No

No

Partial

Stork_ID

(Intercepts

and Slopes)

M3 Landcover type

Distance

HM_Amp

Distance

HM_Amp

No

No

Yes

Stork_ID

(Intercepts

and Slopes)

M4 Landcover type

Distance

NDVI

HM_Dist

Distance

NDVI

HM_Dist

No

No

Partial

Yes

Stork_ID

(Intercepts

and Slopes)

M5 Landcover type

Distance

HM_Amp

HM_Dist)

Distance

HM_Amp

HM_Dist

No

No

Yes

Yes

Stork_ID

(Intercepts

and Slopes)

M6 Landcover type

Distance

NDVI

HM_Dist

NDVI_Range

Distance

NDVI

HM_Dist

NDVI_Range

No

No

Partial

Yes

Yes

Stork_ID

(Intercepts

and Slopes)

M7 Landcover type

Distance

HM_Amp

HM_Dist

NDVI_Range

Distance

HM_Amp

HM_Dist

NDVI_Range

No

No

Yes

Yes

Yes

Stork_ID

(Intercepts

and Slopes)
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concentration of harvest activities in croplands during

these months.

Contrary to our expectation, for grasslands we did not

observe significantly longer foraging duration during HM

than during non-HM throughout the breeding season.

Intensively managed grassland is usually mown twice a

year, which lowers its vegetation height over the breeding

season (Griffiths et al., 2020; Itzerott & Kaden, 2006;

Johst et al., 2001). Moreover, natural grasslands are gen-

erally characterized by lower vegetation and are continu-

ously accessible (Olsson & Rogers, 2009). These could

explain why, unlike in croplands, we observed storks to

spend a considerable amount of their foraging time also

during non-HM in grasslands. In contrast to croplands,

prey density is generally higher in grasslands (Böhning-

Gaese, 1992; Vickery et al., 2001), and when they are

mown, vegetation is left in the fields allowing prey to hide

and remain available to storks (Rachel, 2006). Mowing

usually occurs in the middle of the breeding season

(Sackl, 1989), and storks are known to use grasslands dis-

proportionately during such activities because they repre-

sent their most productive habitats (Thomsen &

Struwe, 1994). Accordingly, we found significant selection

of grasslands during HM from ~May to mid-July, when

foraging in grasslands during non-HM was only propor-

tional to its availability or even avoided in croplands.

During the early breeding season (~April), foraging

habitat use is mainly determined by vegetation growth

Figure 5. Distribution of the storks’ (A) foraging durations and (B) daily visitation rates in fields during half-maximum (HM) and non-half-

maximum (non-HM) periods for croplands (1) and grasslands (2) (measured on a monthly basis during the breeding season of 2014). In cropland

fields, storks foraged significantly longer during HM than during non-HM throughout the whole breeding season (1A). Additionally, the birds

seemed to revisit cropland fields during HM significantly more frequently from May to July (1B). On the contrary, in grasslands we found

prolonged foraging duration during HM only in May and July (2A). Nevertheless, with the exception of April, storks also seemed to revisit

grassland fields during HM significantly more often than those during non-HM (2B).
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(Böhning-Gaese, 1992; Rachel, 2006). According to our

hypothesis, non-HM should identify times when vegeta-

tion is already too high and should therefore be avoided.

In April, however, we found storks avoiding croplands

during non-HM/HM and even selecting grasslands during

non-HM. We therefore suggest that periods in which only

Figure 6. Summary of the daily values of the Manly selectivity index [ŵi] for croplands (1) and grasslands (2) during HM and non-HM throughout

the breeding season 2014. The storks used cropland fields during HM most of the breeding season proportional to their availability [ŵi ~ 1] (see

1). The general tendency of ŵi pointed towards selection (>1), however, selection was only significant on a few days in ~ early May as well as in

August. Cropland fields during non-HM were significantly avoided most of the days throughout the breeding season [ŵi < 1]. In grasslands, we

found significant selection of HM [ŵi > 1] by storks from May to mid-July (see 2). Storks’ usage of grasslands during non-HM was, with the

exception of April, mostly proportional to its availability [ŵi ~ 1]. On croplands and grasslands, we found that storks used fields during HM

proportionally more than fields during non-HM compared the relative availability of those habitats (ŵHMj~ > ŵnon-HMj~). However, in grasslands,

this difference was significant only from mid-May to mid-July. Additionally, we observed storks using grassland fields during non-HM in

significantly higher proportions than grassland fields during HM throughout April (ŵnon-HMj~ > ŵHMj~).

Table 2. Comparison of storks’ daily proportional habitat use during HM and non-HM relative to the availability of those habitats in croplands

and grasslands.

Wilcoxon signed-rank test

Total (% of days in

breeding season)

Significant (P < 0.05) (% of

days in breeding season)

Cropland a) ŵHMj~ > ŵnon-HMj~ 87.4% 41.7%

b) ŵnon-HMj~ > ŵHMj~ 12.6% 0.7%

Grassland c) ŵHMj~ > ŵnon-HMj~ 62.9% 31.8%

d) ŵnon-HMj~ > ŵHMj~ 37.1% 15.9%
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variations in vegetation height distinguish prey availability

may not be captured appropriately with the half-

maximum. The latter was derived using intra-annual

NDVI profiles and may therefore have been influenced by

the increased sensitivity of this index to growing vegeta-

tion (Payero et al., 2004).

With the exception of April, our results indicate that

storks tended to favor HM over non-HM throughout

large and critical parts of the breeding season. Compared

to their relative availability, they used croplands and

grasslands proportionally more during HM than during

non-HM. Furthermore, our models including temporal

predictors were able to improve predictions of their for-

aging habitat selection. We found that storks were more

likely to select fields closer to their nests – typical for cen-

tral place foragers – and during HM (supported by the

positive effect of higher (positive) HM_Amp values).

Although, in grasslands, storks did not favor fields during

HM throughout the breeding season (as seen in crop-

lands) but only from May to mid-July, this period is criti-

cal for the breeding success. While one adult must remain

in the nest throughout incubation/early nestling-rearing

phase (Böhning-Gaese, 1992; Johst et al., 2001), parents

can later forage simultaneously and more frequently

(Moritzi et al., 2001). This period overlaps largely with

the grassland mowing in Europe (Pfeifer & Brandl, 1991;

Sackl, 1989). Accordingly, we registered the highest pro-

portion of foraging visits in grasslands from May to mid-

July (DOY 121–196: 71.9%) and found, supported by

habitat selection models, that storks tended to select

grassland habitats during HM. The influence of both, dis-

tance and HM_Amp, corresponds with previous studies

postulating that storks’ foraging habitat selection is

affected by nest distance and quality (Alonso et al., 1991;

Gadenne et al., 2014; Johst et al., 2001), where quality in

agricultural landscapes is determined by vegetation height

and agricultural activities (Moritzi et al., 2001). Given the

agreement of our findings with previous research, we pro-

pose that the half-maximum proxy allows to coarsely dis-

criminate temporal changes of habitat conditions which

influence storks foraging behavior during breeding season.

However, these may not necessarily relate only to varia-

tions in vegetation height, as we had expected, but also to

the prey availability in their foraging habitats.

Table 3. Summary of the effects of various predictors (fixed effects) on storks’ foraging habitat selection (modeled with GLMMs for the com-

bined LC [considering cropland and grassland fields together]).

Model Predictors Estimate (SE) Marginal R2

Landcover:

combined LC

Response: presence/pseudo-

absence (visit)

M1 Landcover (Grassland) 0.40 (0.02)*** 0.234

Distance −5.65 (0.78)***

M2 Landcover (Grassland) 0.65 (0.02)*** 0.257

Distance −5.72 (1.15)***

NDVI −1.53 (0.29)***

M3 Landcover (Grassland) 0.55 (0.02)*** 0.270

Distance −5.84 (1.12)***

HM_Amp 4.42 (0.54)***

M4 Landcover (Grassland) 0.58 (0.02)*** 0.262

Distance −5.74 (1.08)***

NDVI −1.35 (0.29)***

HM_Dist −1.59 (0.28)***

M5 Landcover (Grassland) 0.5 (0.02)*** 0.273

Distance −5.86 (1.06)***

HM_Amp 4.23 (0.58)***

HM_Dist −1.08 (0.29)***

M6 Landcover (Grassland) 0.90 (0.03)*** 0.163

Distance −5.92 (1.17)***

NDVI −1.24 (0.36)***

HM_Dist −1.64 (0.30)***

NDVI_Range 1.83 (0.84)*

M7 Landcover (Grassland) 0.83 (0.03)*** 0.247

Distance −6.02 (1.08)***

HM_Amp 4.46 (0.75)***

HM_Dist −0.97 (0.33)**

NDVI_Range 1.53 (0.85)†

The marginal R2 indicate how much of the variance was explained by the different (fixed) predictor combinations. SE, standard error.

P-values: ***P < 0.001, **P < 0.01, *P < 0.05, †P < 0.1.
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While our results emphasize the potential of time series

for characterizing small-scale vegetation dynamics in

ecological-meaningful ways, some analytical challenges

remain: First, storks respond quickly to harvest/mowing

events, not only because these activities make prey items

re-accessible but because they increase prey availability in

the short-term (Johst et al., 2001; Moritzi et al., 2001;

Olsson & Rogers, 2009). While the half-maximum allows

to roughly identify periods with favorable foraging condi-

tions (HM) mainly in terms of accessibility, prey avail-

ability is likely to vary considerably throughout these

times and is highest close to mowing/harvest dates.

Remote sensing sensors like Sentinel-1/-2 are promising

to further investigate these temporal variations. Linking

Landsat with Sentinel-2 (S2) imagery can increase the

temporal resolution of optical data up to 2 days (Roy &

Yan, 2018), while Sentinel-1 data (S1; synthetic radar

aperture) are available at regular temporal intervals due

to their independence from sunlight and cloud cover

(Vroey et al., 2021). Both data sources have recently been

applied successfully to detect harvest/mowing events by

identifying residuals from an idealized NDVI growing tra-

jectory (S2/Landsat) (Griffiths et al., 2020) or through

methods based on interferometric coherence (S1) (Vroey

et al., 2021). These data and methods have not been an

option for the current study as these satellites were not/

only recently launched at the time the telemetry data was

acquired. Nevertheless, future studies should examine

whether they are sufficiently accurate to narrow down the

periods with increased prey availability for storks follow-

ing agricultural practices and focus on differences between

croplands/grasslands.

Figure 7. Predicted values (marginal effects) for the fixed model terms of the best-performing (in terms of marginal R2) model (GLMM; Table 3:

M5) for storks’ foraging habitat selection based on all presence/pseudo-absence samples (cropland and grassland fields = combined LC). The

model indicates that storks are more likely to select grasslands over croplands (B) as well as fields in close proximity to their nests (A) with higher

(positive) HM_Amp values (C). The temporal proximity to the closest local half-maximum day (HM_Dist) (D) appears to have only little influence

on the birds’ decision to forage in a certain field.
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Second, while NDVI is correlated with vegetation

greenness and allows assessing vegetation development

(Pettorelli et al., 2005; Pettorelli et al., 2011), it can also

be influenced by topography, soil background or standing

water (Griffiths et al., 2020; Kerr & Ostrovsky, 2003;

Payero et al., 2004). Furthermore, vegetation senescence

before mowing/harvest leads to a steady decrease in NDVI

(Veloso et al., 2017), which can cause commission errors

of HM in the absence of management activities, for

example in natural grasslands. To rule out such biases,

validation data with explicit information on mowing/har-

vest dates are needed, but seldomly available (Estel

et al., 2016; Griffiths et al., 2020). Nevertheless, the half-

maximum is an established proxy that has already been

validated (Estel et al., 2016). Additionally, our findings

are consistent with previous research and the breeding

areas of the studied storks are located in an agricultural

landscape where natural vegetation is rare. This makes us

confident that HM captured favorable foraging conditions

for storks; the post-harvest/mowing periods.

Third, storks’ favor of certain foraging habitats is also

dependent on their anthropogenic management (Radovic

& Tepic, 2009). Hayfields, for example provide high

energy yields primarily around mowing while extensively

managed and natural grasslands produce lower yields yet

are continuously available (Johst et al., 2001; Olsson &

Rogers, 2009; Struwe & Thomsen, 1991). Here, we made

a distinction solely between croplands and grasslands

because no finer thematic landcover classification was

available. This coarse separation has proven to be suffi-

cient in other studies (Moritzi et al., 2001; Radovic &

Tepic, 2009; Zurell et al., 2018). Our attempt to charac-

terize agricultural management variations of the fields

using the NDVI_range predictor was further not success-

ful as it worsened the performance of some habitat selec-

tion models. A finer habitat separation should therefore

be pursued in future studies to better describe and

account for temporal variations in habitat conditions

resulting from differently managed fields.

Finally, storks’ habitat use/selection is in parts oppor-

tunistic (Latus & Kujawa, 2005; Sackl, 1989) and also

known to be affected by individual experience, the pres-

ence of conspecifics or regional differences in habitat

composition (Alonso et al., 1991; Böhning-Gaese, 1992;

Pfeifer, 1989; Zurell et al., 2018). Hence, although the

inclusion of temporal predictors improved habitat selec-

tion modeling, the explained variance (marginal R2) of

the models remained relatively low (Table 3). In addition,

we considered longer foraging duration – in line with for-

aging theory – as an indicator of habitat type preference

in our analysis of habitat use. Foraging time can however,

also be prolonged when storks are unable to locate

enough prey in low quality landscapes (Johst et al., 2001)

or shortened when prey is so ample that the carrying/di-

gestive capacity of the bird is quickly reached. These

aspects were beyond the scope of our study, which more

generally aimed to characterize and assess the influence of

environmental dynamics on storks’ habitat use/selection

with time series. Nevertheless, we suggest that future

research could refine our findings and investigate the phe-

nomenon more holistically, and also use species-rather
than landscape-centered methods (e.g. conditional logistic

instead of logistic regression).

Animals’ habitat selection, use and ultimately biodiver-

sity at local/regional scales, are affected by agricultural

practices and vegetation phenology which continuously

alter habitat suitability (Dunning et al., 1995; Johst

et al., 2001; Pressey et al., 2007). The need to monitor,

understand and predict the impact of such environmental

dynamics is urgent and necessary to develop appropriate

management and conservation strategies (Durant

et al., 2005; Kerr & Ostrovsky, 2003; Pettorelli

et al., 2011). Hence, it is important to identify meaningful

ecological proxies that allow capturing habitat dynamics

at the thematic/spatial/temporal scales and resolutions

that are relevant for the species of interest and its targeted

behavior (Cord et al., 2013; He et al., 2015; Roever

et al., 2013). Albeit its widespread use, NDVI may not

always be the best choice for this objective, as seen in our

habitat selection models in grasslands, where it had no

significant effect. Here, we utilized time series to derive

the half-maximum, an established proxy for leaf-

unfolding/loss of canopy structure (Bradley et al., 2007;

Fisher et al., 2006), and highlighted its capabilities to

coarsely distinguish temporal variations of prey accessibil-

ity in storks’ foraging habitats. Despite the challenges,

such meaningful temporal proxies can aid to create more

realistic species-centered landscape scenarios in habitat

models (Dunning et al., 1995). Linked to data on individ-

ual fitness or population demographics they may eventu-

ally allow unravelling the consequences that arise from

environmental change for animals (Pettorelli et al., 2005;

Pettorelli et al., 2011). Storks’ breeding success for

instance, has been suggested to be influenced by agricul-

tural management (Johst et al., 2001; Pfeifer &

Brandl, 1991) but this linkage is not yet conclusively clar-

ified. Nevertheless, it could possibly be explored further

with proxies that enable to characterize temporal varia-

tions in prey availability/accessibility in ecological mean-

ingful ways.

Overall, using the white stork as an example, our study

demonstrates that time series are suitable means to effec-

tively characterize small-scale vegetation dynamics affect-

ing fine-scale animal behaviors in agricultural landscapes.

We hope that our findings provide an incentive to use

them more frequently in ecological research and to
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develop proxies that are ecologically meaningful. We also

suggest that future studies should test the applicability and

effectiveness of already established remote sensing proxies.

This task requires knowledge from both, animal ecology

and remote sensing, making interdisciplinary collabora-

tions desirable and recommended (Pettorelli et al., 2014).
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