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Abstract

In this thesis a workflow was created, allowing to export the thermal model of a space system
stored in the model-based systems engineering (MBSE) software Virtual Satellite and transition
it into a thermal simulation model to conduct a thermal analysis using the finite element anal-
ysis (FEA) software CalculiX. To achieve this, first, a so called ”Concept” was created in Virtual
Satellite, enabling to store a thermal model inside the system model. In addition, a number of
applications were written for Virtual Satellite to export the thermal model data from the system
model. Furthermore a Python script was written for the computer aided design (CAD) software
FreeCAD, that automatically meshes the geometry and assigns all thermal model data to the finite
element mesh. The script then exports the complete thermal model into readable CalculiX input
format. Moreover a function to include orbit data obtained using mission analysis tools was cre-
ated. This orbit data is used to determine the solar radiation, Earth albedo, and Earth infrared radi-
ation intensities over time and apply them as varying boundary conditions to dynamic simulations.
For the interpretation of the simulation results, another application was written in Virtual Satel-
lite. This application reads the CalculiX output file and assigns the obtained temperatures to the
corresponding components. To check the validity of the workflow, a number of simulations were
executed with ANSYS to compare the results to those of the workflow, obtained with CalculiX.
The results showed very similar values, indicating that the workflow works as intended.

In der vorliegenden Thesis wurde ein Workflow erarbeitet, der es erlaubt, ein in der MBSE Soft-
ware Virtual Satellite hinterlegtes Systemmodell eines Raumfahrtsystems zu exportieren und in ein
Simulationsmodell zur Durchführung einer Thermalanalyse mit der FEA Software CalculiX zu über-
führen. Dafür wurde ein sogennantes ”Concept” in Virtual Satellite erstellt, um ein Thermalmod-
ell innerhalb des Systemmodells speichern zu können. Weiterhin wurde eine Reihe von Applika-
tionen in Virtual Satellite geschrieben, die den Export des Thermalmodells übernehmen. Für die
CAD Software FreeCAD wurde weiterhin ein Python-Skript geschrieben, das das Finite-Elemente-
Netz erzeugt und diesem die Daten des Thermalmodells zuweist. Anschließend exportiert das
Skript alle Daten in das für CalculiX lesbare Input Format. Zusätzlich ist es möglich, dass das Skript
mithilfe der Daten von Missionsanalysetools den Verlauf der Sonneneinstrahlung, Erdalbedo und
Erdinfrarotstrahlung während des Orbits als Wärmelast auf den entsprechend orientierten Ober-
flächen einbindet. Für die Interpretation der Simulationsergebnisse wurde eine weitere Applikation
für Virtual Satellite erstellt, die die Temperaturen der Komponenten aus der CalculiX Outputdatei
liest und den jeweiligen Komponenten im Systemmodell zuweist. Um die Validität des Workflows
zu prüfen wurden einige Vergleichssimulationen mit der etablierten FEA Software ANSYS durchge-
führt, die sehr ähnliche Ergebnisse aufweisen und damit andeuten, dass der Workflow wie geplant
funktioniert.
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1. Introduction

Chapter 1

Introduction

Today, systems engineering is a widely spread practice in space industry [1]. Its tasks aim to han-
dle complex systems with many components, dependencies and uncertainties and to ensure that
the integrated system’s capabilities eventually match the goals it was developed for [1]. The sys-
tems engineer’s responsibilities during development begin in the earliest project phases and ex-
tend all the way to the acceptance review. They can be divided into three main process groups:
System design processes, product realization processes and technical management processes [1].
The so called V-Model, as depicted in Fig. 1.1, gives an overview over the sequence and relation-
ships of the top level tasks. It focuses mostly on system design and product realization processes.
Activities in the left branch comprise, among other tasks, top level system design to bottom level
component design, whereas the dominating part of the right branch are assembly, verification,
integration and validation activities going from bottom level component verification to top level
system validation. Being in the end of this sequence, it is indicated that the most important sys-
tem level verifications and validations can only be conducted when the system is fully designed
and integrated. This introduces a critical risk: If a design error leads to the failure of the system,
a redesign is necessary. Depending on the severity of the error this can lead to the necessity to
redesign other components as well, due to the high amount of dependencies between them.
Having to redesign multiple subsystems essentially sets the project development back to the left
branch of the V-Model. Consequently, this introduces substantial delays and, inevitably associated,
a considerable increase in project cost.

This is where modeling comes into play. Models act as a short cut between the two branches of
the V-Model so that verification and validation activities of the right branch can already be con-
ducted in the left branch. The earlier an issue is detected, the less cost intensive it is to find a so-
lution for it. This is why models are created in the first place. In a complex project numerous func-
tional and physical models are generated from component level to system level, as early as possi-
ble [3]. They help the engineers to identify potential design issues without having to extensively
test expensive hardware.
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1. Introduction

Figure 1.1: V-Model of systems engineering. Source: Adopted from [2].

Table 1.1: Examples for the influences of an attitude and orbit control subsystem (AOCS) sensor change on
other subsystems

Affected subsystem Affected parameter

AOCS Availability of attitude data, pointing accuracy
Data Handling Dependability of attitude data
Payload Pointing accuracy
Power Power demand
Structure Volume, fixation
System Mass
Thermal Operating temperature
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Figure 1.2: MBSE with one system model for all development phases. Source: Adopted from [5].

The model-based systems engineering (MBSE) approach takes it one step further. The V-Model
does represent the general sequence of development, however, it is a simplified version lacking
an important characteristic. It does not show the dependencies and relations of how the single
elements on the same level of the V-Model interact with each other, which they do quite a lot.
For example replacing a star tracker with a Sun sensor in a fictitious earth observation satellite
project poses not only changes to the AOCS but to many other subsystems as well, as depicted in
Tab. 1.1. One main motivation of MBSE is that having multiple models, e.g. mechanical, electrical,
thermal and functional models, all existing in separate locations, complicates traceability of such
design changes and requirements throughout all engineering domains. For a project with a cer-
tain complexity level, traceability of dependencies and interdependencies between components or
higher level elements can be overly exhaustive and therefore error-prone, as relevant information
is stored in extensive documents where it is hard to find. MBSE aims at combining all this infor-
mation into one central data model where the relevant information for all domains is stored (see
Fig. 1.2). Thus, as soon as one engineering domain changes a parameter of a component, the up-
dated data is fed into the central data model and is visible for every stakeholder instead of being
left unnoticed in an extensive document that is reluctantly accessed [4].

Another important aspect of MBSE is the close integration of tools to allow quick analysis of the
system’s behavior with respect to changes in the design. This does not only comprise functional
behavior but also physical behavior. Being able to see the impact a design change poses on the
overall system and its requirements ad hoc, allows to quickly compare different configurations and
find the optimal one. This is another big advantage MBSE can have if implemented.
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1.1 Motivation

In the recent past, such central data models where mostly created for single phases, mostly in the
early development, using tools like Virtual Spacecraft Design (VSD), Open Concurrent Design Tool
(OCDT), RangeDB, or Virtual Satellite [6]. However, these data models are usually abandoned after
that development phase and the projects return to the document-centric approach for the further
development process. This is mainly due to the fact that the tools are not flexible enough and not
yet advanced enough to really support the whole development process [6].

Virtual Satellite (VirSat), being an MBSE tool developed by DLR-Institute of Simulation and Soft-
ware Technology (DLR-SC), is aiming to be usable throughout the whole project lifecycle. For this,
DLR-SC added the functionality to create own so called concepts inside the software. These con-
cepts are defined to model different aspects of a system that are not included by default. Con-
cepts implemented by default are for example mass budget, power budget, requirements or func-
tional electrical architecture. By allowing the user to create own concepts, the software becomes
more versatile and customizable for more detailed system models [6].

To integrate analysis tools as much as possible with the system model, a key purpose of Virtual
Satellite is to provide access to the relevant system model data for engineering processes and tools
to be executed, as depicted in Fig. 1.2. It is achieved by offering flexible interfaces for tools to
connect to. Extending this integration of analysis tools, using the customizable interfaces VirSat
provides is the main goal of this work.

1.2 Scope

To enable the usage of Virtual Satellite as an MBSE tool in all design development phases, ad-
vanced modeling capabilities and functionality have to be added to the software. This especially
includes interfaces for other tools to access the conceptual data model (CDM), the central data
model of Virtual Satellite.

The scope of this work is to enhance the capabilities of the MBSE approach in Virtual Satellite by
developing the necessary infrastructure to include thermal models in the system model. Further-
more, it is part of the thesis to elaborate a concept to enable the execution of thermal simulations
with CalculiX using data extracted from the Virtual Satellite CDM.

Testing and validating the newly established workflow and the linked tools and concepts is most
beneficial for the outcome of this work. Thus, an example model shall be created using the newly
implemented thermal modeling capabilities and the already present geometric modeling capabili-
ties of VirSat

Therewith, this work provides several outputs. Firstly, the framework necessary for thermal engi-
neers to use Virtual Satellite in future projects for modeling the thermal properties of a spacecraft.
Secondly, a workflow concept is established to perform thermal analysis with the least possible

Page: 16



1.3 Kickoff Concept

amount of effort and least possible delay utilizing the system model from Virtual Satellite. And
thirdly, as a side effect it is proved that Virtual Satellite can be tailored to individual project mod-
eling needs, not only by software developers but also by project engineers with little or even no
programming experience.

1.3 Kickoff Concept

For achieving the above described goals, four main tasks have to be fulfilled:

1. Virtual Satellite has to be extended in that way, that a thermal model can be stored in the
CDM

2. The thermal properties and other relevant data for setting up a simulation have to be ex-
tracted from the CDM

3. A suitable input script file for the solver obeying the syntax of the simulation tool has to be
generated

4. The simulation results have to be fed back to Virtual Satellite

As mentioned before, Virtual Satellite offers the ability to add custom concepts to the data model.
These concepts can be defined to contain parameters, equations, or functional dependencies for
example. They can be created using a rather top level programming language inside the Eclipse
integrated development environment (IDE) of Virtual Satellite. Afterwards they can be included in
the actual concept library among all other concepts.

The concept to be created for thermal analysis contains all important parameters for setting up
the simulation. A list of these is provided in Tab. 1.2. Apart from the thermal parameters there is
another important aspect that cannot be modeled purely by a parameter assigned to an element.
The thermal interfaces between different components are not a material or element parameter but
a combination of the contact pressure, the surface quality and the materials involved. Together,
they can be expressed as the thermal contact conductivity. Knowing these conductivities is ele-
mentary for modeling the system correctly. To include this into the system model another feature
is added to the concept, the thermal port. Each element in the system model can have one ore
more thermal ports and each significant contact with another component is modeled by a connec-
tion between two ports. This connection is characterized by the thermal contact conductivity. This
initial idea of a concept is depicted in Fig. 1.3. To complete the required data for a simulation, a
top level class is created acting as a container for general simulation relevant information like stat-
ic/transient simulation and specific post processing data to be obtained from the output.

Now, to make the thermal model usable for any simulation tool it has to be in the right form. For
CalculiX that means model and simulation setup have to be combined in a script file. This script
file has a certain syntax to make it readable for the solver. The concept for acquiring this is to
write an application for Virtual Satellite that gets all necessary data, except for the geometry, and
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Figure 1.3: Draft for thermal concept, shown among some other concepts in a Virtual Satellite system
model. Source: Own representation.

Table 1.2: Thermal parameters to be included in the concept

Symbol Parameter Unit

α Absorptivity -
cp Heat capacity at constant pressure Wkg−1 K

ϵ Emissivity -
hc Thermal contact conductivity Wm−2 K

λ Thermal conductivity Wm−1 K

P Thermal power W

ρ Density kgm−3

Tstart Initial temperature K
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Virtual Sattelite CDM
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Figure 1.4: Overview of information exchange between VirSat and CalculiX. Source: Own representation.

writes it into a file in a specific order that matches the syntax of CalculiX. The geometry data is ob-
tained through a different channel. For that, the visualization concept in Virtual Satellite and its
export function can be used. This concept enables the user to model or import the geometries of
all components in Virtual Satellite. The export function allows to export this geometry and align-
ment data along with the hierarchy data of the configuration tree. From this file the necessary
information to build a mesh can be obtained. After meshing, the geometry file and the rest of the
simulation setup file are merged to form the complete input file for CalculiX.

After successful execution CalculiX creates an output text file with all simulation results. This file
is stored in the project repository to make it accessible in Virtual Satellite. Additionally, some kind
of output interpretation would be beneficial for the readability of the simulation results. The ex-
act function of this interpreter is not yet clear and has to be defined in the course of the thesis. A
comprehensive overview of the information flow is depicted in Fig. 1.4.

1.4 Compasso Project

This thesis is written in the course of the Compasso project. Compasso is a payload to qualify op-
tical technologies aboard the International Space Station (ISS) for future global navigation satel-
lite system (GNSS) applications. The main components are an optical atomic iodine clock as well
as a laser communication and ranging terminal for ground link [7]. The optical clock for example
inherits the potential to be used in future GNSS programs due to the higher frequency stability,
compared to the microwave clocks currently used in GNSS systems [8]. DLR-Galileo Competence
Center (DLR-GK) develops MBSE in the course of Compasso to make use of the developed MBSE
functionality in the future.
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Chapter 2

MBSE Framework

This chapter introduces the whole framework of MBSE related to this work, starting with some
general aspects about the methodology itself and the connection between MBSE and thermal
analyses. In the second part of the chapter, Virtual Satellite, the MBSE tool developed by DLR-SC,
is presented and its functions, especially those used in the further course of this work, are de-
scribed.

2.1 Model Based Systems Engineering

One definition of model-based systems engineering is ”the formalized application of modeling to
support system requirements, design, analysis, verification and validation beginning in the con-
ceptual design phase and continuing throughout development and later life cycle phases” [4]. Its
objective is to describe systems and different perspectives on the system (e.g. components, func-
tions, modes, interfaces) with models, as depicted in Fig. 2.1, not with documents. Hence, the
ultimate goal of MBSE is to replace document-centric systems engineering, which is the traditional
approach where all data describing the system is located in different documents. By storing data
in models that, when combined, represent as much of the system’s properties as possible it is easi-
est to access, read and understand the different aspects of a system. Furthermore, the traceability
of requirements and impacts of design changes is substantially enhanced. MBSE is expected to re-
place the document-centric approach in the future due to the increasing complexity of technical
systems [9, 10].

A model of a system is a representation of it, that is intended to improve its comprehensibility [12].
Therefore, it must consider all parameters that are of importance for the application it was created
for but can eliminate irrelevant information to help understanding a system faster. This definition
rather wide and everything from a simple block diagram drawing to a highly advanced physical
implementation of a system to conduct tests with is referred to as a model. In an MBSE context
the term ”model” is mostly referring to graphical, mathematical or physical models describing the
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Figure 2.1: Visual representation of the system model as a multidimensional object consisting of different
models. Source: Adopted from [11].

structure and behavior of the system in certain regards [13].

One important aspect of MBSE is that there is one central data model, which stores a number of
single models in one central repository [13]. It is where all models are connected to each other.
This repository always contains valid data since every change that is applied to one model is in-
stantly forwarded to all other relevant models, maintaining a consistent set of data. Furthermore,
calculated indicators of the system, like budgets, are recalculated to view the impact of a change
in the model immediately. Applications for models in MBSE are widely spread and comprise archi-
tectural aspects like functions, behaviors, structure, interfaces as well as analytical aspects like cost
or reliability [13]. Generally, it is always desirable to cover as many aspects of a system as possible
with models since they provide some benefits compared to documents as discussed in the follow-
ing section.

2.1.1 MBSE Benefits and Comparison with Document-Centric Approach

Compared to traditional document-centric systems engineering, MBSE has a number of benefits,
which is why it is expected to eventually supersede the traditional methodology [9]. During system
concept definition in the earliest phases, many stakeholders are involved in a project [13]. As some
of those stakeholders might not have the appropriate professional background to interpret tech-
nical documents well enough for understanding how the system is intended to work, especially
graphical models can deliver an easy to understand overview over a certain architectural aspect
of a system. This eases work for all stakeholders since it is both easier to communicate how the
system works with respect to their own domain, and also it is easier to understand the system’s
characteristics of other domains as well. In concurrent engineering studies this is a key advantage
since there are experts of different fields having to understand the system in limited time. Thus,
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Figure 2.2: Visualization of the system model consisting of different domain models. All domains can ac-
cess the whole model but only write to their own domain model. Source: Own representation

communication between different disciplines is eased significantly

One main intention of MBSE is enabling the possibility to track requirements and constraints from
the main system model down to component level using mainly functional models and then check
their fulfillment with analytical models like simulations or calculations. This traceability is a sig-
nificant benefit over document-centric systems engineering as it is faster to obtain a complete
overview over the fulfillment of all requirements on the one hand and it is also assured that all re-
quirements are actually respected on the other hand, since the relevant property a requirement
refers to is directly linked to it in the model.

As Fig. 2.2 indicates, another advantage of MBSE is that data stored in the central system model
can be readily accessed by all engineering domains and directly used to simulate the system’s be-
havior in their domains without having to access different documents to obtain this data. Conceiv-
able applications for this would be state models, electrical models, mechanical models or thermal
models to name just a few. Some of them were already implemented in MBSE tools like VirSat.
The goal of MBSE is to conduct all analyses and as many verifications as possible (e.g. by means of
simulations) with the one system model as data source, to completely turn away from the document-
centric approach.

The ideal case is to execute all analyses and simulations automatically as soon as a change in the
design is committed to the system model, so that all consequences of that change, on the re-
quirements for example, can be monitored as fast as possible. This benefits especially systems en-
gineers, as every system analysis that is conducted automatically saves time, which can then be
spent on other tasks. But also subsystem engineers profit. The more simulation results provided
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in the early phases without additional required man-hours, the better the knowledge of the sys-
tem and the better the requirements of each subsystem can be determined. As a consequence,
substantial changes in the design can be expected to be less likely, which in turn means a more
efficient early design phase. This is also what this work aims at achieving.

By achieving the possibility to run certain analyses early in the development phase, design flaws
can be detected earlier than without using MBSE. Since the cost of errors rise with the project
progress, this can also save significant amounts of resources [14].

In the later design phases MBSE could help setting up more sophisticated analytical simulations,
automating certain tasks and reducing the work necessary to finish the setup. This work can be
regarded as an example on how this could be applied.

2.1.2 Current State of MBSE

The transition from document-centric systems engineering to MBSE is currently in progress. Ma-
jor companies, Ford Motor Company as an example, are adapting the methodology to tackle the
challenge of handling complex systems [9]. Other companies certainly use it to some extent, with-
out having it explicitly named as such. The most dominant tool for creating models for systems
engineering is the SysML language [15]. With this, it is possible to express relationships between
objects enabling the engineer to display system architecture and process flow and trace down re-
quirements [15]. International Council on Systems Engineering (INCOSE) compares the current
state, as of 2014, with the early phase of the evolution of computer aided engineering (CAE)/
computer aided design (CAD) [9] and Systems Engineering Body of Knowledge (SEBoK) states
that MBSE is ”applied in pockets within organizations and unevenly across industry sectors.” [10].
SEBoK furthermore states that there is still some room for improvement to be covered for MBSE
tools and methods to widely establish the methodology throughout all industries [10]. Indeed
there are many new ideas for new ways of applying MBSE to space project development and ef-
fort is spent to improve the capabilities of current MBSE tools like VirSat. New releases are pub-
lished continuously, introducing new modeling capabilities as well as new interfaces to other mod-
eling tools. But not only the core developer team is working on improving VirSat, also other Deutsches
Zentrum für Luft- und Raumfahrt e.V. (DLR) institutes undertake efforts to add functionality to it.
One example for this are the initiative to add a database of spacecraft components to VirSat that
can be easily selected, automatically adding the data from their datasheet to the system model [16].
Another example is this work, as it aims to add additional content to VirSat as well.

2.1.3 Thermal Analysis and MBSE

MBSE referring mainly to classical systems engineering activities so far, technically does not explic-
itly cover thermal analyses since they are part of the tasks of thermal engineers. However, ther-
mal analyses in the context of this work are applied to early system models in the first place. Fur-
thermore, in MBSE basically everything is linked to the central data model and therefore to sys-
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tems engineering. As the thermal analyses in this work are first considered more as relatively quick
analyses to see the expected magnitude of thermal parameters and the impact of design changes,
they are moved much farther into the systems engineering domain and are essentially located on
the border between the two domains. However, in the end, among other factors, the amount of
detail of the system model determines the accuracy of the analysis, as discussed in chapter 5.3.
Hence, both systems engineering and classical thermal engineering domains are part of the pre-
sented workflow. Nevertheless, the effort both have to spend on the generation of such a simu-
lation is ought to be low and the presented workflow aims to reduce it as much as possible. As
a result of the points raised, this work aims to create a workflow applicable as early as for phase
A studies, but also for the following early design phases as well as building a foundation for later
design phase analyses. Therefore, the workflow is designed to be as flexible as possible to allow
the inclusion of further aspects of a thermal model in the future to cover as much of the project
lifecycle as possible.

2.2 Thermal Analysis

In space a harsh environment is prevalent in many respects. Radiation, energetic particles, vacuum
and extreme temperatures, the latter one being the primary concern in this work, impose high
demands on a space system’s component survivability [17]. Temperature in space is often subject
major variations [18]. Especially in certain short periodic planetary orbits, like low Earth orbits with
low inclinations, the persistent switch between solar eclipse and solar presence is problematic for
most components since they are designed to work in specific temperature ranges [19, 20]. Fig. 2.3
gives an overview of the thermal environment a spacecraft encounters in space, with solar radia-
tion, Earth albedo, and Earth infrared radiation.

Due to the absence of atmosphere around the spacecraft there is no reservoir apart from the space
system’s mass that can act as a heat buffer, keeping the temperature variations in limits. Neither is
there matter that absorbs some fractions of the solar radiation before it reaches the spacecraft.
Additionally, convection is completely absent in space, since no medium for it is present. The en-
ergy input during daytime is then cycled with essentially zero energy input from the Sun in eclipse,
causing high temperature gradients on the outer spacecraft components. As heat conduction be-
ing present inside a space vehicle, the inner parts will be loaded by the temperature gradients act-
ing on the outer walls as well.

Another challenge for the spacecraft is that since there is no convection and no conduction out-
side the spacecraft, the only way to efficiently lose heat is radiation.

In the following, the need for temperature control and thermal analysis, as well as their function-
ing is discussed. Afterwards, the simulation software used for thermal simulations in this work will
be introduced. First however, the main principles of thermodynamics that are relevant in this work
are briefly presented.
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Figure 2.3: A spacecraft’s thermal environment with the radiative heat flows acting on the surface of the
spacecraft. Source: Adopted from [21].

2.2.1 Thermodynamic Foundations

To understand the thermal relationships within a spacecraft, one has to study the thermodynamic
processes happening aboard, of which conduction and thermal radiation are the most important
ones. They govern the temperature distribution throughout the spacecraft in most cases [18]. This
section covers all basics necessary for understanding the thermal aspects of a space system.

2.2.1.1 Temperature and Internal Energy

Temperature is a state quantity and refers to the amount of motion the atoms or molecules of an
ideal gas experience [22]. The higher the temperature, the higher the mean motion of the parti-
cles. It is important to note the term motion means the average random movement in all direc-
tions, like vibration or rotation, opposed to a velocity, which is a directional movement in one spe-
cific direction [23, 22]. Thus, a fast-moving particle does not necessarily have a high temperature.

According to the first law of thermodynamics, the change in internal energy, which is the state
variable giving the amount of energy that is available for a thermodynamic process, is formed by
the amount of work done on the system and the amount of heat transferred to or from the sys-
tem [24]. As the work done relates to the volume change, which is assumed to be negligible for
solid bodies, compared to gases, heat transfer is the only effective process to change the amount
of internal energy. According to 2.1 the transferred heat and thus the change in internal energy
dU is composed of the temperature T and the change in entropy dS as scaling factor [24]. Here,
p is the pressure and dV the volume change. Consequently, temperature is the main indicator for
the amount of internal energy that is present in a system. And since temperature is an intensive
value, it serves as an indicator for the local distribution of the energy throughout the system, mak-
ing it a desirable characteristic for examination [23].
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Table 2.1: Examples for the thermal conductivities of different species [25]. Note that the values for metals
vary significantly depending on the alloy [17].

Material Thermal conductivity Wm−1 K−1

Diamond 1000.0
Copper 385.0
Aluminum 205.0
Steel 50.2
Fiberglass 0.04
Air at 0 °C 0.024
Polyurethane 0.02

dU = TdS− pdV (2.1)

2.2.1.2 Thermal Conduction

As stated before, temperature represents the amount of vibration and rotation a particle expe-
riences. If particles of high temperature and low temperature are close to each other, it is likely
that the intensively vibrating high temperature particle collides with the low temperature particle.
When this happens some impulse of the hot particle is transferred to the cold particle, inciting it to
vibrate as well, resulting in a raise of its temperature [22]. The former hot particle loses some of its
energy and is now colder than before. This is the process of heat conduction [18].

Now, the engineering approach to this phenomenon is more macroscopic. It is applied in the form
of thermal conductivity, which is a material parameter for how much heat is transferred over a
certain distance, given a certain temperature difference and a cross section area [23]. Its value
is influenced by different material properties, the most important being the molecular bonding
and the amount of free electrons [18]. This already implies, that metals, generally having a high
amount of free electrons are good thermal conductors, which is true [17]. Diamond, being among
the most effective thermal conductors, has an exceptionally high thermal conductivity of around
three times the value of copper, which is among the best metallic conductors [18, 25]. The differ-
ence in thermal conductivity among common materials, even if they are not intended for thermal
application, is very high and ranges from far less than 1 Wm−1 K−1 to more than 400 Wm−1 K−1

as listed in Tab. 2.1 [25].

Macroscopically expressed, the heat flow Q̇ between two points 1 and 2, according to Fourier’s
law in 2.2, can be expressed in terms of the temperature difference ΔT between them, the ther-
mal conductivity λ, the cross section area of the material between the points A and the distance
between the points Δx [18].
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Q̇ =
λ · ΔT · A

Δx
(2.2)

In the general three-dimensional case, conduction is described by the differential equation in 2.3
where qv is the heat flow per unit area, ρ the density, cp the specific heat capacity and λ the con-
ductivity of the material in the specific direction [18].

qv = ρ · cp ·
∂T
∂t

+ λx ·
∂2T
∂x

+ λy ·
∂2T
∂y

+ λz ·
∂2T
∂z

(2.3)

Equation 2.4 shows how 2.3 can be expressed as a matrix equation.

Q = CTṪ+ KTT (2.4)

Here Q is the matrix of heat flows, CT represents the heat capacities, and KT is the conductivity
matrix.

2.2.1.3 Thermal Contact Conduction

The mechanisms of thermal conduction only work within closed bodies. As soon as there is a gap,
even if it is very small, conduction will be inhibited, as the distances that can be covered by par-
ticles are too small to bridge the gap [18]. However, if two separate bodies are pressed against
each other, they do have some contacts close enough for conduction to take place as depicted
in Fig. 2.4 [18]. The magnitude of this contact conductivity depends on a whole variety of factors
including pressure, surface quality and interstitial materials between the contacts [18]. There are
some models for calculating the thermal contact conductivity, however they are all quite sophis-
ticated and only valid for certain conditions and materials [17, 18, 26]. Due to the lack of univer-
sal models for the value of the thermal contact conductivity, is either determined experimentally
or the thermal engineer uses similarity to already examined contact pairs for each individual con-
tact [17].

2.2.1.4 Thermal Radiation

If a particle has a temperature above 0 K there is a certain chance that it spontaneously emits a
photon [27]. The wavelength of the photon and therefore its energy primarily depends on the
temperature of the particle [27]. The emission of photons fed with internal energy is called radi-
ation. Max Planck discovered the formula for the emissive power of a blackbody at a certain tem-
perature for a certain wavelength. The spectrum of the emissive power for the Sun is displayed in
Fig. 2.5, that shows a typical shape for a Planck curve [28]. A blackbody is an idealization of real-
ity which perfectly emits and absorbs radiation in all wavelengths, so that its radiative spectrum is
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Figure 2.4: View on the cross section of a thermal contact. Heat flow by conduction is only enabled in the
area of contact. Source: Adopted from [18].

purely defined by Planck’s law [24]. This relation is shown in 2.5, where I is the spectral radiance,
c is the speed of light, h is the Planck constant, k is the Boltzmann constant, λ is the wavelength
and T is the temperature of the body [29].

I(λ, T) =
2hc2

λ5
1

e
hc
λkT − 1

(2.5)

The wavelength spectrum of the emitted photons is generally lower, when the temperature of the
particle is higher. This is covered in Wien’s displacement law, which gives the relation between the
maximum of the spectrum of emitted photons (λmax) and the temperature for a blackbody (T) as
it is depicted in 2.6 [18]. Wien’s displacement law is actually directly related to Planck’s law as it
determines the maximum point of Planck’s curve.

λmax =
2897.8µmK

T
(2.6)

Ideal blackbodies are a theoretical construct and real objects can only be approximated as black-
body citeSCThermalControl. The Sun for example has an effective surface temperature of around
5800 K [30]. The calculated blackbody temperature according to Wien’s law(2.6), rearranged for
temperature 2.7, assuming a maximum of solar radiation at roughly 0.5 µm calculates to 5795.6 K,
which is close to the real temperature [30].
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Figure 2.5: Planck curve displaying the radiation energy emitted in a specific wavelength regime. Source:
Adopted from [28]

T =
2897.8µmK

λmax

=
2897.8µmK

0.5µm

= 5795.6K

(2.7)

Non-ideal blackbody surfaces are approximated as a so called gray surfaces [24]. The non-ideal ra-
diative properties are expressed as emissivity and absorptivity factors ranging between zero and
one that are multiplied with the ideal blackbody radiation to account for the lower absorptivity
and emissivity [24]. The Stefan-Boltzmann law is the integral of Planck’s law over all wavelengths
and gives the total emitted power of a surface area for a certain temperature. It is denoted as
shown in 2.8 where A is the radiating area, ϵ is the emissivity factor of a gray body, P is the emit-
ted power, σ the Stefan-Boltzmann constant and T is the actual temperature of the radiating sur-
face [18].

P =
A · e · T4

σ
(2.8)

On earth, conduction and convection are dominant over radiation in most cases. In space how-
ever, radiation is the main mechanism for a spacecraft to lose energy since conduction and con-
vection cannot be used to dump energy to the environment.

2.2.1.5 Specific Heat Capacity

If one wants to analyze the temporal behavior of a system in terms of thermal aspects, there is
one important material parameter that must be included in the equations. This is the specific heat
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capacity. It is a measure for the amount of energy a material can absorb to experience a certain
increase in temperature and expressed in SI-units it is J kg−1 K−1 [23]. Consequently, as energy
equals power multiplied by time, it influences the temporal behavior of the system. Generally, the
heat capacity is not constant with respect to the temperature [23]. These variations are in most
temperature ranges relatively small, however in the regimes of evaporation/condensation and
freezing/dewing the specific heat capacity can vary strongly with only small temperature changes
when a phase change is involved [23]. In addition, compressible agents like gases have different
heat capacities for heating with constant volume (cv) or heating with constant pressure (cp). As
spacecraft components are usually in their solid state, and kept around a relatively small tempera-
ture variation, usually the cp value is used for analyses [17].

2.2.2 Thermal Analysis and Thermal Control in Space Systems

Many components and experiments need an exceptionally stable environment to work properly.
This holds for kinematic aspects, as well as for magnetic or thermal aspects [31]. In addition, with
the miniaturization of integrated circuits, thermal issues evolve for electrical components as the
power converted to heat is applied to a smaller area. This already indicates the need for thermal
analysis. The thermal control system of a component should not dump too much heat nor too
little. It should not take too much space and it must be compatible with other components of the
system.

All components have specified operating temperatures, which apply to mechanical as well as to
electrical, electronic and electromechanical (EEE) components [17]. But it is especially important
for electrical components, since their operating temperature range is usually relatively narrow and
their lifetime is substantially decreased when the operating temperature is exceeded. Commer-
cially available batteries for space applications for example have a recommended range of operat-
ing temperature between 10 °C and 30 °C as it is visible in Fig. 2.6 [19].

Some space components utilizing ultra stable lasers for example, such as high precision atomic
clocks or laser-cooled experiments, are particularly sensitive to temperature changes resulting in
temperature requirements in the sub Kelvin regime [32, 33]. For a hydrogen maser clock, the tem-
perature needs to be stabilized within 50 mK for a time period of more than one day, while the
master oscillator laser used to cool atoms and perform interferometry, among other functions, in
the MAIUS-1 project had to be maintained within a range of 0.2 K [17, 34]. These components
usually have dedicated thermal control subsystems (TCSs) that are somewhat independent of the
general spacecraft TCS in that sense, that the temperature requirement on the whole clock unit is
only in the range of some ten Kelvin instead of less than one [17]. An example for such a compo-
nent with dedicated temperature control is shown in Fig. 2.7, where the PHARAO atomic clock’s
temperature ranges of the subcomponents are visible.

In space, the general absence of convection and conduction to dump heat from the system makes
it even harder to design an appropriate TCS, especially keeping the temperature relatively stable
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Figure 2.6: Extract from the data sheet of a battery for space use. Source: Adopted from [19]

Figure 2.7: Layout of the internal TCS of the PHARAO atomic clock. Source: Adopted from [32].
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is a challenge, since there is no atmosphere balancing variations. Thus, numerous sophisticated
components for temperature control were developed for space applications [35].

To meet the requirements of all components, especially considering that different components
may favor different operating temperatures, it is not sufficient to simply estimate the amount of
cooling or heating needed. Thus, mathematical models must be created, representing the condi-
tions the system experiences in space.

2.2.3 Numerical Methods

There are different ways of tackling the issue of calculating the temperatures to be expected on
a spacecraft. It is certainly possible to calculate simple systems with not too many boundary con-
ditions analytically without help of a computer. However, with increasing spacecraft complexity
this approach quickly becomes impractical. Computers, being predestined to solve large systems
of equations are the method of choice for executing thermal analyses. Two methods for solving
such problems are presented in the following, the finite-differences method (FDM) and the finite
element methods (FEM). However, the FDM will be only covered briefly, since the FEM was pre-
determined for this work as it is a multi-purpose method that is readily available in open source
software packages.

2.2.3.1 Finite Differences Method

The FDM is a method to solve systems of differential equations numerically. The underlying ap-
proach of finite differences is to replace all first order derivatives by the difference expression de-
noted in 2.9 and all second order derivatives by the difference expression denoted in 2.10 [36].

f ′(x) ≈ f (x+ dx)− f (x)
dx

(2.9)

f ′′(x) ≈ f (x+ dx)− 2f (x) + f (x− dx)
dx2

(2.10)

By replacing all differential expressions in the differential equation with difference expressions it
becomes easier to solve with a computer. The next step is to arrange the single terms in a way,
that each of the discretized function values has its mathematical operations as one combined fac-
tor. For 2.10 this would look like denoted in 2.11.

df (x)
d 2x

=
1
dx2

fi−1 −
2
dx2

fi +
1
dx2

fi+1 (2.11)

With this kind of expression set up for all discrete points to be examined, a matrix equation system
can be obtained, which can then be solved using the boundary conditions.
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2.2.3.2 Finite Element Method

The most popular and advanced method for solving differential equation problems is the finite
element method. The first literature was released in the 1960s and it is still used nowadays having
a wide range of applications from structural integrity calculations to field problems like thermal
analyses [37].

The idea is to split the real system with infinite degrees of freedom into a finite number of sub-
elements with a finite number of degrees of freedom. The sub-elements are bounded by nodes,
which are discrete points. The original differential equations can now be discretized by applying
them to the set of discrete nodes. Having a set of equations in the form of 2.12 finite element
method can be used to solve it approximately [38].

Kt = q (2.12)

In this case K is a matrix of differential operators that is multiplied with t, the vector of degrees of
freedom for each node, which is the temperature for a thermal simulation. The result of this multi-
plication is q, which is the known vector of external boundary conditions. To obtain a discrete sys-
tem of equations, the variable or variables representing the desired continuous solution function
are replaced by N sets of variables, representing the desired solution for N discrete nodes. Where
the number N is the actual number of nodes that were created with the mesh [38].

To cover the area in between these nodes, the continuous basis function ϕ(x, y, z) is introduced
and multiplied with the solution variable [38]. It is a continuous function that can be linear or of
higher order. The basis function equals one on the coordinate of the actual node it belongs to
and 0 on the coordinates of all other nodes [38]. That means for every point within the structure,
the approximate solution is calculated by the sum of the values at the N different nodes multi-
plied with their respective basis functions. The value of the latter varies depending on their order
and the coordinates. For a linear basis function the value decreases linearly to zero between two
nodes. After discretization the function looks like in 2.13 [38].

K


t1 · ϕ1(x, y, z)
t2 · ϕ2(x, y, z)

...
tN · ϕN(x, y, z)

 !
= q (2.13)

The exclamation mark added to the original equation already indicates that after discretizing, the
left side is no longer exactly equal to the ride side. By discretizing the equation in most cases only
an approximate solution can be obtained. This is one reason why finite elements never deliver the
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exact solution but always an approximation [38]. Rearranging 2.13 with respecting the fact that it
is only an approximation introduces a residual R as denoted in 2.14.

K


t1 · ϕ1(x, y, z)
t2 · ϕ2(x, y, z)

...
tN · ϕN(x, y, z)

− q = R (2.14)

To obtain the best possible solution, the goal of finite element method is to reduce the residual,
since the lower the residual, the better the fit of the approximated solution to the actual solution.

Coming from one differential equation the matrix representation actually only represents an equa-
tion system with one equation and N variables. To make up for this another function similar to the
basis function is introduced, the weighing function. More specifically N weighing functions that
are multiplied with the solution vector, just like the basis function [38]. With these weighing func-
tions there are now N equations with N variables, making the system well-determined. Depending
on the type of finite element method, the actual content of the weighing function differs. For the
Galerkin method, which is a common method of solving the finite element equations, the weigh-
ing function is just the same as the basis function [38].

2.2.3.3 Finite Element Meshes

Meshes are the discretized representation of a real system and therefore the model of the geome-
try the finite element method is applied to [39]. As such, it is intended to be as similar to the orig-
inal system as possible. The mesh consists of elements which again consist of nodes. Commonly
used elements in three-dimensional analysis are tetrahedral and hexahedral elements comprising
three or four nodes for each face of the element, respectively [39]. As the discretization error of
the analysis rises the more deviations between mesh and real geometry exist, it is generally desir-
able to have a fine mesh. However with decreasing mesh size the number of elements increases
exponentially which increases the size of the equation system and therefore the computing time
for the analysis. Thus, meshing is always a trade-off process between model accuracy and com-
puting effort.

To reduce the necessary computing effort but still obtain good solution, local mesh refinement
can be utilized. With this, important areas in the model can be chosen for a local increase in mesh
accuracy without inflating the mesh with less important elements. The benefit regarding relatively
large components with comparatively small critical areas is visible in Fig. 2.8, where the third mesh
has significantly less elements than the second, but the number of elements in the critical area is
similar.
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Figure 2.8: Comparison between three different meshes. First one is a coarse mesh, second one a globally
refined mesh and the third one is a coarse mesh with locally refined areas. Source: Adopted from [40].

2.2.3.4 Mesh Convergence

Mesh convergence evaluates a qualitative aspect of the mesh [41, 42]. To determine if a mesh
converges sufficiently, the behavior of the target value is examined with respect to the number of
mesh elements. That means, multiple simulation runs are executed while increasing the number of
elements in the mesh. If the deviation of the target value with respect to the previous simulation is
under a certain criteria value, the mesh is accepted as convergent [41].

2.2.4 CalculiX

With the finite elements method existing for more than 50 years, there are numerous commer-
cial and open source finite element pre-processors, solvers, post-processors and software pack-
ages. CalculiX is one of the open source representatives and was developed from the late 1990s
on by Guido Dhondt and Klaus Wittig and is still updated regularly with the last update released in
2020 [43]. CalculiX is a package consisting of pre-processor, multiple solvers and a post-processor
to solve linear and nonlinear mechanical, thermomechanical or thermal problems. However, it is
also possible to utilize it for other problems like computational fluid dynamics (CFD) [43].

CalculiX essentially consists of two parts, CalculiX CrunchiX and CalculiX GraphiX. The latter one
is used for pre- and post-processing of the analysis and offers a graphical user interface (GUI),
while CrunchiX is the simulation tool without GUI. Since in this thesis pre-processing is done using
VirSat and FreeCAD, the pre-processor is of no further interest. The post-processing capabilities
however may be used for processing the results of the analysis.

To combine GraphiX with CrunchiX one can use the CalculiX launcher software, allowing to open
an input file, executing the simulation and afterwards launching GraphiX to view the simulation
results. Some more functions are available but most of them are designed for Linux and are not
useable with a Windows operating system.

The mentioned input file is an alphanumeric file where all information necessary to execute the
simulation is stored in such way, that it can be read by CalculiX CrunchiX. Its syntax is inspired by
that of an Abaqus input file which is a commercial finite element analysis (FEA) software with sim-
ilar areas of application as CalculiX. The exact structure of such an input file is presented in this
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chapter.

CalculiX’s standard solver is the Spooles solver and is used in this work, however some additional
solvers are supported as well and can be used after manual installation. [42].

All information in the following sections, that is needed for the syntax and structure of an input
file is obtained from [42] and the example model provided with the CalculiX software package, if
not explicitly marked as a different source.

2.2.4.1 Input Script

Many, if not all, finite element software packages offer a possibility of scripting the simulation
setup [44, 45]. CalculiX has this capability of reading beforehand created input files as well. The
scripting language used for this is inspired by the one that commercial FEA software Abaqus uses
to conduct analyses. As discussed before, scripting a simulation setup can significantly reduce the
time spent for setting up simulations in certain cases. However, it is somewhat time consuming to
set up the script initially.

In CalculiX, the input file consists of three main sections. The first one is the model geometry.
Then follows the thermal model data as well as general simulation configuration data. Appendix A
is dedicated to these three parts of the input file and shows the structure of the input file for Cal-
culiX in detail. The concrete sequence in which the simulation is set up is variable and many steps
can be interchanged with one another. The sequence described in the appendix is how the simu-
lation is set up for this work and is not the only possible sequence.

2.3 Virtual Satellite

To increase the efficiency of spacecraft development DLR-Institute of Simulation and Software
Technology (DLR-SC) developed the MBSE tool VirSat. It was mainly aiming on supporting con-
current engineering studies, nevertheless, the intention to use the software for later development
phases was already there from the beginning [46]. Several new functions were added to achieve
this goal, supporting spacecraft development throughout all phases in various ways. Some of
these functions will be presented in this section.

Fig. 2.9 depicts the phases in which VirSat is used compared to other MBSE tools that are more
focused on the earlier project phases. The figure also shows that one intention of this work is to
enable the execution of thermal simulations at an earlier stage of spacecraft design, as it provides
the tools to perform analyses even without using domain specific design tools before.

Virtual Satellite (VirSat) 4 Core is a software offering a customizable data model for storing rel-
evant engineering data of a satellite on the one hand and interfaces to access this data on the
other hand. This strongly supports the idea of MBSE, as it provides one central data model where
model data of different engineering disciplines can be found.
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Figure 2.9: Overview of the information flow in the workflow. Source: Own representation.

The framework or meta-model of this data model, the conceptual data model (CDM), is the core
of VirSat. It is the blueprint for the system model, the actual implementation of the CDM. Within
the CDM every aspect of the project to be stored in the system model is defined. This holds for
the general hierarchical project structure as well as for individual properties of components. What
defines VirSat besides the customizability of the CDM, allowing to add new aspects to tailor it to
the individual project needs, is that it has a version control system (VCS) to enable the engineers to
always restore an old system model state if a change does not have the desired effects [47].

The possibility to tailor the CDM makes VirSat a versatile tool. The ongoing effort of the develop-
ers to extend the concepts in VirSat and its customizability enabled it to be used not only in con-
current engineering but also for MBSE during later development phases as indicated by the ”Prod-
uct Structure” concept introducing project trees for different project phases. The concept is briefly
presented, among the other concepts, in the following section.

One key aspect of VirSat is the role management. A project is represented by one of the ”Product
Structure” trees, where the subsystems can be assigned to certain engineering domains. Each user
belonging to a domain can edit engineering data of their own domain only, but can read data of
all other domains as well. This ensures, that the engineers always have an overview of the com-
plete system, and data integrity is maintained, as only domain experts have the rights to perform
changes within their domain.

Another important feature of VirSat are concepts. Concepts represent the individual engineer-
ing disciplines’ relevant data to be stored in the system model. Individual concepts exist for mass
budgets, power budgets or the mentioned state machines for example. One of the most substan-
tial aspect of VirSat’s customizability is the creation of individual concepts, enabling the user to
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consider new engineering disciplines in the system model and reuse the concept for subsequent
projects if desired. The versatility of the generic elements concepts are built of offers a a high de-
gree of flexibility in invoking new engineering disciplines. The individual concepts or disciplines,
enriched with data, then together form an integrated system model, ideally covering all aspects of
the system and therefore strongly supporting the idea of MBSE.

Moreover, it is possible to create Java applications in VirSat. With these so called apps the user can
access the actual CDM instantiation of each project and furthermore write new information into it.
Once created, the apps can be copied to any new project, given that the new project supports all
concepts the app accesses. The Java interface also allows to use other functions of Java program-
ming language, e.g. creating and writing files. This can be used to process data and export it to a
desired format, as it is done in the course of this work.

The following sections are meant to introduce the reader to the functions offered by VirSat, the
structure of the project representation and the process of customization.

Virtual Satellite uses a hierarchical model to represent a project’s structure. This manifests in a tree
structure of the whole project repository. In the uppermost level of the data structure are by de-
fault the role management instance, unit management instance and the repository instance, that
contains all available project trees. For storing external documents like specification documents
or relevant European Cooperation for Space Standardization (ECSS) standards, every structural
element also has a ”documents” folder assigned which also exists in the operating system file ex-
plorer under the path of the project’s repository.

2.3.1 Virtual Satellite Existing Concepts

The fact that VirSat is a tool that relies on customizability does not mean the standard version
lacks functionality. It is sufficient to already consider a number of aspects of a system model and,
as mentioned, it is continuously expanded. These aspects are represented by some concepts in
the standard VirSat version and include product structure, mass budget, power budget, functional
electrical architecture, design maturity, requirements, state machines and visualization which are
briefly introduced in the following paragraphs.

”Product Structure” is basically the foundation of all concepts. It covers the different product trees
that serve as the skeleton for the representation of all aspects of the model. In this concept there
are three main trees that can be used, following the maturity of the system composition through
the project phases. The first tree to be created is the project tree, in which components to be used
are modeled. Afterwards, the configuration tree is created to model the actual configuration of
the spacecraft, that is how the actual system implementation shall look like. Finally, the assembly
tree represents the configuration tree, enriched with data of the actually assembled components.
Thus, the trees of this concept are filled with more and more accurate data during the whole de-
velopment of a spacecraft. Within the trees, each subsystem has its own branch and each level
below represents one more level of detail. The number of levels is not limited [47]. Data can be
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added for each level from system level to the lowest component level. In general it is favorable to
add data in the lowermost possible level to achieve greatest possible detail in the system model.
However, not all applications require a high resolution in terms of components, so there are excep-
tions to this statement.

The ”Mass Budget” and ”Power Budget” concepts enable the user to store component masses
and power demands with certain margins and offers pie chart graphics to display the composition
of the overall budgets of the system and their margins. Besides giving systems engineers a quick
overview over the budgets left for allocation, it also provides transparency to the domain engi-
neers.

”Design Maturity” adds the possibility to specify the technology readiness level (TRL) of individual
component. This way the overall technological maturity of the project can be traced by means of
summarizing the individual TRLs.

The ”Requirements” concept adds some complexity as it allows to create certain requirement
types with specified attributes. Then, for every desired component a requirement specification is
instantiated by the user, that can be filled with actual requirements of the types created before. As
of now, this concept is still being developed with the ultimate goal that all requirements and their
fulfillment are traced automatically in VirSat whenever possible. Underlining this, as a first step it is
currently possible to link requirements to specific properties of components for traceability.

To represent the electrical architecture of the system the ”Functional Electrical Architecture” con-
cept is utilized. It can be used to display the electrical interfaces between components and their
characteristics. Analogously to the ”Requirements” concept, one top level element is created,
where the types of interfaces are defined. Interface ends of type ”power” or ”data” are added
to individual components. These interfaces are then connected with either a power interface or a
data interface. Voltage or voltage ranges can be defined in order to specify the interfaces and to
track the associated requirements or identify incompatibilities between components. From the de-
fined architecture a diagram showing all interfaces can be created. In contrast it is also possible to
create the diagram and let the software translate this to the system model.

Finally, the last concept that is currently usable is the ”State Machines” concept. With this con-
cept it is possible to build state representations with different states or modes of the system. A
state machine can be added to each component. To define the possible states of the component,
”states” are added to the state machine. The dependencies between different components and
states can be expressed with ”Allows Constraints” and ”Forbids Constraints”. Furthermore tran-
sitions between the different states can be modeled in each ”State Machine” instance. As in the
concept before, it is possible to generate a state diagram from the defined states and transitions
or to translate them from a self created diagram to the system model.

It is visible that all these concepts are strongly linked to the MBSE approach, improving traceability
of requirements and compatibility between components in various characteristics of the system.
With this being the current state of the engineering data VirSat covers, in the following the ac-
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Figure 2.10: Excerpt from a VirSat system model, with the concept described by the code in listing 2.1 is
instantiated with the two components ”PCDU” and ”Baseplate”. Note that the ”ThermalElementParame-
ters” element, that is referenced in the ”ThermalPort” element is in another part of the code and not dis-
played here. Source: Own representation.

tual structure of the product trees, as well as how the CDM can be complemented by self-created
concepts is explained.

2.3.2 Virtual Satellite Concept Development

To add relevant project data that is not covered by existing concepts to the system model, VirSat
offers the possibility to create own concepts. Concepts can be seen as specific infrastructure for
adding data of a certain discipline to the system model. As mentioned before they exist seperately
for different engineering disciplines since most disciplines require to store their own very specific
information in the system model. Once created, concepts can be reused for new projects.

To customize the set of concepts, DLR-SC provides an IDE version of VirSat. This version of VirSat
enables the user to create individual concepts, using a high level programming language sufficient
for creating the required infrastructure to store various types of data. This high level code is then
automatically converted to regular Java code in order to enable the use of the concept in the ac-
tual VirSat program.

A concept usually consists of multiple elements, where every element is either a category or a
structural element instance (SEI). The latter embodies a folder-like object, in which multiple cat-
egories (or further SEI) can be instantiated. Categories then embody a collection of properties
which host the actual data. An example for a small part of a concept’s code is shown in listing 2.1
and its corresponding instantiation in Fig. 2.10.

The StructuralElement keyword starts the definition of a new structural element. It is followed by
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Listing 2.1: Example for the top level programming language used for creating concepts in the eclipse IDE
of VirSats developer version.
Concept de . d l r . s c . v i r s a t . model . e x t en s i on . thermal d isp layname ” thermal” d e s c r i p t i o n ”Concept f o r modeling thermal p r o p e r t i e s ”

v e r s i o n 1.32 beta {

S t r u c t u r a l E l emen t The rma lAna l y s i s d e s c r i p t i o n ”Here a l l gene ra l i n fo rma t ion fo r the a n a l y s i s i s s to r ed ” {
App l i c ab l e For A l l ;
C a r d i n a l i t y 1 ;

}

S t r u c t u r a l E l emen t ThermalContacts d e s c r i p t i o n ”Here a l l thermal con ta c t s a re s to red ” {
App l i c ab l e For [ The rma lAna l y s i s ] ;
C a r d i n a l i t y 1 ;

}

S t r u c t u r a l E l emen t Th e rma l P o r t L i s t d e s c r i p t i o n ”Here a l l thermal po r t s a re s to red ” {
App l i c ab l e For [ ThermalContacts ] ;
C a r d i n a l i t y 1 ;

}

S t r u c t u r a l E l emen t T h e rma l I n t e r f a c e L i s t d e s c r i p t i o n ”Here a l l thermal i n t e r f a c e s between po r t s a re s to red ” {
App l i c ab l e For [ ThermalContacts ] ;
C a r d i n a l i t y 1 ;

}

Category Therma lPor t d e s c r i p t i o n ”Modeling of thermal connec t ions” {
App l i c ab l e For [ T h e rma l P o r t L i s t ] ;
Refe rence portComponent of Type ThermalE lementParameters ;

}

Category The rma l I n t e r f a c e d e s c r i p t i o n ”Modeling of thermal i n t e r f a c e s ” {
App l i c ab l e For [ T h e rma l I n t e r f a c e L i s t ] ;
Refe rence Contacts [ 2 ] of Type Therma lPor t ;
F l o a t P r o p e r t y the rma lCon tac tConduc t i v i t y un i t ”Watt per Meter and Ke l v i n ” ;
F l o a t P r o p e r t y contactMaxMeshElementSize0 un i t ”No Un i t ” de f au l t 0 ;
F l o a t P r o p e r t y contactMaxMeshElementSize1 un i t ”No Un i t ” de f au l t 0 ;

}
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descriptive properties such as its name and possibly a short version of its name and a description
of the element. For each structural element the location where it can be generated in VirSat must
be defined. There are three alternatives to achieve this. One is to chose Applicable For All which
enables the element to be generated directly in the repository, or in every other structural element
instance. Secondly, if Applicable For is chosen, another structural element name is handed as an
argument. The structural element can then only be created inside a structural element of the spec-
ified type. Third, IsRootStructuralElement can be chosen instead of the Applicable For expression.
If so, the structural element can only be created in the repository root level. This should not be
used extensively, since the root repository can easily become chaotic with increasing amount of
root SEIs.

Creating new categories is done with the Category keyword. As for the structural element, the
headline is completed with the name of the category and optionally a short name and a descrip-
tion. In addition, a category can also inherit from another category, which is also defined in the
headline.

The definition of the locations where a category can be instantiated works analogously to the
structural elements. Only that categories can only be created within structural elements.

Following on, attributes for the category can be defined from a number of different property types.
The properties are used to store and access data bits such as power consumption or mass and can
be of string, boolean, float, integer, or list type. The list is used for specifying some predefined val-
ues to choose from for this property. A unit can be assigned to all numeric properties, allowing
VirSat to convert between different units internally. From the many other attributes that can be
defined, the Reference attribute is one of the most notable ones. With this, any other structural
element, category, or attribute from any other category can be referenced. This enables in VirSat
the interconnection between different components for representing interfaces for example. The
last attribute to be presented here is the Resource attribute. This creates an interface in VirSat that
enables to reference or copy an external file from the windows explorer.

2.3.3 Virtual Satellite App Development

Other than the concept development, which is done in the eclipse IDE, apps can be created di-
rectly in the VirSat application. They are used to access the system model’s data and process it.
Thus, as already indicated in the chapters before, apps are of enhanced use since the whole Java
Development Kit (JDK) can be invoked for them. In addition, a useful tool for conveniently access-
ing parts of the system model as a Java bean is provided. This way, one can quickly access certain
data of a property, for example a parameter together with its unit can be directly as output using
the bean object of it.

Apps are activated and created directly in the ”apps” resource in the project repository. When
editing an app, it is opened in a Java editor. The apps are essentially written in Java, such that
every app looks like a regular Java program. The system model is by default accessed using the
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”ModelAPI” class, which creates an accessible Java object from the VirSat project, that has es-
sentially the same hierarchical structure as the project. The desired properties of the model can
then be obtained using the Java specific syntax for navigating through the levels of the model and
some functions related to Java beans, allowing to directly access all instantiations of structural el-
ements using their specified name. For example, the getDeepChildren() function can be used to
collect all structural element instances of a specified type (such as ”ElementConfiguration”, the
type of each component’s top level element). Thus, no matter how many levels there are in the
configuration tree, the Java beans approach allows to do fast system-wide analyses by directly
heading for the low level elements, while the default approach navigates from the top level down
to each low level element individually. The app development feature as such is strongly related
to the MBSE approach, as it allows to import and export data to and from the system model to
perform analyses on the system on the one hand, and to import data from documents like require-
ment tables to the MBSE tool on the other hand.

2.3.4 Additional Virtual Satellite Functions

In the course of its development additional functions were added to VirSat. Two functions, that
are used extensively in this thesis, are especially worth mentioning. On the one hand, it is the 3D
visualization feature, which consists of a 3D Viewer, allowing to visualize a satellite within VirSat,
and the ”Visualization” concept, where the data necessary for the 3D Viewer to view the com-
ponents is placed. The concept allows to move components or change their size and form while
immediately seeing the changes in the viewer window. This primitive parametric CAD approach
allows the users to conveniently create a geometry of the satellite directly in VirSat. It is also pos-
sible to import *.stl mesh files as geometry for a component. This however was not entirely func-
tional at the time this paragraph was written, which is why in this thesis the geometry generation
directly in VirSat was used. On the other hand, the second important feature is the Cad Export
Wizard, which wraps the project hierarchy together with the components’ geometries in a *.json
file that can be read by the Virtual Satellite workbench in FreeCAD.
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Chapter 3

Workflow Concept for Thermal
Analysis

As stated in chapter 2.1.1 short response times for giving prompt feedback on the impacts of
design changes are favorable. This is especially valid for the early design phases, where major
changes leading to major impact with the need of quick assessment are more common than in
later development phases. Using Virtual Satellite as a tool to track such design changes and store
the system model data consequently leads to the demand for a workflow enabling the execution
of analyses using system data stored in the Virtual Satellite system model only. As one important
aspect of spacecraft design, thermal analysis made available as early as possible in the develop-
ment would contribute to the efficiency of development. For this, a workflow must be established
covering the setup, execution and evaluation of the analysis, being not only of use in the early de-
sign phase, but also in the subsequent design phases. This work is dedicated to conceptioning
and optimizing such a workflow. The elaborated concept is introduced without much detail in
this chapter while the detailed implementation of the workflow is then described extensively in
chapter 4. The structure of the workflow can be disassembled into four main parts, that essen-
tially represent the information flow direction, as it is depicted in Fig. 3.1. The first part is where
the necessary infrastructure for thermal models is set up in VirSat. Thus, this part is covering the
information flow into the workflow or system model, respectively. In the pre-processing part the
information flow is from Virtual Satellite to the simulation tool while in the post-processing part it
flows the opposite direction eventually feeding the simulation results back to Virtual Satellite.

The chapter starts with a look on existing similar approaches and the specifications for the work-
flow to be created before the actual workflow concept is presented.
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System Model

System Properties
Preprocessing

Thermal Analysis

Thermal Simulation Model

Postprocessing Simulation Results

Component-specific Results

2. Preprocessing

4. Postprocessing

1. System Model Creation

3. Analysis Execution

Thermal Model

Figure 3.1: Overview of the information flow in the workflow. Source: Own representation.

3.1 Existing Workflows

As the practice of MBSE is still at an early stage of adoption, so far only limited research efforts
have been spent on integrating simulation and analysis of physical aspects in MBSE tools. Focus
of the resources spent was mostly simulating functional and behavioral system models to ver-
ify interfaces and operational modes of a space system [48, 49]. The idea of integrating physical
model simulations like mechanical or thermal simulations was also formulated in an MBSE con-
text [13, 50, 51]. However, since functional models have a wider range of application, are by def-
inition well-expressable in system design languages, and are among the very first models built in a
project, mostly top level functional and behavioral aspects are respected within the application of
MBSE so far. Nevertheless, integrating physical simulations is both necessary and useful. Necessary
to fully adopt the MBSE approach on the one hand, useful since it can be a big support for ther-
mal engineers to formulate a proper thermal control concept early on in the development on the
other hand. Therefore it is a logical next step in evolving MBSE.

Public research undertakings to integrate thermal simulations into the MBSE approach were exe-
cuted by Gross et al. as a part of their work developing a unified modelling language (UML) based
design language for spacecrafts that covers thermal and mechanical properties among others [52].
Their effort enabled the direct execution of thermal simulation of the modeled spacecraft with
the commercial ESATAN software [53]. Some similarities and differences exist between the be-
fore mentioned and this work. A major difference is that this work is intended to establish a work-
flow using the open source software packages VirSat and CalculiX instead of commercial software
and that a less wholesome approach is followed, integrating the workflow between two existing
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tools and only in terms of thermal aspects. The design language used for this will be a slightly cus-
tomized version of Virtual Satellite’s (VirSat) CDM. Still, the general intention of creating physical
models using a system modeling language with the least possible effort is one of the main goals
of both works.

In the commercial sector, numerous MBSE software packages are available. With focus on require-
ment management and mentioned top level functional and behavioral aspects, only few of them
also include physical analysis capabilities, for example by creating custom flowcharts for an execu-
tion sequence of analysis tools like ANSYS [54]. This kind of analysis flowchart design is a similar
approach to DLR-Institute of Simulation and Software Technology’s (DLR-SC) Remote Component
Environment (RCE), where sequences of analyses using different simulation tools can be created
and executed [55].

3.2 Workflow Specifications

The workflow to be conceptualized is intended to provide a thermal analysis of a space system,
with the least possible effort and as early in the system design as possible. The use of different
software packages is required to achieve this; VirSat shall be used as MBSE tool while CalculiX
shall be used for the execution of the actual simulation as it was stated in the task description of
this thesis. Additional software, such as FreeCAD, may be used as well, if it benefits the quality
of the workflow. Factors influencing the quality of the workflow comprise effort of execution,
time of execution, proneness to user errors and software prerequisites. When assessing different
options, the choice shall be made for the option maximizing the quality of the workflow as it is
evaluated by the author.

3.3 Workflow Concept

In this section an overview of the different workflow steps and their function is given. Details on
how the steps are executed will not be provided in this section, but in chapter 4. Thus, this section
covers the concept of the workflow, while the next chapter is about the actual implementation.
With the concept described in the following, the initial workflow concept from Fig. 1.4 can be
taken and extended to represent the actual top level concept elaborated in this work in Fig. 3.2.

3.3.1 Virtual Satellite Infrastructure

Keeping in mind that the foundation for MBSE is a consistent system model that includes all rel-
evant data, as a first step it is necessary to create the infrastructure to feed the thermal model
data to VirSat. Since so far there is no way of storing thermal properties in the system model other
than some mechanical and geometrical properties that are already implemented as part of other
engineering disciplines, customizability of VirSat will be used to create the interface needed for
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VirSat System Model

Thermal Model Data

Mechanical Model Data

Other Model Data

CAD Exporter FreeCAD Simulation Tool

Simulation Input Script

Simulation Output FileVirSat Interpreter App

VirSat Export Apps

Mission Analysis Tool

Figure 3.2: Chart of the workflow concept with the tools involved in setting up the simulation and inter-
pret the results. Source: Own representation.

storing all mandatory properties. That means a concept complementing the existing ones with
thermal data is created. The different concepts in VirSat are modular, meaning that the amount
of dependencies between concepts and especially between specific properties that are likely to
be changed in the future shall be minimized. As a result of this even those parameters needed
in this work that may already be present in other concepts (or very likely to be included in other
concepts in the future) will be part of the new concept, such that the need for other concepts is
minimal. When all concepts are sufficiently mature, the double parameters can be reevaluated to
be merged into one parameter. Tab. 3.1 lists all basic properties that are used for static and dy-
namic thermal simulations and thus have to be provided to the simulation tool. The idea is that
the thermal concept’s structure is divided into two main parts. The ”ThermalAnalysis” element,
located inside the TCS subsystem instance, hosts all general information about the simulation.
The ”ThermalData” element in contrast hosts thermal properties of the single components and
is therefore located inside their respective components element. The actual implementation of this
thermal concept is further described in section 4.2.2.

With the infrastructure for storing the thermal model existing, the model shall then be provided to
CalculiX for analysis. However, for executing thermal analyses a number of pre-processing work
packages are to be executed first to enable CalculiX to perform a simulation. This includes mesh-
ing, assignment of boundary conditions, materials and contacts, and specifying the exact simula-
tion configuration. For the simulation tool an input file must be provided. This file covers all nec-
essary data and is described in detail in chapter 2.2.4.1 and appendix A. The goal of all following
pre-processing activities is to achieve a consistent input file with the correct syntax.

3.3.2 Pre-Processing

The above described properties are all stored within the VirSat system model. To access them, the
use of VirSat apps is utilized. A number of Java apps is written for exporting the necessary data.
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Table 3.1: Thermal data to be provided for a basic spacecraft thermal analysis

Thermal parameter Description

Absorptivity Surface-specific efficiency in absorbing radiation
Boundary conditions (heat flow/temperature) External fixed loads on certain parts of the

model
Density Material-specific/component-specific mass per

unit volume
Emissivity Surface-specific efficiency in emitting radiation
Heat capacity at constant pressure The amount of heat energy needed for a certain

temperature change
Initial temperature Temperature of the components for t = 0
Thermal conductivity Material-specific ability to transfer heat
Thermal contact surfaces The surfaces that are involved in each thermal

contact
Thermal contact conductivity Thermal conductivity of face to face contacts

between two components

Simulation parameter Description

Time step For dynamic simulation, the time increment be-
tween each discrete step

Total time For dynamic simulation, the total time determin-
ing after how much steps the simulation stops
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There is one app for each of the following aspects of the complete model: Material data, ther-
mal contact data, radiative property data, volume heat fluxes, face heat flux among temperature
boundary conditions, and finally general simulation data. The Java interface allows to access and
directly write the desired properties to text files. Since the input script is a text file, it is favorable
directly generating usable input syntax with the apps whenever possible. However, all model prop-
erties must be assigned to the right subsets of the discretized version of the model, the mesh,
which is not yet known. As a consequence, additional pre-processing steps for correctly assigning
the properties to the meshed model are necessary, once the mesh is generated.

Regarding the geometry of the model, the dependence on another concept is inevitable. The ”Vi-
sualization” concept offers the infrastructure for creating or importing geometries in VirSat, which
is mandatory for simulation setup. The MBSE software also offers a geometry export function,
which is complemented by the Virtual Satellite toolbox in FreeCAD, allowing to export the ge-
ometric model from VirSat and display it in FreeCAD. It was originally created for changing the
model’s geometric features in a CAD program and afterwards reexporting the changed geometry
from the CAD program back to VirSat [56]. With FreeCAD also offering a workbench with func-
tionality for FEA and a Python console, it would be an option for the subsequent pre-processing
steps. A second option besides FreeCAD is Gmsh. Gmsh is a meshing tool that also provides CAD
functions besides also having scripting capabilities. Gmsh is also one of the two tools utilized by
FreeCAD for meshing geometries, the other being Netscape. Nevertheless, due to the fact that
Gmsh is not able to read the exported *.json geometry file, FreeCAD must be employed at this
point in any case. In addition, the integrated Python console, which offers tools to perform tasks
on the geometry, and the integrated mesh tools offer some of the functions necessary for further
pre-processing. Thus, it is a very versatile software for pre-processing the thermal analysis model.
Consequently, although the documentation of its FEA workbench is not yet complete, FreeCAD
was chosen for conducting the subsequent pre-processing steps.

3.3.2.1 FreeCAD Pre-processing

With the pre-processing tool being selected the part of the workflow using FreeCAD is to be eased
as far as possible. Inevitably, this means that a script for the Python console is written, performing
as many actions as possible automatically. This reduces the time of execution of the workflow on
the one hand, and the risk of errors produced by the user on the other hand. Thereby increasing
the overall quality of the workflow in two ways.

The list of tasks to be executed before the model is completely processed for the simulation is still
quite long, including

1. preparing geometric model for assignment of face-specific properties in VirSat

2. mesh generation

3. mesh group generation for assignment of properties
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4. assignment of thermal load boundary conditions and radiative properties (that are not as-
signed with a VirSat app

5. mesh refinement on contact areas

6. processing and assignnment of external input (e.g. Sun vectors to resulting radiation inten-
sity).

Keeping in mind that the number of different software packages used should be as low as possi-
ble, the ideal case is to complete all these tasks using FreeCAD only.

With the geometric model imported in FreeCAD, it is possible to directly create a finite element
mesh exclusively using console commands. This enables the use of scripting for fast mesh gener-
ation. With the function to access also parts of the mesh with the Python console, the relevant
nodes and elements that the thermal properties address can be isolated and added to groups, to
which then the properties are assigned. Ensuring the naming of the groups follows a convention,
the properties can be assigned by a VirSat app to group names which not yet exist, but are certain
to be created by FreeCAD later on. This means the actual assignment of most properties is done
directly with the Java apps, while the related groups are then defined using FreeCAD (see Fig. 3.3).
The pre-processing using the FreeCAD script, and all functions related to it are described in more
detail in section 4.3.

FreeCAD

+...()

+createMeshGroupForComponents()

+...()

Input Script

CalculiX

Virtual Satellite

+Components

+Materials

+etc.

All components

Materials and assigned mesh groups

Figure 3.3: Separation of the actual mesh group generation and the assignment of the materials to the
mesh groups. Materials are assigned in the input script to mesh groups that are generated in a subsequent
step. Source: Own representation.

3.3.3 Inclusion of External Factors

Since in space the thermal behavior of a spacecraft is strongly influenced by the thermal environ-
ment in its orbit, it is beneficial for the validity of a thermal analysis to take external factors into
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consideration. As depicted in Fig. 2.3 these are mainly solar radiation, Earth reflected solar radi-
ation and Earth infrared radiation. To account for solar radiation as the first and most significant
contribution to the thermal load on the spacecraft model, it is necessary to obtain the vector of
the Sun with respect to the spacecraft and, if a dynamic simulation is executed, the course of the
vector over time. To determine this, the use of external tools is inevitable, since the determination
of orbit position and attitude would exceed the scope of this work. Thus, the mission analysis tool
Systems Tool Kit (STK) is used to obtain the Sun vector, the Sun intensity regarding the obstruction
of the Sun by Earth, the Earth vector and the angle between spacecraft, Earth surface and Sun for
the specified time steps.

The obtained orbital data is then automatically read and interpreted in the FreeCAD script to com-
bine the loads for each face and assign them. This is described in section 4.3.8 Generally, it does
not matter which tool is used for generating the files, as long as the data is provided as a comma-
separated values (CSV) file with the according structure presented in appendix B.6.

3.3.4 Post-Processing

After completing the input script, the simulation can be executed. CalculiX offers a post-processor
that can be used to view the results of the simulation. Still, the idea of MBSE is to obtain the sim-
ulation results in the MBSE environment. To achieve this, the output file of CalculiX must be inter-
preted such that the desired values can be added to the system model. Interpreting is done with
another Java app that reads the output file and finds the right locations in the file for obtaining
the correct values. Primarily this concerns maximum and minimum temperature in the simulation
for every component. To enable requirement traceability, the mentioned maximum and minimum
temperature are added to a result subset of the system model, where the corresponding require-
ments can be linked to. By comparing the required temperature with the obtained one, fulfillment
of the requirement can be evaluated. In addition, for respecting requirements regarding the tem-
poral change of temperature, Virtual Satellite’s (VirSat) default equation feature can be used to-
gether with the defined timestep duration values to calculate the temperature change for each
timestep.
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Chapter 4

Implementation of a Workflow for
Thermal Analysis

The before stated concept for a workflow to conduct thermal analyses, using VirSat as starting
and ending point, provides a top level overview of the data that is transferred and where it is for-
warded from/to. However, to be able to execute this workflow, a far more detailed view on the
actual actions is necessary. Aspects that seem to be trivial from a top level view can quickly be-
come extensively time-consuming when looking into the very detail. After all, this work is not only
about stating the workflow itself, but to optimize it and enable its use as well.

The quality of a workflow is greatly influenced by the ease of execution and the effort for exe-
cution. Or generally spoken, its susceptibility to errors and its effort of execution. As humans are
prone to errors and need longer for certain, especially repetitive tasks, a focus of this work is not
only to execute the workflow, but also to automate it whenever possible.

This chapter is intended to present the workflow and a detailed description of the processes and
automated functions utilized to achieve the overall goal of the simulation round trip. It does so
by first presenting how the actual structure of the input files in this work looks like. Large parts of
this chapter and of the workflow in general are then dedicated to achieve a representation of the
thermal model in this input format. Finally, the chapter is completed by describing how the output
of CalculiX is returned to the system model in VirSat.

4.1 CalculiX

In this workflow, CalculiX has an important role. However, since the only task is to execute the
analysis, there is not much to tell about it in this chapter. The general input file structure is de-
scribed in section 2.2.4.1 and A, but there is an addition to this structure. This addition is strongly
linked to the implementation of the workflow. Thus, it is discussed here.
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4.1.1 Input File Separation

The composition of the input file is discussed in section 2.2.4.1 and appendix A. However, an im-
portant addition is that there is a keyword that allows to split the input file into an essentially ar-
bitrary number of input files. This is done with the Include keyword, which invokes another file in
the same folder with a given name.

Without this function, the input file would become extensively long and thus, very hard to over-
see. Furthermore, it would be necessary for every single application that adds or changes some-
thing in the input file to open it, find the right location inside the file and write the information
correctly. Keeping in mind, that there are several thousand of nodes and elements at least, it is
not optimal if every application is required to iterate through the whole file. Moreover, this is an-
ticipated to be quite prone to errors. For example it might be possible that the application con-
fuses the appropriate locations to write to and, by crashing the syntax, essentially rendering the
file unusable. Furthermore, it is hard to find the location where the erroneous text was inserted as
the file is extensively long. On the contrary side, depending on the number of components, the
use of this function can lead to quite a large number of separate files,that are all necessary for the
simulation.

Still, the modular multi-file approach was chosen as it offers less complexity when it comes to
generation and more variability when it comes to manual adjustments like removing single com-
ponents from the input deck by hand. Moreover, with this approach the actual order in which
the single files are generated does not matter, which also decreases the risk of errors. Finally, it is
faster to track errors in the input deck with this approach.

Listing 4.1 shows the main input file that invokes all individual component- and property-specific
input files that exist for the thermal model. In the following, the whole process of obtaining these
individual input files is described, which is the ultimate goal of all pre-processing activities that fol-
low. For this the first aspect is to cover all activities in VirSat, as this is the starting point where the
system model that is to be transformed into a thermal model for analysis is instantiated in.

4.2 Virtual Satellite

Since Virtual Satellite is the source of all data used for setting up the simulation it is the first link
in the chain of elements of the workflow. Still, data source does not sufficiently sum up the role
of Virtual Satellite in the simulation setup flow. In fact the tools available to customize Virtual
Satellite are used extensively. Not only to tailor Virtual Satellite according to individual needs of
the thermal system but also to supply some of the data in that way, that it can be directly read by
the simulation program. To achieve the latter the Virtual Satellite Apps feature, as it is described
in chapter 2.3.3, is utilized. Offering essentially all Java functions, it is a versatile tool that can be
used for a wide range of tasks. However, the first step in this section is to feed system data to Vir-
tual Satellite such that the Java apps can access it.
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Listing 4.1: Example of a main input file invoking a number of other input files.

*INCLUDE , INPUT=Baseplate_2c06530c_4ee1_4388_bff8_2e55afaae114 . inp

*INCLUDE , INPUT=PCDU_e7ca332f_4740_4170_b9ce_1029ee436162 . inp

*PHYSICAL CONSTANTS , ABSOLUTE ZERO = 0 , STEFAN BOLTZMANN = 5.669E−8

* I N I T I A L CONDITIONS , TYPE=TEMPERATURE
Na l l ,293

*INCLUDE , INPUT=Ma t e r i a l s . inp

*INCLUDE , INPUT=add_contact . inp

*INCLUDE , INPUT=con t a c t _ s u r f a c e s . inp

*STEP

*HEAT TRANSFER , STEADY STATE

*DFLUX
*INCLUDE , INPUT=Baseplate_2c06530c_4ee1_4388_bff8_2e55afaae114 . b f l

*INCLUDE , INPUT=Baseplate_2c06530c_4ee1_4388_bff8_2e55afaae114 . hf

*INCLUDE , INPUT=Baseplate_2c06530c_4ee1_4388_bff8_2e55afaae114 . bc

*DFLUX
*INCLUDE , INPUT=PCDU_e7ca332f_4740_4170_b9ce_1029ee436162 . b f l

*INCLUDE , INPUT=PCDU_e7ca332f_4740_4170_b9ce_1029ee436162 . hf

*INCLUDE , INPUT=PCDU_e7ca332f_4740_4170_b9ce_1029ee436162 . bc

*RADIATE
*INCLUDE , INPUT=Baseplate_2c06530c_4ee1_4388_bff8_2e55afaae114 . rad

*INCLUDE , INPUT=PCDU_e7ca332f_4740_4170_b9ce_1029ee436162 . rad

*NODE F I L E
NT

*EL F i l e
HFL

*END STEP
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4.2.1 Storing Model Data

As stated in Tab. 3.1 a thermal analysis needs various bits of information as input for being able to
deliver a valid result. They can be divided into four main types: Geometrical data, material data,
boundary conditions and configuration data.

Geometrical data describes the dimensions and shape of the involved bodies. Material parameters
describe the relevant physical behavior of the materials for a thermal analysis. Boundary conditions
are the temperature, heat flow, radiation and thermal contact data used for the simulation. Con-
figuration data mostly includes general, non model-specific information necessary to set up the
simulation. Except for geometrical data, all of this information is quite sophisticated and therefore
mostly not yet considered in the VirSat conceptual data model (CDM). To store this data a new
concept for Virtual Satellite, called ”thermal concept” hereinafter, was created in the scope of this
work. This allows to store necessary information bits in the CDM.

The concept was created using the Virtual Satellite Developer IDE Release 4.12.0. The integrated
development environment offers the possibility to create a concept on a rather high level program-
ming language with basic functionality allowing to create infrastructure to store data. The code is
then processed and translated to Java code to be integrated into the regular VirSat source code.
Concepts consist of two types of elements that can be put into relation with each other, the first
one being a ”structural element”. Structural elements can be considered as containers that host
either so called categories or additional structural elements. On the one hand, structural elements
can be located in the root tree where they represent some general top level information that is not
linked to the different product structure trees. On the other hand, they can also be located in ev-
ery lower instance, if they are intended to be linked to a particular component or subsystem for
example. Categories in contrast are always located inside structural elements. The very structural
element where a certain category is supposed to be located can be, but does not have to, precisely
specified by its name. If not specified, the category can be instantiated within all structural ele-
ments. The categories again host alphanumeric properties which are used to store specific data
bits. An excerpt of a VirSat project with structural elements, categories and properties marked is
provided in Fig. 4.1.

Another feature of categories are references. They enable the user to reference objects of another
category or even entire categories or structural elements inside a category. This is especially useful
if certain connections between elements need to be expressed in the data model, for example to
model interfaces. The single elements and the structure of the thermal concept are addressed in
detail below.

4.2.1.1 ImportMaterials

For the sake of easing the modeling of in new projects, an app was created that reads a CSV file
containing material data. This material data is then placed inside the ”MaterialCollection”, that
is further described in section 4.2.2.6. This way, a project-overarching material library can be cre-
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Figure 4.1: Excerpt from a system model. Structural elements are marked with a black box, categories with
a red box and properties with a green box. Source: Own representation.

Figure 4.2: Example file for storing material data for import in VirSat. Source: Own representation.

ated and maintained. For each material in the file, the according name, thermal conductivity in
Wm−1 K, specific heat capacity in J kg−1 K, density in kgm−3, visible infrared emissivity, as well as
visible radiation absorptivity must be specified. An example for such a file is depicted in Fig. 4.2.
To avoid misinterpretations and other issues potentially occurring later in VirSat the material names
shall not have blankspaces.

4.2.2 Thermal Concept Structure

In the following, the created thermal concept is presented and its structural composition is ex-
plained in detail. The concept consists essentially of two main parts, the structural elements ”Ther-
malAnalysis” and ”ThermalData”. ”ThermalAnalysis” is a structural element to contain informa-
tion regarding the thermal simulation as such which hosts the structural elements ”BoundaryCon-
ditions”, ”MaterialCollection”, ”MeshSizes”, ”ThermalAnalysisResults”, and ”ThermalContacts”
as well as the category ”AnalysisType”. Each of these structural elements again hosts structural
elements or categories. The ”ThermalAnalysis” structural element is meant to be located inside
the thermal control subsystem structural element of the configuration tree, however it can actually
be created in every single structural element due to the fact that it is not possible to specify a spe-
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<<Concept>>

ThermalConcept

<<StructuralElement>>

ThermalData

<<StructuralElement>>

ThermalAnalysis

<<Category>>

ThermalElementParameters

+predefinedMaterial: Material

+initialTemperature: FloatProperty

+powerBalance: FloatProperty

<<StructuralElement>>

SingleFaceRadiationList

<<StructuralElement>>

ThermalContacts

<<StructuralElement>>

BoundaryConditions

<<Category>>

AnalysisType

+analysisType: EnumProperty [Static,Transient]

+timeStep: FloatProperty

+totalTime: FloatProperty

+includeOrbitRadiation: EnumProperty [Include,NotInclude]

<<StructuralElement>>

MeshSizes

<<StructuralElement>>

MaterialCollection

<<StructuralElement>>

ThermalAnalysisResults

Figure 4.3: Diagram showing the structure of the thermal concept’s first two levels. Source: Own represen-
tation.

cific type or name of structural elements where it can be created. Although other locations would
most likely not cause any problems, it is highly recommended to the user to follow this topology.
The above named elements host mostly general thermal model data, that is linked more to the
thermal model than to the individual components themselves.

In addition to the ”ThermalAnalysis” element, the concept consists of the ”ThermalData” ele-
ment, which is dedicated to component specific data. This structural element is intended for the
lowest possible level components of the configuration tree since it hosts data that increases the
detail and quality of the simulation, the lower the level of the described component is.

The ”ThermalData” element hosts the ”ThermalElementParameter” category, as well as the struc-
tural element ”SingleFaceRadiationList”, which are presented in detail among the other elements
in this section. For a lucid overview of the concept’s structure, Fig. 4.3 may be considered.

4.2.2.1 ”ThermalContacts”

An important aspect in modeling the thermal behavior of a system, especially a space system which
is not influenced by convection, is considering the contacts between the single components. To
account for this, the ”ThermalContacts” structural element was created. It serves as a container
for the further structural elements ”ThermalPortList” and ”ThermalInterfaceList”. The ”Thermal-
PortList” is intended to host a port for every component in the model. For every port in the list the
according component must be referenced in its properties in order to be defined properly. Fig. 4.4
provides a view of the corresponding part of the system model and the relevant properties that
can be implemented with this part of the thermal concept.
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Figure 4.4: View on the implementation of the part of the system model where the thermal contacts are
defined. Source: Own representation.

The ”ThermalInterfaceList” lists all existing contacts between components. For this, the properties
of every interface in the list comprise the reference to two thermal ports as well as a value for the
thermal contact conductivity characterizing the thermal interface. It is important to point out that
the first component named will be treated as the master component. In fact this only has an in-
fluence if there is a one-dimensional contact somewhere in the model, that shall be treated as a
two-dimensional contact. If this applies, the components must be slightly shifted into each other,
such that they are slightly overlapping, depending on how much actual contact area is desired.
The master contact component will then cut the overlapping volume out of the slave contact com-
ponent in order to obtain a consistent thermal model. For regular area contacts that do cover an
area greater than zero, master or slave contacts have no influence.

In addition, the user is enabled to set mesh sizes for each of the two involved bodies. If it is set to
zero, it has no influence. Any value above zero will set the local mesh element size at the contact
area to the specified value as maximum. Thus, for critical contacts the mesh can easily be locally
refined with this option. The first element size with the 0 identifier relates to the master compo-
nent, while 1 relates to the slave component.

4.2.2.2 ”BoundaryConditions”

Boundary conditions are very important for thermal analyses and represent external loads or fixed
values. Not all boundary conditions for thermal analyses are covered in this element, only the ones
that are not covered in other categories and that are applicable for a space system at all. Convec-
tion boundary conditions are neglected in this work, as mentioned in section 2.2. Volumetric heat
flow, meaning the thermal power generated by the component itself, and radiation are considered
as an internal component parameter and are therefore contained in the ”ThermalElementParam-
eters” in section 4.2.2.5. Therefore, only face and component temperatures as well as face heat
flow conditions are considered in this section.

To model the boundaries, the structural element ”BoundaryConditions” is added to the ”Thermal-
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Figure 4.5: View on an implementation of the part of the system model where the boundary conditions are
defined. Source: Own representation.

Analysis” structural element. Within ”BoundaryConditions” there are two categories that can be
created. On the one hand, for every temperature boundary condition a ”TemperatureBoundary”
category is created. Inside this category it must be specified if the condition is a face or volume
condition. In addition to this, the actual temperature, a reference to the corresponding compo-
nent, and, if applicable, the relevant face number in the pre-processed FreeCAD model is stored.
On the other hand, for every face heat flow boundary a ”HeatFlowToFace” category is created
where the heat flow per unit area, a reference to the component and the number of the face in
the pre-processed FreeCAD model is supplied.

A view on an implementation of this boundary condition element with one boundary condition of
each type as an example is provided in Fig. 4.5.

4.2.2.3 ”AnalysisType”

There are two main types of thermal simulations considered in this work; steady state and tran-
sient. Steady-state thermal simulations regard a non dynamic state, meaning an equilibrium, where
time has no influence on the temperature. This is often used to determine the hot and cold case
temperatures of the spacecraft [17]. Transient thermal analyses on the other side display the course
of the temperature over time. The results are most important for very precise instruments or ex-
periments, as the rate of temperature change can largely influence the component, for example
in the atomic clock mentioned in section 2.2. Moreover, dynamic simulations can be considered
if the most probable prevalent temperatures are to be determined. For this kind of simulation a
timestep and a total duration need to be defined. To cover these aspects the ”AnalysisType” cate-
gory is introduced. It is placed inside the ”ThermalAnalysis” structural element due to its nature as
general simulation setup category. Inside the category the properties ”analysisType”, ”timestep”
and ”maxTime” were created to store the mentioned aspects. The two last mentioned are only
necessary when conducting a transient analysis is desired. Otherwise they can be left empty.
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4.2.2.4 ”MeshSizes”

In numerical analysis, mesh size always plays an important role for the quality of a result. To ac-
count for this, the ”MeshSizes” structural element is used. Here, individual mesh sizes for each
component can be specified. This is done by adding ”ComponentMeshSize” categories for each
component to the structural element and assign a mesh size to the ”maximumCharacteristicMesh-
Length” parameter. In addition, the desired component is linked to the mesh size by choosing its
”ThermalElementParameter” instance.

4.2.2.5 ”ThermalElementParameters” and ”SingleFaceRadiationList”

The most important data when setting up a thermal simulation are material parameters, and, es-
pecially when conducting a simulation considering radiation as main heat transfer mechanism, the
optical surface parameters. To store the parameters a category called ”ThermalElementParame-
ters” is created within the general component-specific structural element ”ThermalData”. The cat-
egory hosts a property for each parameter needed. Originally, it was intended to be applicable for
element configurations only, but for the sake of modularity and independence of other concepts,
it is applicable for all structural elements. This decision was also made considering an advice from
the developers that there might be future changes in the naming of certain structural elements.
Thus, for robustness to potential changes of the structural elements in future versions, it would
be safer to use the applicable for all option. Consequently, the thermal engineer has to make sure
that the category is not assigned to instances that are not physical parts and have no thermal pa-
rameters.

The properties implemented are mostly of numerical nature with thermal conductivity, heat capac-
ity and density being material related quantities. Additionally, the surface properties absorption
coefficient and emission coefficient are part of the category.

Although they are technically boundary conditions, the radiation properties are located inside the
material specification, as they are material-specific boundary conditions. Two aspects regarding
these surface parameters shall be covered in more detail, as they display some important contexts
with CalculiX.

On the one hand this concerns the surface itself - not all components have a homogeneous sur-
face throughout the whole body. Indeed, in many cases different surface characteristics are used
to influence the thermal behavior of a component or a system of components, as the use of sur-
face mirrors, black paint, or similar indicates [35]. Covering this aspect is important for the usabil-
ity and validity of this workflow. However, since in VirSat the lowest geometrical representation in
VirSat is the complete component shape and not single surfaces, another functionality was added
to the thermal concept. To assign radiation parameters to individual surfaces, it is possible to add
a ”SingleFaceRadiationList” object to the thermal data instance in which single face instances can
be defined. For each single face object the emissivity, absorptivity, and the face number of the
pre-processed FreeCAD geometrical model must be provided. Each surface of a component that is
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Figure 4.6: View on an implementation of the part of the system model where the component thermal
parameters are defined. Source: Own representation.

not defined individually with a face emissivity object automatically gets the overall emissivity and
absorptivity defined in the thermal element parameters of the whole content.

On the other hand, CalculiX only uses the emissivity to perform its simulation. According to Kirch-
hoff’s law, the absorptivity is equal to the difference between one and the emissivity value [24].
Nevertheless in the analysis of space systems this is not necessarily true, because often the emissiv-
ity is considered in the infrared wavelength range, which is the range in which components usually
emit most of their radiation according to their operating temperature [17]. Absorptivity is given as
the absorptivity in the visible light wavelength, which is the wavelength where the Sun emits most
radiation and which mainly influences the spacecraft [17]. The latter is basically ignored in CalculiX
since there is only one parameter that can be handed over. The only reasonable one for this inten-
tion is the infrared parameter, as CalculiX is supposed to calculate the thermal radiation exchange
between the components.

Still, the Sun’s radiation cannot be ignored as it greatly influences the thermal behavior of a sys-
tem as well. Now, to actually account for it, the solar constant is basically used as a distributed
flux on the faces and the absorptivity provided in VirSat is used as a factor to multiply by the solar
constant for each face. This topic is covered in section 4.3.8.

In addition to the material and surface parameters, there are element quantities that are related to
the component as such. These are the initial temperature and the power balance of the compo-
nent. The set of data is completed by the only string property, the material name of the compo-
nent. This is necessary since CalculiX assigns a name to each material which must not be empty.

Note that in the current version, some thermal element parameters are outsourced to the ”Mate-
rial” category. Instead of always specifying all those parameters, the user chooses the according
material from the ”MaterialCollection” specified in section 4.2.2.6. The material then represents
these parameters. An example how the ”ThermalData” instance for one component could look
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Figure 4.7: View on the implementation of the material collection in a system model. Source: Own repre-
sentation.

like with this applied, is provided in Fig. 4.6.

4.2.2.6 ”MaterialCollection” and Import of Materials

The ”MaterialCollection” was established at a later phase of this work. Its intent is to ease the cre-
ation of new components in a project. The way it works is that there is one dedicated element for
storing all materials with their specific parameters. When creating a new component one only has
to choose the material with a reference instead of typing in the parameters. In addition, an app is
provided in section 4.2.1.1 for importing materials from a CSV file, such that material libraries can
be used over the course of multiple projects while being maintained and consistently extended.

For this, single ”Material” categories can be created inside the ”MaterialCollection” structural ele-
ment, which is located in the general ”ThermalAnalysis” element. Inside the ”Material” category,
the thermal conductivity, absorption coefficient (visible), emission coefficient (infrared), heat ca-
pacity, and density parameters are specified for each material as depicted in Fig. 4.7. This way,
each material can be stored easily, while the radiation parameters can still be adjusted for single
faces, independent of the material, if desired. The inclusion of the general radiation parameters
in the material parameters indicates that the surface of the material is included, meaning that the
material name might contain an indication of the surface quality (polished, raw, etc.), if it is of im-
portance.

4.2.2.7 ”ThermalAnalysisResults”

The ”ThermalAnalysisResults” structural element is instantiated inside the ”ThermalAnalysis” ele-
ment and hosts all analysis results that are imported in the course of the simulation results inter-
preter app described in section 4.4. In the ”ThermalAnalysisResults” one ”AnalysisResult” struc-
tural element is created each time the ReadSimulationOutput app is executed. Inside the ”Analy-
sisResult” element there is one ”ComponentResult” category for each component in the thermal
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model. The maximum and minimum temperature values are stored as properties in these cate-
gories. In addition, there are properties to specify the number of the timestep where the according
values are reached and property to reference a ”ThermalElementParameter” element of a compo-
nent. These two properties are not yet used by the app but could be added in the future.

4.2.3 Accessing and Exporting Model Data

4.2.3.1 Accessing Model Data

Having established a new infrastructure to store all material, boundary and simulation data, the
next step towards a thermal simulation is exporting that data from the storage location, in this
case Virtual Satellite, to the correct format and location it needs to be to set up the simulation. As
mentioned before geometric data storage and export is already implemented in Virtual Satellite.
Consequently, the geometry is exported using the dedicated VirSat Cad Export Wizard, meaning
no application has to be developed for it. Thus, geometric data is widely ignored in this subsec-
tion. For all other data types the means to export them need to be created in the course of this
work. This is done using the Java programming environment and an application programming
interface (API) provided by the App function of Virtual Satellite. A glimpse on the data storage
structure is already provided in sections 2.3.3 and 4.2.1. However, it follows the same hierarchical
structure as the elements in the regular project view of VirSats GUI. As an example, to access the
thermal conductivity of a component one needs to navigate through the system hierarchy starting
with the root structural elements. First, the configuration tree must be selected, to access what is
inside. To select the right structural elements, the getRootSeis() command is utilized with the con-
figuration tree class as an argument. This way a list with all configuration trees is obtained from
which the desired one is to be used. Now, to get to the component level the subsystem contain-
ing the component is selected with a get() command. With the getChildren() command and the
element configuration class as argument all components within the subsystem are listed. To get to
the thermal element parameters the specific component is chosen and with the getFirst() com-
mand and the thermal element parameters class as argument one has arrived at the level con-
taining the actual parameters. To get the desired parameter, in this case the thermal conductiv-
ity, commands are supplied for every property within the thermal element parameters class. The
thermal conductivity can now be obtained with getThermalConductivity(). An example for this is
shown in listing 4.2

This is a precise but somewhat exhaustive way of obtaining specific property values. Another pos-
sibility is to make use of the getDeepChildren() command. With this it is possible to obtain all
child elements (only categories) and further child elements of a certain structural element type in-
cluding all structural elements that have the desired data. From that set the right subset can be
obtained by iterating through it with a certain conditional statement to check if each element be-
longs to the desired subset.
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Listing 4.2: Example app for obtaining the thermal conductivity from Virtual Satellite.
publ ic c l a s s AppExample1 {

publ ic s t a t i c void main ( S t r i n g [ ] a rgs ) {
ModelAPI modelAPI = new ModelAPI ( ) ;

/ / get a l l c on f i gu r a t i o n t r e e s
L i s t <Conf igu ra t ionT ree > c t s = modelAPI . ge tRoo tSe i s ( Con f i gu ra t i onT ree . c l a s s ) ;

/ / s e l e c t f i r s t c on f i gu r a t i o n t r e e
Conf i gu ra t i onT ree c t = c t s . get ( 0 ) ;

/ / s e l e c t a l l subsystems ( w i th in the con f i gu r a t i o n t r e e
L i s t <E lementConf igura t ion > ecs = c t . ge tCh i l d r en ( E lementConf igura t ion . c l a s s ) ;

/ / s e l e c t second element con f i gu r a t i o n ( subsystem )
E lementConf igu ra t ion ec = ecs . get ( 1 ) ;

/ / s e l e c t a l l components w i th in subsystem
L i s t <E lementConf igura t ion > e l c s = ec . ge tCh i l d r en ( E lementConf igura t ion . c l a s s ) ;
E l ementConf igu ra t ion e l c = e l c s . get ( 0 ) ;

/ / s e l e c t a l l thermal data ( t e c h n i c a l l y the re s h a l l be on l y one )
/ / s e l e c t f i r s t component

L i s t <ThermalData > tds = e l c . ge tCh i l d r en ( ThermalData . c l a s s ) ;
/ / s e l e c t the f i r s t ( and on l y ) thermal data element

ThermalData td = tds . get ( 0 ) ;
/ / s e l e c t f i r s t thermal data

/ / ob ta in the re fe renced ma t e r i a l i n t h i s thermal element parameters i n s t an ce
Mate r i a l mat = td . g e t F i r s t ( ThermalE lementParameters . c l a s s ) . g e t P r ede f i n edMa te r i a l ( ) ;

/ / ob ta in thermal c o ndu c t i v i t y from t h i s ma t e r i a l and conve r t the va lue to base un i t s
double t he rma lConduc t i v i t y = mat . getMthermalConduct iv i tyBean ( ) . getVa lueToBaseUn i t ( ) ;

System . out . p r i n t l n ( t he rma lConduc t i v i t y ) ;
}

4.2.3.2 Exporting Model Data

After accessing the data model as it is described in section 4.2.3.1, the next step is to export it
to a format such that CalculiX interprets it correctly. As this subsection largely focuses on how
to arrange all data to match the input format of CalculiX, the reader might consider reading sec-
tion 2.2.4.1 and appendix A first, to have in mind how such an input script looks like. To avoid
errors and ensure valid simulation results, the exported data must match the CalculiX input struc-
ture syntactically and correctly represent the thermal model. As described in chapter 4.1.1 the
actual sequence in which the files are generated does not make a difference in the selected ap-
proach. This allows to create a dedicated app for the export of every type of information, enabling
the possibility to quickly change various values in VirSat without having to export the whole set
of data which might also contain changes which are not yet desired to be fed to CalculiX. The
following subsections briefly address the actual implementation and the logic of the single ex-
port apps. Details about the actual structure of the input files created can be looked up in sec-
tions 2.2.4.1 and 4.1.1. Generally, the data is either exported directly to the CalculiX input format,
or to an intermediate format for the FreeCAD script to open and process it further, as it is depicted
in Fig. 4.8. Ultimately, the goal is to provide the complete simulation model in the input format to
execute an analysis with it. An overview of the aspects of the thermal model to be exported from
VirSat, the app that exports it and the format they are after the corresponding app was executed
is provided in Fig. 4.8.

Page: 64



4.2 Virtual Satellite
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Figure 4.8: Overview of all model parts exported from VirSat for thermal simulation. The names in the
boxes represent the name of the corresponding app that exports the aspect. The arrows point to the tar-
get format of the exported data. Source: Own representation.

4.2.3.3 Contacts Export

The WriteContacts app gathers information about thermal contacts modeled in VirSat. For each
contact to be fully defined in CalculiX, the three mandatory attributes are comprised by the two
involved components and the gap conductivity characterizing the contact. Consequently, for each
contact at least these three attributes must be extracted from the data model and written into a
readable file. Since the model of contacts in CalculiX also requires the specific surface numbers of
the involved component faces, not all input needed for the contact model can be supplied by this
app. As FreeCAD is the first instance in the workflow that considers single surfaces of the geome-
tries, some of the actual input data has to be supplied by FreeCAD at a later stage of the work-
flow.

However, this app writes the ”add_contact.inp” file which defines the name of each contact (”SI1”
counting up) and the gap conductivities. This file is already in the input format, but not sufficient
for specifying the contacts. Subsequently, FreeCAD writes the missing information in a separate
file using the contact name to map the parameters right (see section 4.3.2). To make sure that
each contact name actually refers to the right contact in both programs, two contact validation
files are created in VirSat. Each line of both files contains the names of the master and slave con-
tact partners. The line itself represents the contact number. The app in VirSat writes the identi-
fier of the two contact partners into the very first line, which is line number 0. The FreeCAD script
can then open the files and compare the two identifiers with the detected contacts. This way not
only the right order of the contacts is ensured (to match the already created ”add_contact.inp”
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Figure 4.9: Flowchart of the app that exports the thermal interfaces to the input file as well as to master
and slave contact files. Source: Own representation.

System Model

Thermal Ports
- Thermal Port Component1
- Thermal Port Component2
- ….

Thermal Interfaces
- Thermal Interface 1 

- Thermal Port 0,Thermal Port 1
- Contact Conductivity
- MeshSize 0, MeshSize 1

- Thermal Interface 2
- …

WriteContacts app

add_contact.inp

*SURFACE INTERACTION, NAME=SI1
…
*GAP CONDUCTANCE
<Contact Conductivity>,,300

validateContactsSlave.txt

Component2,<MeshSize1>
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validateContactsMaster.txt

Component1,<MeshSize0>
…

Figure 4.10: Parts of the system model the ”WriteContacts” app accesses and the format of the three cre-
ated files. The two *.txt files are passed to FreeCAD, while the *.inp file is directly used in CalculiX input.
Source: Own representation.
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file), but also the contacts detected by FreeCAD are validated and the integrity of the data for all
contacts being fed into the simulation is guaranteed. This is because detected contacts without
data from VirSat as well as pure data without the appropriate contact detected will not be consid-
ered in CalculiX. From the flow diagram of the app, depicted in Fig. 4.9, its logic can be obtained.
Basically, the app first accesses the relevant model data and creates the three already mentioned
empty files. Then it iterates through all thermal interfaces modeled in VirSat and retrieves the two
ports’ parent component identifier and the thermal gap conductivity. Afterwards, those values are
written to the corresponding file.

In addition to the three mandatory attributes of each contact, the possibility to specify local mesh
sizes at the contact location is offered for both sides of the contact. They are exported by writ-
ing the specific mesh size for each contact side to the master and slave contact validation files. In
each line, right after the the name of the corresponding component, the characteristic mesh size
for this contact is written. In the FreeCAD script the numbers are then obtained from these files
and the relevant parts of the mesh are sized accordingly. Fig. 4.10 shows the input and output of
the app, where the lower two files are for further processing in FreeCAD and the upper file is one
of the two input files for contact specification in CalculiX, the other one being provided by the
FreeCAD script.

4.2.3.4 Material Export

Writing the material data to the input is done by the WriteMaterialsToInput app. Fig. 4.11 shows
the parts of the system model this app accesses, as well as the output file’s structure, that is gen-
erated. To actually use a material in CalculiX, it has to be assigned to a set of elements. As there
are no element sets at this stage of the workflow, since they are created after meshing, instead
the identifier of the element is used as the element set name. This is shown in Fig. 4.11, where
the corresponding component name is called as the element set (ELSET) to assign the material to,
after each material’s parameters are defined. To keep the input consistent, the corresponding el-
ement set must be created. It is done automatically in FreeCAD, as described in section 4.3.2.3,
so that there is no risk of missing to create it, ensuring the consistency of the input model. The
program flow starts with obtaining the relevant model data, meaning it gathers all structural ele-
ment instances in a list. Afterwards, the blank text file ”Materials.inp” is generated. Then, the app
iterates through the list, checking for a visualization and the availability of the thermal element pa-
rameters defined in section 4.2.2.5 If either one of the two is not available, iteration continues as
it is assumed that the current element instance is no physical component. If the parameters are
available, relevant material data is written into the file. Relevant data in this case is comprised of
material name, thermal conductivity, specific heat, density, as well as the name of the component
the material shall be assigned to. These elements are needed to fully specify materials in CalculiX.
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Figure 4.11: Conversion of system model data to input file text that is done by the ”WriteMaterialsToIn-
put” app. Source: Own representation.

4.2.3.5 Radiative Parameter Export

For exporting radiation parameters and correctly arrange them in the input files, the WriteRadia-
tionInput App was created. The format for feeding these parameters to CalculiX is somewhat
complicated to obtain since every single mesh face must have its emissivity assigned separately.
The identifier for the face consists of the number of the element the face belongs to and the num-
ber that very face has within this element. Taking into account that VirSat does not interact with
the mesh at all, this means that an intermediate step has to be introduced in order to enable the
correct allocation of the emissivities in FreeCAD. For this app it is important to consider that it is
possible to assign radiation parameters to individual faces, as well as to complete components.

All of these values must be interpreted correctly by FreeCAD. For this, the first line always con-
tains the overall emissivity and absorptivity of the component. After writing this line, the following
lines are optional. What happens is that the app obtains all single face emissivities that are present
within this components thermal data. If one is found, the face number is written to the file. Sepa-
rated by a comma, the actual emissivity and absorptivity values for this face are added to the same
line. The structure of the file is depicted in Fig. 4.12. If there is no single face parameter for this
component at all, it consists of one line only. This way, the file can be opened in FreeCAD, first as-
signing the overall radiation parameters to the complete component, then assigning the individual
ones by finding the corresponding mesh faces that belong to the specified part face. Thereby, the
before assigned general value is simply overridden by the face specific one.
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Figure 4.12: Conversion of system model data to the intermediate ”.rd” file that is done by the
WriteRadiationToInput app. The first line of the file represents the overall component radiation properties,
while the following lines are optional and specify emissivities and absorptivities for specific faces. The values
in brackets represent the values deposited in the system model. Source: Own representation.

4.2.3.6 Volumetric Heat Flux Export

WriteVolumeHeatFluxToInput is the app to take account for the heat dissipated by a component
heating itself due to electrical processes, or even cooling itself to model a cooling effect by as-
signing negative heat fluxes. The flow is similar to the apps before. First, all structural element in-
stances are collected, then the ones with thermal element parameters are accessed and the value
of the thermal power balance is obtained. It is then written to a *.bfl text file that is named after
the name and identifier of the component. Since the body flux is given to CalculiX as heat flow
per unit volume, the absolute value only is not enough to reasonably specify the body flux; also
the volume of the body is necessary to compute the volumetric heat flow. Although the volume of
a component is technically present in the VirSat visualization, it cannot be accessed easily. It would
be possible to calculate it from the shape of the geometry and the parameters, however due to
the amount of different shapes it would also be unnecessarily complex to calculate the volume for
all possible shapes. Consequently, only the absolute value of the heat flow is written to the file
and then converted in FreeCAD, which supplies the value of the volume more conveniently, to a
volumetric heat flow. Another benefit of this is that the volume of the actual meshed component
can be used instead of the real volume. This way the absolute heat flow in the analysis will have
the value specified in VirSat, while otherwise it would slightly deviate due to the volume difference
between ideal body and mesh.

4.2.3.7 Further Boundary Condition Export

The three boundary conditions left are exported with the WriteBoundaryConditions app. Since
the volumetric heat flux and radiation are already covered, what is left are face heat fluxes, face
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temperature and body temperature. These three boundary conditions are all stored in the ”Bound-
aryConditions” structural element and are all accessed with one app.

As some apps before, this app iterates through all element configurations and determines if they
are components by checking if a visualization and thermal parameters exist in it. If so, two files
named after the name and identifier of the component are created. One is for both temperature
boundary conditions, the other one for face heat fluxes. Then, an iteration through all elements
within the ”BoundaryConditions” element obtains all boundary conditions to be set. For each
one, it is determined what kind of boundary condition it is. Then it is appended to the accord-
ing file. The body temperature boundary condition is just written as as a number into a single line,
FreeCAD then later recognizes the single number as a volume boundary condition and identifies
all elements of the body to set the temperature. For face boundary conditions, the face number
and the value of the condition is specified. Then, in FreeCAD the according mesh elements located
in the face are identified and the value of the boundary condition is assigned to the right mesh el-
ement faces. In the temperature boundary file, FreeCAD can distinguish between face and body
boundary by determining the amount of values separated by commas in a line. In addition, if there
is a body condition, a face condition will overwrite the body condition for this specific face as it
will be applied after the body condition. This way, it is technically possible to define a body condi-
tion with single faces having different temperatures.

4.2.3.8 Mesh Size Export

The export of the individual mesh sizes is done with the MeshSizeExport app. It creates the ”mesh-
Sizes.txt” file and writes the mesh size for each component together with the name and iden-
tifier to it. The mesh sizes are obtained by accessing the ”MeshSizes” element, where the sizes
are stored. The way the app works is that it iterates through all element configurations to find all
components. Then, for each component it iterates through all specified mesh sizes and identifies
if the name of the component belonging to a mesh size matches the name of the component of
the current iteration. If so, the mesh size is obtained and written to the text file, among the com-
ponent name and identifier. If there is no mesh size specified for a component, the value 0 is used
instead, resulting in Gmsh automatically determining the size of the mesh elements.

4.2.3.9 General Setup Data Export

To complete the export apps, the ”main_input.inp” is generated. It is done by executing the Write-
MainScript app. It can be imagined as the trunk of a tree to which every branch, representing all
other input files that were generated, is connected. The task of the main file is to set the sequence
of simulation setup and as a part of this, invoke the single input files in the correct and complete
order. Thus, it is important to make sure that all relevant input files are invoked and the simulation
setup is complete. Another task is to specify some general information regarding the simulation
that only needs to be stated once.
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Consequently, this app is the most complex one and a flow diagram is supplied in Fig. 4.13. First,
the ”ThermalAnalysis” structural element containing the general simulation setup information is
retrieved. Then, the empty ”main.inp” file is created. Since geometry is the first information pro-
vided in a CalculiX input file, the first lines in the main file invoke the mesh geometry files of ev-
ery component, which are created by FreeCAD as described in chapter 4.3.2. As they contain all
nodes, elements and sets, they are a necessary foundation for specifying loads and properties. Be-
cause the geometry files are not necessarily already existing when the main file is generated, the
naming of the files follows a convention. The component name and identifier is used as file name.
An invocation for every structural instance that satisfies the conditions of having a ”ThermalEle-
mentParameters” element as well as a visualization with a shape assigned is created. This way,
errors resulting from incomplete elements in VirSat are avoided.

After the geometries, a fixed line for physical constants is generated followed by setting the ini-
tial temperature. The initial temperature is first set to 300 K for all nodes. This way it is ensured,
that all nodes have at least one initial temperature. For steady state simulations the initial temper-
ature does not have influence and the default value is used. But if the analysis type is transient,
the app gets the initial temperature of every component from the thermal element parameters us-
ing the same conditions as used for the geometry file invocation. The initial temperatures are then
written to the input assuming there is a node set existing for every component with the compo-
nent’s name at the very time this line is executed. Next up is the material and contact properties.
The material input file is already completed as it contains material data and the corresponding
element set names. If the element sets are defined before, which they are, the materials are as-
signed to the correct element sets. The contact definition consists of two files which are called
after each other. The first file is the one created by the WriteContacts app, the second file ”con-
tact_surfaces” is created by FreeCAD.

Afterwards, the Step keyword is written starting the part of the script where loads and boundaries
are created. Now, when it comes to the main file, there are differences in this part’s structure de-
pending on whether it is a dynamic or steady state simulation. Dynamic simulations need some
extra input information such as the time parameters. So, first, the analysis type is specified by ei-
ther using the Steady State parameter after the Heat Transfer keyword or no parameter at all, indi-
cating a dynamic simulation.

For the dynamic simulation case, it is necessary to hand over the time parameters in the line be-
low. This includes start time, which is always set to 0, stop time and time step, all separated by
commas.

Then, all heat flux and radiation files are invoked, again using the same condition that was de-
scribed earlier for the geometry file invocation to ensure only the files for existing and completely
defined components are invoked.

For post-processing, the standard settings are set, such that an output file is generated, that hosts
temperatures of the nodes, as well as heat fluxes between the elements.
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Figure 4.13: Flowchart of the app that exports the thermal model to the main input file that invokes the
other input files. Source: Own representation.
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4.3 Processing with FreeCAD

Since VirSat is a tool for modeling a satellite and not for handling finite element data or detailed
geometric data, this needs to be outsourced to a different software. For this, the CAD export
function is a very useful one. It not only allows to change geometric properties in an external CAD
software and feed them back to VirSat, but it also enable to further process it to enable conduct-
ing simulations with the geometry supplied by VirSat. Processing the geometry by generating
a mesh that matches it and supplying this mesh to CalculiX is the central task FreeCAD was in-
tended for in this workflow. However, additional pre-processing steps have to be executed. This
comprises the allocation of the boundary conditions for example. To further smoothen the work-
flow an automated function for this is desired, saving the effort for manually doing these tasks.
Having in mind that the workflow works best, the less complex it is and the fewer different soft-
ware packages are included, FreeCAD’s Python console was considered for this and turned out
as well-suited for most tasks. It offers direct access to all geometric model properties and many
mesh properties. In addition the Python programming language offers basic functionality needed
for automation of these steps like opening files, writing lines and performing calculations. Thus,
FreeCAD’s task, originally intended to only process the geometry was extended by essentially all
other necessary pre-processing steps. To automate certain tasks, FreeCAD’s functionality includes
storing macros for scripting, that are comprised of Python code to be executed. Since numerous
tasks are executed using a script that was developed in the course of this work, this script is one
of the key components in this work. Thus, it is introduced and explained in this section. A list of
the single functions the FreeCAD script covers is provided in Tab. 4.1. A top level flow diagram of
the FreeCAD script sequencing is provided in Fig. 4.14. In the course of this section, first all pre-
processing regarding the geometry is presented. This covers splitting contacting faces into the ac-
tual contact face and the residual contact-free face, meshing, finding and processing the contacts
between bodies, and finally refining certain parts of the mesh. Secondly, those boundary condi-
tions and surface properties that VirSat was not able to set, are processed and set. The section
closes with the invocation of external factors as solar radiation.

Table 4.1: FreeCAD script functions

Function name Function content

findAllContacts() Find contacts and add the contact information to a
globally available matrix

createMeshAndGroupsAndInputFile() Create the mesh with Gmsh, then create the mesh
subsets for assigning all boundary conditions and
properties, finally write everything into the mesh
file

makeInputConsecutive() Open mesh file and change node/element numbers
to make the numbers consecutive across all compo-
nents
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addNodesetForObject() Add all nodes of a component to a new mesh
group

addElementsetForObject() Add all elements of a component to a new mesh
group

setFaceEmissivities() Read VirSat radiation output file, then assign the
correct emissivity value to all faces of a component
and write the corresponding input file for CalculiX

applyHeatFluxBoundaryConditions() Read VirSat (face) heat flux file and apply the heat
fluxes to the according element faces, then write
the input file for CalculiX

applyVolumeFlux() Read VirSat (volume) heat flow, divide it by the vol-
ume of the corresponding component’s mesh and
write the resulting volumetric heat flow to the in-
put file for CalculiX

applyTemperatureBoundaryConditions() Read VirSat temperature boundary condition file
(volume and face) and apply the temperatures to
the corresponding nodes, then write the input file
for CalculiX

validateContact() Compare a detected contact with the specified
contacts from VirSat, if match is found return
”True”

writeContactToInput() Write the matrix of validated contacts to the input
file for CalculiX

makeContactFaces() Pre-process the geometry before the actual script
execution by creating new bodies with separate
faces at contact areas that are used instead of the
original ones. In addition, read the contact file from
VirSat and cut the corresponding ”Slave” compo-
nent if an overlap is detected

reset() Reset the geometries to the initial state (Delete all
types of bodies except the type the imported ones
of VirSat are)

writeAmplitudeFile() Process the Sun and Earth orbit files to a sequence
of loads for each mesh face

findMeshFaceNormal() Determine the normal vector of the face formed by
the three nodes handed to this function using the
cross product

findMeshFaceOrientation() Determine the orientation of the normal vector
from the order of the nodes

Page: 74



4.3 Processing with FreeCAD

getEarthData() Read the CSV files and write the Earth vector and
albedo reflection angle for each timestep to a list

getSunData() Read the CSV files and write the Sun vector and
Sun intensity for each timestep to a list

getCosineOfAngleBetweenVectors() Determines the cosine of the angle between two
vectors

determineObstruction() Determine if the path from the first node of a face
to another point is obstructed by another part of
the geometry

4.3.1 Pre-processing the Geometry

Ignoring the part hierarchy information for now and only considering the geometry, the exported
model consists of individual bodies representing each component. These separated bodies are not
related each other. However, if a face of one body has contact to another face, a part of this face
is obstructed by the body it has contact with. Thus, on a logical level this face is separated into
two faces, but in the geometric model there is still only one face. If one now assigns a load to that
face, representing for example solar radiation, it might be desired that this load only covers the
unobstructed part of the face, as it would be in reality. But, as mentioned, there is only one face in
the geometrical model. So it is not yet possible to assign the two parts of the faces individually.

Another benefit underlining the usefulness of splitting up the faces is refining the mesh. Refin-
ing the mesh at contact areas in particular, not on the complete face of the contact, would im-
prove the accuracy of the simulation as it is proved in chapter 5. Having these two arguments in
mind, a solution for splitting up a face with a contact into the actual contact area and the free
area seemed to be worth striving for. Certainly, the possibility of a quick solution was investigated,
however due to the way of FreeCAD handling and storing faces and bodies, there was no appar-
ent solution to this. Using boolean functions with bodies that have faces which are only lying on
each other and not actually intersecting do not return anything. The only predefined function that
provides an overlap between the faces is the section() function. It returns a set of edges describ-
ing the outer wire of the contact face. All attempts to add this wire as a face to the bodies were
unsuccessful. In the end, a hint from one of the FreeCAD core developers enabled the use of a
workaround.

This workaround is implemented in the makeContactFaces() function in the FreeCAD script. The
way it works is that a list of all components’ geometry objects is created. Out of this list, a so
called boolean fragment is generated. If the bodies forming the boolean fragment are overlap-
ping, the overlapping area is cut out of the two bodies forming three new solids, two of them
having the shape of the original ones just with the overlapping area removed and the third one
has the shape of the overlap. If only the faces are in contact, only two new solids are created,
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Figure 4.14: Flowchart of the top level functions the FreeCAD script performs. Source: Own representa-
tion.
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Figure 4.15: Baseplate with additional face at cylindrical contact area on the left as it is created by the ge-
ometry pre-processing. Source: Own representation.

each one with the contact area as an individual face. Now, a solid is just a subset of a proper ge-
ometry object, meaning it has to be converted to the latter. This is done with the boolean func-
tion common() that gets the intersection between two shapes as a real part object that can be
used for further processing. One of the two shapes being the whole shape of the boolean frag-
ment and the other one being the one of the original objects. What is returned is a new object
with the original shape and the desired single faces for each contact as depicted in Fig. 4.15. With
this pre-processing executed, it is important to keep in mind that the number of faces as well as
the assignment of the numbers to the faces is changed. So, the face numbers of the original ob-
ject differ from that of the new one. This is especially important when defining properties on spe-
cific faces in the thermal concept in VirSat as the new face numbers are used in FreeCAD to assign
the defined properties. Thus, if a property like a boundary condition or a single face radiation pa-
rameter is assigned in VirSat, this pre-processing step has to be done first, to know which face to
assign the property to.

4.3.2 Automated Meshing and Mesh Groups

To conduct a finite element analysis of a system one needs to convert the geometry into a discrete
set of elements and nodes. This is done by creating a mesh. A mesh consists of elements which
again consist of interconnected nodes, single points in the coordinate frame. For highly accurate
simulations, one needs very fine meshes that are refined manually and thereby optimized for the
type of simulation they are intended for. This task is usually done by experienced thermal engi-
neers and requires experience in thermal analysis. Still, new automated meshing algorithms are
continuously developed and mesh quality is improved with better algorithms.

When executing the automated FreeCAD script, the focus of the simulation is not set on obtaining
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the highest accuracy thermal analyses with highly refined meshes but more on obtaining relatively
quick simulation results as early as possible in the project life cycle. It is therefore convenient that
the mesh is created as fast as possible while the mesh quality is still satisfying for the demand. To
ensure this, the mesh element size can be set for the individual components in the thermal con-
cept in VirSat. Since in the early design phases reasonable effort is the most important aspect in
conducting thermal analyses, the mesh is generated automatically in this automated part of the
workflow. However, the option to do more sophisticated analyses with customized meshes shall
be enabled in this workflow as well and is addressed in section 4.3.3.

As it was described before, the geometry from VirSat is exported using the Cad Export Wizard
function. The export format is JavaScript Object Notation (JSON), which is not one of the usually
used CAD formats. The reason this format is used is that it can display the hierarchy relations be-
tween single parts and subsystems. This is necessary, because the original intention of the export
function was to export the project to FreeCAD to change geometric features and then reimport
this updated version in VirSat. To keep the project consistent, the hierarchy information had to be
included in the export model. Since the JSON format is not a usual CAD format, CAD software
packages cannot handle it. In FreeCAD however, DLR-SC developed a Virtual Satellite Workbench
enabling the import of the geometry in the JSON format with the correct project hierarchy. Thus,
FreeCAD is the only CAD software that is really able to process the geometry from VirSat. Because
FreeCAD also has a FEM workbench, allowing to create mainly mechanical finite element analyses,
some infrastructure in the area of finite element analyses is already present. For example, there
are two mesh tools that can be directly executed by FreeCAD; Netgen and Gmsh. The latter one,
offering more customizability of the mesh, is chosen to be used here.

First, to test the FEM capability of FreeCAD and the mesh tools, meshes were created using the
graphical user interface. However, scripting the mesh creation is much faster and therefore exclu-
sively the process of creating a mesh with a Python script is of relevance here. The same also holds
for several other FEM functions used in the workflow.

In the developed FreeCAD script, a main loop iterates through all individual components, essen-
tially executing all of the functions following for each component one by one.

4.3.2.1 Mesh Generation

Generating a generic mesh with the Python console in FreeCAD is done within a few lines of code,
as seen in listing 4.3. The first thing to do is to create an empty FEM mesh object by importing
the FEM workbench and using the makeMeshGmsh() command handing the name of the ob-
ject as a parameter. Then, the part that is supposed to be meshed and some more parameters,
if desired, are assigned to the empty mesh object. After that, the mesh object is specified to be
meshed using Gmsh. It is also possible to define specific areas within the part, so called ”mesh re-
gions”, which are meshed with different specific length parameters for example. An example of
this is depicted in Fig. 4.16, where the face on the lower side of the cube was defined as a mesh
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Figure 4.16: Meshed cube geometry, where the face on the bottom was assigned as mesh region with a
lower element size before meshing was executed. Source: Own representation.

Listing 4.3: Example for creating a generic mesh of a part using the Python console in FreeCAD
import FreeCAD , ObjectsFem
from femmesh . gmshtools import GmshTools as gt

#Crea t i on of the new empty mesh ob j e c t
femmesh_object = ObjectsFem .makeMeshGmsh ( App . ActiveDocument , ”MeshExample” )
#Assignment of the Pa r t ( ” Box ” ) to be meshed to the mesh ob j e c t
femmesh_object . P a r t = App . ActiveDocument . Box
#GMSH meshing
gmsh_mesh = gt ( femmesh_object )
gmsh_mesh . create_mesh ( )

region with a lower maximum specific mesh length. This function is used for refining the mesh on
contact areas, as described in section 4.3.6.

Another concept that is used extensively are mesh groups. A mesh group is a collection of nodes,
elements, faces or lines that are grouped to assign loads to the whole collection instead of sin-
gle instances. This improves the readability of the input files and already enables the allocation of
loads in files created by VirSat apps. They can just assign the parameters to a mesh group name
that is not further specified at that point of the workflow. Consequently, this mesh group must
be actually initialized in FreeCAD, otherwise there will be an input error in CalculiX since there are
values allocated to a mesh group that does not exist. So, it is important to ensure that the set of
mesh groups is consistent when the input is handed over to CalculiX.

To generate the mesh, three things are needed in this workflow. First, the actual geometric bod-
ies to create the mesh of. They are provided by the export function in VirSat. Second, the general
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mesh size of the bodies. For this, a small function is executed before the actual meshing starts.
This function reads the ”meshSizes.txt” file that was exported by VirSat and creates a list with all
component’s mesh sizes. Third, the contact regions and their corresponding mesh sizes. The con-
tact regions are obtained by first pre-processing the geometry to isolate single faces for the con-
tact areas as it is described in section 4.3.1, and then finding the actual faces where the contacts
are as described in 4.3.4. The latter also supplies the sizes to be applied for the contact regions.
With these three aspects the mesh is generated by Gmsh.

4.3.2.2 Consecutive Meshes

Now, since every component is meshed individually, for every component the default node and el-
ement numbering consequently starts at 1. As all meshes are later fed to the same CalculiX input,
the same node and element numbers are actually defined more than once throughout the whole
input if there is more than one meshed component. This causes the problem that the input deck is
not consistent and various errors are the consequence. Because it is not possible to influence the
node and element number that Gmsh distributes, another solution was to be considered. The first
approach was to change the node number within FreeCAD after mesh generation. As it is possible
to access most of the parameters of the geometry and change them, accessing the mesh parame-
ters like this was the most obvious approach. However, after FreeCAD imports the mesh, it does
not allow to change the nodes and elements in any way.

As a consequence, a different solution had to be chosen. That is, accessing the exported ”*.inp”
files that contain the mesh information and manipulating the numbers inside. The mesh files are
text based, which makes it possible to read and change it. However, it is required to cycle through
all lines, remove the artifacts of the text file to convert the entries of each line to a list of actual
numbers to work with. Furthermore, the correct lines need to be identified to change the right
values. To execute all this, the function makeInputConsecutive() was created. It takes the number
of already given nodes, the number of nodes for the current component, the same for the ele-
ments, and the path where the mesh files are as arguments. First, it is determined in which ranges
of the file nodes, elements and mesh groups are defined. This follows a fixed relation and can be
obtained with the given parameters. Then, the function iterates through all lines of the file and
determines in which of the three areas it is.

For the nodes, the function obtains the first entry of the line, which is the node number, and changes
it accordingly. If the line index is in the range of the element definition, analogously to the nodes
the first number in the line, the element number is replaced with the number of already assigned
elements plus another running variable, counting the number of assigned elements in that file.
In addition to this, in each line there are ten more entries representing the node numbers of the
nodes the element consists of. Consequently, these have to be changed as well, which is why
there is another loop iterating through all entries of the line except the first one, changing the
numbers to the old number plus the fixed number of nodes already assigned in the previous com-
ponents.
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If the line index exceeds the upper border of the element definition area, that essentially means
it is in the mesh group area. Since all mesh groups are created after this step, no additional ma-
nipulation is necessary here. But it is important to mention, that if mesh groups would have been
created at this point, the nodes or elements they contain will have to be changed accordingly as
well.

4.3.2.3 Mesh Group Generation

After executing this function, the mesh files are updated and the node and element numbers
are consistent throughout all components. The next step is to create all the mesh groups that
are used for assigning values to the geometry by identifying the desired nodes or elements and
adding them to a mesh group with a certain name. It was mentioned before, that the export apps
in VirSat rely on certain mesh groups to be existent. These mesh groups of course have to be cre-
ated. Since the material export app assigns the materials to an element mesh group with the name
of the component, for each component a mesh group with all of the component’s elements is cre-
ated. Analogously, temperature or volumetric heat flux boundary conditions can be applied to a
whole component, also using these mesh groups. Since these conditions are always applied to
nodes and not to elements, a node set of the same name as the element set is generated which
in fact just extends the before created element set by the selected nodes so that the set inherits
both, elements and nodes.

For every contact that was detected by the function described in section 4.3.4, a surface mesh
group for the two involved faces is created. This is done because CalculiX needs these faces to be
specified when the contacts are defined. The face mesh groups are named consistently after their
component’s label first and the component label they are touching second. The expression ”Mas-
ter_Contact_” and ”Slave_Contact_” is also used since CalculiX uses similar expressions. There is
no specific routine assigning master and slave to the faces since for thermal simulations, it makes
no difference which face is which [42]. The mesh group is created within the mesh file of each
component. By obtaining all mesh faces that comprise the whole actual face of the component,
which is in contact with another face, then writing the mesh element number of each mesh face
and the number of that mesh face within the mesh element into the mesh group, the contact face
is defined well enough for CalculiX.

With the contact faces defined, the mesh creation and subsequent addition of mesh groups is
completed and the mesh itself is fully prepared for thermal analysis. With the material being as-
signed to the created mesh groups, only boundary conditions are left to be assigned.

4.3.3 Manual Mesh Generation

In section 4.3.2 it was discussed that the automated meshing is part of the workflow to be exe-
cuted when a fast simulation result is desired. However, to keep this workflow variable and usable
also for simulations in later design phases, when more time is spent crafting and refining meshes
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manually, a corresponding feature was added to the FreeCAD script. With this feature, it is possi-
ble to create a mesh or import a created mesh of one or more components before executing the
script. This mesh is then recognized by the script, provided that it follows the naming convention.
It has to be named exactly like the component, with a ”_001” appended. This is also the standard
way FreeCAD renames the mesh element, when it is created with the same name as the compo-
nent itself. When a mesh is recognized, the script will not create a new mesh for that component
and use the existing mesh for further pre-processing (starting from mesh group generation). This
way, parts of the model, or even the whole model, can be meshed to individual needs, while still
using most parts of the automated workflow, significantly easing many parts of simulation pre-
and post-processing. At this point it is only possible to use tetrahedral meshes if it is desired to
include solar radiation, because the order of nodes within an element that form specific face num-
bers is specific to the tetrahedral mesh. However, other mesh types could be added with relatively
low effort, only specifying the order of nodes for other mesh types.

4.3.4 Finding Contacts between Components

To specify the contact faces and the relevant mesh faces for the contact face mesh group as de-
scribed in the previous section, it is necessary to find them first. It is important to keep in mind
that after execution of the steps described in section 4.3.1, every component in the geometric
model has a dedicated face for the exact contact area with any component. Now, reliably deter-
mining these precise faces’ numbers requires some effort as there is no function for doing this di-
rectly. Thus, to compare two faces, it is necessary to look at their composition.

In FreeCAD, faces ultimately consist of single ”vertices”, that are connected by ”edges”, which are
attached to each other to form a closed ”wire”. At least one wire forms a face and if a face has
more than one wire, that means it is not sufficiently described by a single sequence of attached
edges. To find contacting faces, a loop through all components’ faces is executed. Then, a second
loop iterates through all faces of the components different to the component of the already se-
lected face. For each face pair the following operations are executed to detect contacts. First, the
section() command is used, which returns the intersection shape between two parts as an object
with edges (and vertices).

There are two kinds of contacts that are being detected by evaluating the presence of edges by
this command:

1. Face to face contact (desired) - contact that involves two faces of two different components,
forming a contact area

2. Edge-like contact (undesired) - contact that involves two faces, forming a contact point or
line

With each contact being represented by edges, it is necessary to determine if these edges repre-
sent an actual face to face contact or just a one-dimensional contact, as depicted in Fig. 4.17. To
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Figure 4.17: Example for a single-edge contact. The contact is only described by one edge (highlighted in
yellow) and therefore no area can be assigned to it. Source: Own representation.

achieve this, the section object is undertaken a number of checks, eventually determining if a face
to face contact is prevalent. First of all, there are two cases that need to be handled separately.
Circular face contacts and non-circular face contacts. The special thing about circular contacts
is that they consist of only one edge and therefore have to be distinguished from a simple edge
contact, that is not treated as a contact here due to the lack of contact area (see section 4.3.5 for
handling edge-like contacts).

Non-circular contacts are identified by first filtering only those section objects with more than one
edge from the set of all possible contacts. This removes all single edge and round face contacts
from the set of possible contacts. What is left are all contacts with more than one edge, thus
every possible contact that is not described by a circle or single line. Now, it is possible that the
contact is either generated by two faces that actually cover each other, or by at least two edges
that lie on top of a surface. The latter being an undesired contact, is actually often prevalent as
those contacts are regularly generated by the pre-processing function from section 4.3.1, that cre-
ates the contact area as an individual face. These contact faces are often completely enclosed by
the residual of their original face, like an island. The face in contact with this newly created face
is usually detected as such an undesired contact with the enclosing original face, as their two
edges match at the circumference of the contact area. This case is depicted in Fig. 4.18, where
the box that was removed in Fig. 4.15 was added. The face of the box that lies on the baseplate
now forms the undesired contact with the face of the baseplate that encloses the contact. Many
of these false contacts can be easily dismissed by counting the number of wires the faces consist
of. For contacting faces the number of wires involved is always one. The enclosing faces however
usually have two wires, one on the outside describing the original face and one that describes the
inner border, where the contact face was cut out. However, if the cut out contact face lies at the
very edge of the original face, the residual face still has only one wire that can fully describe the
circumference of the face. Thus, a final evaluation has to be created to safely determine if it is a
face to face contact. This is done by obtaining all vertices from the two involved faces and com-
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Figure 4.18: The model from Fig. 4.15 with the contact bodies added to the visualization. Source: Own
representation.

paring them. If all vertices of each face have their equivalent vertex with the same coordinate in
the other face, the faces are identified as equal and the contact is identified as face to face con-
tact. If there is one vertex in one face that has no equivalent in the other face, the contact is iden-
tified as false contact.

For circular contacts the determination is different than for the non-circular contacts. A circular
contact is defined by exactly one edge. Contacts with curved faces not covered with this and are
handled as multi-edge contacts. This is because a curved contact face has at least one more edge
than a flat contact, which automatically triggers the before discussed multi-edge contact identifi-
cation.

For the flat type of contact the same applies for filtering the bordering faces of the contact as for
the multi-edge contacts, with the difference that here both faces’ number of edges is checked to
be equal to one. If greater than one, the contact is identified as false contact, as, due to the fact
that for each contact a separate face is created, a contact that is fully described by one edge can
only be between two faces that are also fully described by exactly one edge. Here, the number of
edges is used instead of the number of wires to ensure that the involved faces are actually circular.

If a face to face contact is detected a validation check is executed. The script opens the two files
that were exported from VirSat, containing information about the contacts that are actually de-
fined in the system model. If the contact is not found in the available files, meaning it was not de-
fined, it is rejected and not treated as a contact in the analysis. However, if the contact between
the two components was defined in the system model, then the contact pair is added to a list
where all validated contacts are stored in terms of the involved components as well as the corre-
sponding faces of the components. This list is used for the generation of the correct mesh groups
of the contacts that was described earlier in 4.3.2 and for the generation of locally refined mesh
areas described in section 4.3.6.
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4.3.5 Point, Edge and Asymptotic Contacts

In CalculiX, a thermal contact is defined by its thermal contact conductivity [42]. As this quantity
is related to the actual area of the contact, contacts without an area can only be neglected in the
FEA software. This comprises point, edge, and asymptotic contacts. In reality, those kinds of con-
tacts always have a contact area due to their imperfect shape. To enable the user to account for
this, two options exist. Either, the contact must be slightly flattened manually, such that there is
an actual area that FreeCAD and CalculiX detect, or this task is executed automatically. If done
manually, this means the component cannot be created in VirSat any more, as such shapes are not
supported by the visualization concept. Consequently, the automated version is preferred in this
workflow as it is much faster and allows the geometry creation in VirSat, too.

For this, one component is slightly shifted into the other, such that the overlap is just big enough
to represent the actual approximate contact area in reality. The amount of overlapping shall be
determined by the thermal or mechanical engineers, who have to analyze how large the actual ef-
fective contact area, formed by the shape imperfections, is. The overlap is then chosen that way,
that the resulting contact area matches the effective real contact area. The FreeCAD script geome-
try pre-processing (makeContactFaces() function and prepareModel script) recognizes this overlap
with the boolean function common(). If the contact is also specified in the system model it uti-
lizes the cut() function to cut out the overlapping part of one component, so that the geometry
model is consistent again. In this case it is important, which component is specified first in the
contact within the system model, as the first component (”Master”) stays as it is and the second
component (”Slave”) is cut at the contact. With this, the components now have a contact area
that can be processed further as a regular contact. Note that the slave components volume will in-
evitably change through this operation. If a volume heat flow boundary condition is applied to the
slave component it will be applied to the lower volume of the component after cutting the over-
lap. That way, the absolute magnitude of the heat flow stays the same, but the volumetric value
will slightly increase. However, since the overlaps are very small, the change in the volumetric heat
flow is also marginal. Still, if a high accuracy is desired, this has to be considered.

4.3.6 Automated Mesh Refining

In every thermal model, there are certain critical areas that should be examined in more detail.
Such areas could be areas of high gradients in material properties for example. Generating a finer
mesh in these areas contributes to the quality of the analysis results since critical parts are calcu-
lated with more accuracy due to the higher number of elements involved. Contact areas are of-
ten this kind of critical areas, since two components with often differing material properties are
coming together at these locations. Thus, it is beneficial to refine the mesh at the contact areas.
This is implemented in the Python script by adding so called ”Mesh Regions” to the mesh object
in FreeCAD. For each region the specific mesh size can be freely chosen. Thus, by adding each
contact face as a mesh region and assigning smaller specific mesh element sizes, the mesh will be
locally refined at the contacts.
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For executing this, the script iterates through the global list of all validated contacts, created by the
function that finds all contacts (see section 4.3.4). As the list also contains the faces involved in
the contacts, they can be directly added to a mesh region, additionally specifying the name of the
mesh region and the characteristic mesh size of that region. The characteristic mesh size is set in
VirSat and exported into the contact validation files, where the script can access it. It is important
to note that, unlike the mesh groups, the mesh regions must be added before the actual mesh is
generated due to the reason that they directly influence the meshing algorithm. Thus, if a mesh is
created manually, the script detects it and the regions will not be generated for this mesh. How-
ever, when manually crafting the mesh, the engineer shall refine the areas he thinks make sense
to refine, consequently the automated refining is unnecessary and also not possible to use in that
case.

4.3.7 Processing Further Input Data

4.3.7.1 Emissivity

As soon as the mesh is generated and all mesh groups are created, the pre-processing can enter
the next phase where the material parameters and boundary conditions are assigned to the mesh
groups. First, the setFaceEmissivities() function is called. This function reads the *.rd files created
by VirSat for each component and assigns the emissivity parameters for each element face.

First, the file is opened and every line is processed in that way, that the face number and emissivity
values, which are separated by a comma, are added to a list. Face 0 hereby represents all faces of
the component. If a face is specified apart from face 0, then the general emissivity value is overrid-
den for that particular face.

Then, an iteration through all faces of the component starts, using the getccxVolumes() command
to obtain the mesh element faces that are located within the current component face. If the com-
ponent face does not exist in the list of component faces, the default value of face 0 is assigned to
all the mesh faces by writing all according mesh face numbers and the emissivity values for each
of it into the created radiation file. This is repeated for all faces of the component.

Face absorptivity, also being part of the *.rd file, is processed in the context of assigning solar and
Earth albedo radiation to the model. This is described in section 4.3.8.

4.3.7.2 Heat Flow Boundary

After emissivity is assigned, heat flow boundary conditions are processed and assigned next. There
are two types of heat flow boundary conditions, volume and face heat flows. For volumetric heat
fluxes, the exported *.bfl file from VirSat is opened. There is only one number in it, the total heat
flux acting on the component. This number is then divided by the volume of the component’s
mesh to represent the volumetric heat flux and then written together with the mesh group of the
component as volumetric heat flux assignment back to the *.bfl file. To make sure that this op-
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eration is not done twice, when executing the script twice for example, the length of the file is
checked. If there is more than one value, that means it was already processed and the process is
aborted.

For face heat fluxes things are slightly more complex, since these fluxes cannot be assigned to
the whole component but single element faces must be identified. One *.ehf file is generated for
each component by the according VirSat app. For each defined face heat flux on that component,
the file contains a line with that face number and the heat flux, separated by a comma. The script
iterates through all lines, obtains the corresponding mesh element faces according to the method
described in 4.3.7.1, and assigns the heat flux to all element faces located in the component face.

4.3.7.3 Temperature Boundary

The last boundary conditions to be set are the temperature boundaries. As for the heat flux bound-
aries, face and body temperature boundary conditions are accepted. However, the body temper-
atures were already assigned by the export app from VirSat. Thus, only the face conditions has
to be processed. The assignment is similar to the face heat flow. One *.bcf file for each compo-
nent is generated by VirSat, containing all information about the temperature boundary condi-
tions to be set. There are now two possibilities for each line. Either there is only one value in the
line, or there are two values separated by a comma. If there is only one value, this means a vol-
ume boundary was assigned for the whole component. Accordingly, the value is assigned to the
complete component mesh group. If there are two values, then a face temperature was assigned.
In that case the first value specifies the face and the second value specifies the temperature. Anal-
ogously to heat flux boundaries, the mesh element faces are collected for a component face and
the temperature value is assigned to them. For this, the Boundary keyword together with either
the according node numbers or the mesh group, the specification what type of boundary it is
(”11” represents temperature), and the temperature value itself.

4.3.8 External Factors

With completing the assignment of the temperature boundary conditions, all system-internal bound-
ary conditions are assigned. But, as described in chapter 3.3.3, there are external factors to be
considered. These factors are Sun, Earth albedo and Earth infrared radiation.

4.3.8.1 Sun Radiation

To take the solar radiation, usually the most important aspect of the thermal environment of a
spacecraft, into consideration for dynamic analyses, one has to assign a varying thermal load on
the whole model. The magnitude and cycling of solar radiation depends on the orbit as well as
the attitude of a spacecraft. To obtain this data, specialized software such as STK, General Mission
Analysis Tool (GMAT), or similar can be used. For the following work, it is assumed that three re-
quired CSV files are supplied. One file contains the Sun vector with respect to a fixed coordinate
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system at every time step of the simulation. The second file contains the intensity percentage of
solar radiation at every time step, such that it is zero in eclipse and 100 when Sun is in view. The
third file contains the vector to the center of the Earth and the reflection under which a sun ray is
reflected by Earth surface, or atmosphere, to the spacecraft. In appendix B.6 it is explained how
the structure of these files shall look like.

As known from the sections before, loads were usually assigned to whole component faces, such
that it was relatively convenient to obtain the mesh element faces within that component face and
assign the same load to all of these faces. This is not possible in this case. If a component has a
curved face, the load on the single mesh faces within this component face differs depending on
the actual orientation of the mesh element face. Consequently, the load has to be calculated for
every single mesh element face individually. Besides this, the orientation of the mesh faces cannot
be obtained as a simple command, it has to be determined using different methods, described in
the following.

Now, to calculate the power input by radiation on a surface, one needs the Sun vector s⃗ and the
face normal vector n⃗. From these two vectors the cosine of the angle β between them is calcu-
lated as the Sun intensity factor f that determines the Sun intensity on each face due to its own
orientation, as seen in 4.1. The actual thermal load in Wm−2 to apply on the surface then calcu-
lates as in 4.2 with α being the absorption coefficient, f being the mentioned factor for misalign-
ment of the face, and S being the solar constant [31]. The equation is enhanced by with the solar
visibility factor i, which represents the availability of sunlight at a certain time.

f = cos(β) =
s⃗ · n⃗∣∣⃗s∣∣ · ∣∣n⃗∣∣ (4.1)

PS = α · f · i · S (4.2)

Sun vector, solar constant, and surface absorptivity are known but the face normal must be deter-
mined before the calculation can be executed.

To determine the face normal vector algebra is used. At least three nodes define each face. By
subtracting the coordinates of node 1 from those of node 2 and node 3, respectively, one can
obtain two vectors, representing two edges of the face. Calculating the vector product of the
two vectors, a vector normal to the face is the result. Still, it is not certain if the vector points to
the outside of the component or to the inside. This can be determined exploiting the fact, that in
Gmsh the nodes of a face are always numbered counter-clockwise when looking at it from outside
of the body. Thus, when projecting the nodes of two opposing faces of a body to the x-y-plane,
the nodes of the one face are always numbered clockwise, while those from the other face are al-
ways counter-clockwise. Thus, in the x-y-plane as it is depicted in Fig. 4.19, the negative pointing
(green) faces are always numbered counter-clockwise. When taking the vector product of vector
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Figure 4.19: Meshes of two opposite oriented faces of a cube with node numbers displayed in Gmsh. The
mesh input file entries where the nodes are numbered are provided in Tab. 4.2.

Table 4.2: Excerpt from the mesh file of the meshed cube. The upper part in the table shows three face
elements of the face oriented in positive direction, the lower part three face elements of the face oriented
in negative direction. When considering Fig. 4.19, the opposing direction in node ordering is visible.

Element Number Node Numbers in order

562 247, 249, 248
563 250, 258, 248
564 251, 252, 250

482 215, 216, 217
483 215, 217, 218
484 217, 219, 220

1, that always points counter-clockwise, with vector 2, that always points clockwise, gives a nor-
mal vector that will always point outside of the body according to the right hand rule. The same
holds for the face in positive direction, where vector 1 always points in clockwise and vector 2 al-
ways points counter-clockwise.

This is implemented in the writeAmplitudeFile() function. The function is executed once for each
component and reads the previously created mesh file. It creates an amplitude, that is a discretized
course of a varying load with the load being specified at each time step. For each time step, the
value in the assigned amplitude is then multiplied by the base load value.

With the getccxVolumes() command all mesh elements and their corresponding mesh faces on
a specific face of the component are obtained. For each mesh element face, the nodes forming
this face are obtained from the mesh file. According to their sequence of occurrence among the
10 nodes in the line where the element is defined, it can be determined which node is the first,
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which the second and which third node of the face. The sequence depends on the face number
of the mesh face within the mesh element and is specific for each type of mesh. For example, in
a tetrahedral mesh, face number 2 is formed by node numbers 1, 4 and 2, in that order. This is
the reason, why this workflow can only handle tetrahedral meshes. After the node numbers are
determined, the next step is to obtain the coordinates of these precise nodes. The three nodes
are then passed to the findMeshFaceNormal() function that calculates the two vectors and their
vector product to return the normal vector. Then, the cosine of the angle between the face nor-
mal and the Sun vector is calculated for each entry in the Sun vector CSV file. This factor is then
multiplied by the Sun intensity, absorptivity and the solar constant of 1367 Wm−1 to calculate the
resulting load on the mesh faces. Then, the additional radiation sources are added to this.

4.3.8.2 Earth Albedo

Albedo radiation, that is reflected by Earth, eventually hitting the spacecraft also introduces a heat
flow load on the spacecraft faces. This load is smaller than the magnitude of the solar radiation
itself, but still not negligible. It is not assumed as constant, as the constellation of the three bodies
has large impact on its magnitude. However, the actual fraction of the sunlight that is reflected by
Earth is assumed as constant, although it depends on local Earth surface and atmosphere compo-
sition [24].

After calculating the solar load, the FreeCAD script calculates this albedo load for each timestep.
Analogously to the direct solar radiation, for each timestep the angles between the face normal
and Earth vector are determined. As the albedo strongly depends on the constellation between
Sun, Earth and spacecraft, this has to be taken into account as well.

Consequently, the course of the Earth vector over time has to be supplied in the same way as the
Sun vector is. In addition, the (cosine of the) angle of reflection between spacecraft, Earth surface
and Sun has to be supplied, as this influences the albedo intensity. In this work, the approximate
resulting albedo load in Wm−2 is calculated as described in 4.3, with α being the absorptivity of
the face in the visible regime, β being the angle between face normal vector and Earth vector, γ
being the reflection angle of the Sun rays reflected on Earth surface, REarth and RSC being the ra-
dius of Earth and the height of the spacecraft over the center of Earth, a being the albedo factor
of Earth (assumed as constant 0.35 [31]), S being the Solar Constant [31]. It is extended by i, the
visibility factor of the Sun at that timestep.

PEA = α · cos(β) · cos(γ) ·
(
REarth
RSC

)2

· a · S · i (4.3)

4.3.8.3 Earth Infrared

Earth’s own infrared radiation is assumed as constant 300 Wm−1 although there are some local
variations in it, depending on the actual surface temperature and atmospheric composition [17,
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24]. It is calculated in the same way as the solar heat flux, with the only difference that Earth is
always present and the distance from spacecraft to Earth must be considered. Thus, no Earth vis-
ibility factor is needed and the resulting equation for the approximate heat flow in Wm−2 on the
spacecraft is described in 4.4, where αIR now is the absorptivity in the infrared regime, β is the an-
gle between face normal and Earth vector, PEarth is the Earth-emitted radiation power per square
meter, REarth and RSC are the radius of Earth and the height of the spacecraft over the center of
Earth, respectively [31].

PIR = αIR · cos(β) · PEarth ·
(
REarth
RSC

)2

(4.4)

If the cosine of the angle between face normal and Earth vector is greater than zero, the resulting
infrared radiation load is calculated as stated in 4.4.

After the three radiation sources are calculated for each mesh face and each timestep, the result-
ing load for that timestep can be calculated by adding the three values up. This overall value is
then written to a line the ”Amp.inp” file, with the elapsed time in seconds. After all timesteps
were calculated for a mesh face, a load with the value 1 Wm−1 is assigned with the before de-
fined amplitude. To complete the file, these steps are repeated for every single mesh face.

4.3.9 Exporting Data from FreeCAD

After the temperature boundary conditions are assigned, all data from VirSat is processed. Further-
more, the files for the components’ meshes and boundary conditions are in the correct format to
be read by CalculiX. Together with the files created in VirSat and the amplitude files representing
the external loads, the simulation setup is now complete.

4.4 Feedback of Simulation Results to Virtual Satellite

After successful execution of CalculiX an output file is generated. This file contains setup data as
well as result data. A shortened version is provided in listing 4.4. To close the loop of the work-
flow, this data must be transferred to the system model. Therefore, two actions are to be per-
formed. First, the output file must be interpreted in that way, that the nodes and their correspond-
ing temperatures are extracted from the output file. Second, the obtained data must be fed into
the system model. To perform both actions, the VirSat app ReadSimulationOutput was written.
The flow chart of the app is provided in Fig. 4.20. First, the system model is accessed to obtain the
information if it is a steady-state or a transient analysis. This is important, as for transient analyses
the process of obtaining all nodes and temperatures has to be repeated as many times as there are
timesteps. The number of timesteps is one if it is a steady-state analysis, or the specified number
of timesteps for a dynamic analysis.
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Listing 4.4: Condensed version of an output file of a (static) simulation. The dots indicate where parts are
left out. After general simulation information all nodes are listed, then all elements with their respective
nodes are displayed. Finally, all nodes with their temperatures and all elements with their heat flows in each
direction are listed.

[ S imu l a t i on In fo rmat ion ]
. . .

−1 1−1.00000E+00−1.00000E+01 4.99000E+02
−1 2−1.00000E+00−1.00000E+01−1.00000E+00
−1 3−1.00000E+00 0.00000E+00 4.99000E+02
−1 4−1.00000E+00 0.00000E+00−1.00000E+00
. . .
. . .

−1 1 6 0 1
−2 86 2375 7 601 3760 3759 102 806 3761 807
−1 2 6 0 1
−2 2375 170 7 601 3762 187 3759 3761 808 807
−1 3 6 0 1
−2 2099 487 546 586 3764 1527 3763 3765 1529 1528
−1 4 6 0 1
−2 443 592 2321 570 1018 3766 3767 1017 1019 3768
−1 5 6 0 1
−2 494 3667 674 557 3770 3769 1601 1599 3771 1600
. . .
. . .

−1 1 2.97828E+02
−1 2 2.98004E+02
−1 3 2.97757E+02
−1 4 2.97966E+02
. . .
. . .

−1 1 8.59588E+02 3.67043E+01 3.86994E+01
−1 2−3.03529E+02 1.39403E+02−1.72789E+02
−1 3−1.31599E+03 2.61523E+03−1.42618E+02
−1 4−5.92680E+02 8.81888E+02−2.63265E+02
. . .
. . .
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Application Start

Obtain model data

from system model

If analysis type 

== static
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for all analyzed

 components

in system model

Create new component
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 i < numberOfTimesteps

True

False
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Application Stop
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Figure 4.20: Flowchart of the ”ReadSimulationOutput” app that reads the output file and creates the
”AnalysisResult” element in the system model. Source: Own representation.
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Then a for loop iterates through the first lines of the output file to identify the line where the
first node is defined. The line number depends on the number of components and contacts and
therefore has to be determined every time the app is executed. This line then represents the app-
internal starting line of the file.

Afterwards, an iteration through all components is executed to obtain some data necessary to ex-
ecute the rest of the program. In the iteration loop, for each component the corresponding mesh
file is opened, where the number of elements and nodes was deposited during execution of the
FreeCAD script. These two numbers are obtained and then added to the total number of nodes
and elements, respectively. Furthermore, the number of nodes of each component is saved in an
array for later use. Finally, each iteration is completed by creating an element to store the results
in the system model for each component, so that the obtained temperatures can be saved there.

Then the main part of the program starts, for each timestep, a sequence of actions is performed
resulting in the accumulation of all node temperatures at all timesteps. For this, in each timestep
an iteration through all components is executed. Using the fact, that the sequence of components
as it is iterated in VirSat is the same sequence the components and their nodes are represented in
the output file (in the end, the component sequence of the whole workflow is determined by this
iteration sequence, as the same iteration is used in the export apps), only the number of nodes for
each component is necessary to identify those lines, where the nodes and temperatures for each
component are located. Starting from the before determined starting line, the first line where a
node and a temperature is named is two times the total number of elements, plus the number
of nodes and a fixed value of seven, that represents the blank lines. As mentioned, an iteration
through all components is executed. Within this iteration, all temperatures belonging to the node
numbers are interpreted and for each component the maximum and minimum temperature is
evaluated and stored in an array, overwriting the old maximum or minimum temperature in case
they are higher or lower, respectively. If it is the first timestep, the maximum and minimum tem-
perature are always overwritten, to replace the default value, which has no physical meaning. Af-
ter iterating through all components, all node temperatures of that timestep have been collected
and the outermost iteration loop through the timesteps starts again, provided that there is more
than one timestep.

As soon as the iteration of the outer loop is completed, the elements containing the maximum
and minimum elements are instantiated in the system model and the app is executed successfully.
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Chapter 5

Thermal Analysis Evaluation

5.1 Checking Validity of Results

To ensure the workflow can be used by engineers in real projects, it has to be validated that the
used solver delivers valid results and that the workflow itself produces a valid simulation setup that
matches the system model. For validation purposes the established thermal analysis software AN-
SYS is used in parallel to CalculiX. The obtained results of CalculiX with its standard solver Spooles
and ANSYS are compared to judge the accuracy of the solution. The examined model is designed
to represent an object similar to a satellite and is depicted in Fig. 5.1. Different shapes are em-
ployed to test the automatic geometry processing of the work flow as complete as possible.

5.1.1 Solver Validation

The solver is validated using the same input setup for both thermal analysis tools. If the results of
CalculiX match those of ANSYS, the solver can be accepted as validated. To validate the results
of the solver as good as possible, all features that can be used in the workflow shall be present
in the examined models. Only that way it can be ensured best that the solvers obtain the same

Figure 5.1: Geometric representation of the model to be analyzed. Source: Own representation.
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Table 5.1: Aspects of the thermal model to be considered in validation activities

Heat transfer

Conduction
Contact conduction
Radiation

Boundary conditions

Temperature (face)
Temperature (body)
Heat flux (face)
Heat flux (body)

Simulation Properties

Steady-state
Dynamic

Model properties

Different materials
Different face radiation properties

results, regardless of the model. Tab. 5.1 lists all features provided by the workflow, which are to
be considered. To avoid having to include all types of boundary conditions in one single model,
and due to the fact that with static and dynamic simulation at least two simulation setups have to
be executed anyways, two boundary conditions will be applied to the static model and the other
two to the dynamic one.

5.1.1.1 Static Case

First, the static case is examined. The boundary conditions are distributed to the two simulations
as mentioned, with volumetric heat flow and face temperature being applied to the static one.
The model is shown in Fig. 5.2, where the face highlighted in green is the face where the fixed
temperature of 300 K is applied to (”Science Payload”) and the volume in green is the component
where the volumetric heat flow of 30 W in total is assigned to (”Battery”). A detailed setup of the
thermal model is provided in appendix C.1.

The first model consists of 21744 nodes and 10947 elements. The model for CalculiX is fully cre-
ated with the automated workflow, while for ANSYS, parts of the model have to be created man-
ually. Mesh, mesh groups, contacts, materials, and material assignments can be directly imported
from the CalculiX model, but all boundary conditions (including radiation properties) have to be
set manually.

In Fig. 5.3 the results of the two solvers are visualized in their software-specific post-processor. The
maximum and minimum values (obtained from the output files) differ by 0.13 K and 0.00 K, re-
spectively. Taking the result of ANSYS as reference that corresponds to 0.038 %, and 0 % differ-
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Figure 5.2: The model to be analyzed. The green highlighted face is where the temperature boundary is
set, the green body where the volumetric heat flow is applied. Source: Own representation.

(a) Result of the first simulation as seen in the CalculiX GraphiX post-processor. Source: Own representation.

(b) Result of the first simulation as seen in the ANSYS post-processor. Source: Own representation.

Figure 5.3: Graphical results of the two simulation tools, as shown in their respective postprocessors.
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Figure 5.4: The deviations between the solvers mapped to the mesh. The maximum deviation of 0.581 K

occurs on the contact area between the lying cylinder and the baseplate. Source: Own representation.

ence. The results were further examined using a Matlab Script that reads in the nodes and ele-
ments of the simulation model as well as the two simulation output files. The scripts subtracts the
CalculiX result from the ANSYS result and feeds the absolute of this value to an array. This array
is then plotted by assigning each value to the respective node and display the results in a three-
dimensional mesh. Fig. 5.4 shows this plotted mesh for the first model. It is visible that the maxi-
mum difference between the simulation is actually in the order of 0.581 K. This means there are
nodes with a higher error than the node with the highest temperature. However, in the array of
error values itself one can see that the extreme value is indeed 0.581 K, but there are only a total
of 69 nodes in the whole model that have a deviation larger than 0.15 K. The rest of the model,
as follows from Fig. 5.4, shows very small errors compared to the extreme values, which indicates
that there is some problem exclusively at the location of the high error.

To further examine this problem the location of this error was tracked and it was found that only
nodes on the contact between the heated cylinder and the base plate show this high difference.
Although the difference is still low compared to the absolute temperatures, the model was checked
thoroughly and some parameters were adjusted to find possible errors that cause this behavior. Fi-
nally, the mesh was refined locally on the point of contact between these two components. This
increased the number of nodes from 21744 to 24491 and lead to a decrease of the maximum de-
viation to around 0.132 K. The corresponding mapped errors are depicted in Fig. 5.5a and the
changed model setup is listed in appendix C.2. What is conspicuous, is that the error from the
point of maximum temperature decreased as well (to around 0.12 K), although the amount of
nodes and elements was only increased in one specific location. This shows that a fine mesh in
critical areas can improve the results significantly and can influence the whole model, not only on
that specific locations.

After achieving such an increase in result quality, the mesh at the contact and the mesh of the
cylinder were further refined to test if the error would further decrease at the same rate. For this,
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(a) Deviation between ANSYS and CalculiX solutions of
the second static model, mapped to the individual nodes.
Source: Own representation.

(b) Deviation between ANSYS and CalculiX solutions of
the third and last static model, mapped to the individual
nodes. Source: Own representation.

Figure 5.5: Differences between ANSYS and CalculiX results plotted to the mesh.

the contact mesh was refined even more to 5 mm maximum specific length, while the cylinder
mesh as such was set to 15 mm maximum specific length. The node number increased to 34815
and the simulation results showed a further decrease in error to a maximum deviation of 0.084 K

between ANSYS and CalculiX models. This is depicted in Fig. 5.5b. The corresponding model de-
tails are listed in appendix C.3.

5.1.1.2 Dynamic Case

Validation of the dynamic simulation is done with the remaining boundary conditions. Conse-
quently, a face heat flow of an arbitrary value, here 1380 Wm−2, is applied to the highlighted
face in Fig. 5.6 and a volume temperature boundary with 300 K to the highlighted component
(Battery). Apart from this, the model is identical to the one in the static case. Again, the complete
simulation setup is listed in appendix C.4. For this part the mesh with 24491 nodes, that was used
in the second simulation of the static case is utilized. The total time was set to 100 s with each
timestep covering 1 s, resulting in a total number of 100 timesteps. Another two error maps are
created with the Matlab script, as it was done in the static case. One for an intermediate timestep
(50 s) and one the last timestep (100 s). The resulting errors are shown in Fig. 5.7a and 5.7b. It is
visible that small errors again arise, and again they are located in the same contact areas as before.
The errors are still quite small after 100 s but have the tendency to increase. For a long term sim-
ulation this might become significant, however a finer mesh would decrease the error most likely,
as it was concluded in the static case.

Regarding the results of static and dynamic simulations, the solver can be considered as validated.
The results are very close to each other, especially when the mesh size is sufficiently small. With all
these simulations still having rather coarse meshes compared to actual thermal analysis meshes,
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Figure 5.6: The model to be analyzed. The green highlighted face is where the heat flux applied to, the
green body where the body temperature condition assigned to. Source: Own representation.

(a) Deviation after 50 s (50 timesteps). Source: Own rep-
resentation.

(b) Deviation after 100 s (100 timesteps). Source: Own
representation.

Figure 5.7: Differences between ANSYS and CalculiX results, mapped to the mesh. The maximum devia-
tions always occur near contacts.
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the deviation between the results can be expected to become even smaller if the mesh node and
element number is further increased.

5.1.2 Workflow Validation

To validate the general workflow created in this thesis as such there are essentially two possibili-
ties. Either a model of a spacecraft is created for which a thermal analysis already exists, to com-
pare the obtained results to the actual results of the thermal analysis. Or two identical models are
created independent of each other. One in VirSat that experiences all aspects of the workflow,
and one crafted manually in ANSYS, assigning all boundary conditions utilizing the ANSYS GUI.
This way it is validated that the boundaries set in FreeCAD by the created script are correct. If the
results match, the workflow is proven to generate the thermal simulation model correctly. The
model for this should be as ”challenging” as possible, especially regarding the processing of the
geometry. For this, the different forms and the rather uncommon contact from the model used
before in the solver validation are used.

The meshes used for this validation are identical for both models, as different meshes would in-
fluence the results and therefore it would not only be a validation of the workflow itself. Valida-
tion of the mesh is a different topic, that is not covered here as it does not necessarily concern the
workflow as such.

To consider all aspects that are part of the workflow in the validation, again two models, a static
and a dynamic, are to be examined. For reasons of simplicity, the same models as in section 5.1.1
are used for this validation and the mesh with 24491 nodes is chosen. A benefit of using the same
model is that the results can also be compared to the ones obtained before. As the whole input
for CalculiX used before was already generated using the automated workflow, it can be reused,
so that only the model for ANSYS needs to be created. For this, only the bare mesh files of the
components, not containing anything except the nodes and elements, and the main input file,
only containing the invocation of the mesh files is imported in ANSYS. Thus, everything except the
mesh has to be created in ANSYS.

5.1.2.1 Static Case

In the first iteration of this validation step, significant differences between the simulations were
detected. After examination, the reason for this was found in the way the contacts are defined.
In ANSYS there are two possibilities to define the contact faces. ANSYS creates solid bodies out
of the imported mesh. The first option, which was initially used, was to select the faces of these
bodies that are in contact with each other as the contact partners. This lead to some deviations
between the results in CalculiX and ANSYS (> 2 K). As this was unreasonably high compared to
the results before, an investigation was performed. The conclusion of this is, that the contacts are
calculated in a different way, when choosing the actual meshes’ faces instead of the restored solid
bodies’ faces for the contact definition. With the actual mesh faces selected as contact partners,
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Figure 5.8: The deviations between ANSYS and CaculiX model occurring in the static workflow validation.
The values are identical to the ones from Fig. 5.5a. Source: Own representation.

the results are exactly matching the before obtained result in ANSYS from section 5.1.1. Conse-
quently, they are matching the results obtained in CalculiX to around 0.132 K. The fact that this
way the results match the expectations indicates that there is an error introduced when ANSYS
restores the geometry from the mesh.

5.1.2.2 Dynamic Case

With the contact areas defined correctly, also the manually created dynamic simulation in ANSYS
shows exactly the same results as the partly automated ANSYS simulation, that was executed in
section 5.1.1. Here, only the result after 60 timesteps is considered. The maximum deviation be-
tween the automated CalculiX model and the manually created ANSYS model is 0.052 K, as de-
picted in Fig. 5.9. This is again the same value as in the solver validation before. The highest devi-
ation occurs on the contact locations, which indicates once more that the refinement of the mesh
in these critical areas is of high importance.

With these results obtained, it is safe to say that the workflow applies all boundary conditions
and materials correctly. This was proven with a hand crafted model analysis setup in ANSYS, that
showed the same results as the partly automatically generated ANSYS setup in the solver valida-
tion, and very similar values to the fully automatically generated setup in CalculiX.

5.1.2.3 Validation of Sun Intensity

In this workflow, an option to generate Sun intensity data over the course of a specified time is
provided. As ANSYS does not provide a similar option, the correctness of the calculations cannot
be validated in the same way the other parts of the workflow are. In fact, only few, commercial
tools offer the option to include orbital influences to the thermal analysis. Thus, a different ap-
proach is chosen for validation. All external orbital data is assumed to be valid, since it is gener-
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Figure 5.9: The deviations between ANSYS and CaculiX model occurring in the dynamic workflow vali-
dation after 100 timesteps (100 s). The maximum value is identical to the one from Fig. 5.7. Source: Own
representation.

ated using the commercial tool STK and not as part of the workflow. The correct assignment of
the resulting loads is checked by visualizing the load on the faces for one timestep, comparing
the direction of the Sun vector with the calculated loads in the model. Fig. 5.10 shows the mesh
of the model with the Sun vector at the initial timestep. From this, the calculation of the Sun in-
tensity is performed, resulting in an intensity factor between 0 and 1, that is displayed for each
element in Fig. 5.11. Due to the fact that it is only possible to assign values to elements of a three-
dimensional mesh, not to the individual faces, faces close to the edge often show wrong values,
as they show the value that was last assigned to the element. Often this is the wrong value from
another face in the element that points in a different direction. However, away from the edges
it can be clearly seen which value is actually prevalent in that area. To ensure this, such a face is
selected as a sample and the actual calculated value of Sun intensity for that face and its neigh-
boring face is obtained from the ”Amp.inp” file.

The face that is chosen for this is located on the far upper right corner of the cube in Fig. 5.11. It
is displayed as light blue there, indicating an intensity value of around 0.3. The face, just as the
one around the corner, belongs to element number 9980 and its face number within this element
is 2. With this information one can now search the ”Amp.inp” file, to find out the actual values
assigned to the face. For the timestep in the picture, the value 0.885 is assigned, proving that the
face actually has a right value assigned, and the value displayed in Matlab just shows the value
from the other face of the element (which is 0.249).

Apart from the faces close to the edge, all faces pointing in the same direction show the same
colors and those oriented towards the sun show the highest values. This indicates that the assign-
ment of the sun intensity works as intended, still it is certainly no proof for this.

With the effort spent here, it was possible to validate the sanity of the values that are obtained by
this function. However, to fully validate the results, it is necessary to compare them to reference
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Figure 5.10: Mesh of the model with a representation of the Sun vector at the same timestep as Fig. 5.11.
Source: Own representation.

Figure 5.11: Distribution of the Sun intensity factors over the mesh faces. Note: Mesh faces close to edges
are often displayed in a misleading way, since only one value can be applied to an element that has two
faces on a surface. Source: Own representation.
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values. Due to the lack of software offering such values, and the lack of time to generate such
values in a different way, this kind of validation is the only one that can be provided within this
work.

5.1.2.4 Validation of Earth Infrared and Earth Albedo Calculation

To round off the orbital radiation influences, albedo and infrared radiation from Earth were in-
cluded in the FreeCAD script. Although the magnitude is lower than radiation from Sun, it is still
significant. Calculation of Earth infrared loads is basically done in the same way as the Sun radi-
ation loads, with the difference that the Earth vector is used instead of Sun vector and that there
is no visibility factor as Earth is always visible. Also the magnitude is smaller, thus instead of the
Solar Constant a value of 250 Wm−2 is used. Apart from that the calculation is exactly the same.
Due to the large degree of equality in calculation of the actual value and the complete equality in
calculating the involved vectors and angles, the application of Earth infrared radiation is assumed
as equally valid as Sun radiation.

Earth albedo is applied in the same way, only that the calculation is slightly different. As the na-
ture of the albedo being the solar radiation reflected by Earth, the constellation between Earth,
Sun and spacecraft is important for the intensity of the albedo. Thus it includes an additional term
for this relation, and the visibility modifier that tells if Sun is visible or not. For validating the ap-
plied Earth albedo load, the same holds as for Earth infrared radiation. Due to the high degree of
similarity in calculating and applying the load, as well as the underlying equation coming from a
trusted source, the validity of Earth albedo application is assumed as equally valid as Sun radiation
application.

5.2 Improvement of Result Quality

As seen before, the results obtained are already rather close to each other and the solver and
workflow are validated to a certain degree. However, there is always room for improvement and
that also includes this workflow. It is clear, that automatically generated meshes will not deliver
results as accurate as the ones obtained with handcrafted meshes by experienced thermal engi-
neers. Still, by decreasing the element size of the mesh, either locally or globally, the result will
come rather close to simulations set up manually with great effort.

In some cases it might also be more beneficial to examine the model using a hexahedral mesh or
an entirely different mesh type. This is not covered in this work, however could be implemented in
future ambitions with relatively little effort.

Not only the mesh influences the result quality. Other factors as the amount of detail, correctness
of the boundary conditions, material parameters, radiative parameters geometries also determine
the validity of the result.
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5.3 Limitations of the Provided Workflow

The workflow presented in this work is an efficient way of building a thermal model within a sys-
tem model, analyzing it and feeding the results to the system model. The sections before showed
that there is some small deviation when comparing the results from CacluliX to those of ANSYS,
however when comparing the results obtained with the workflow with those obtained completely
manually, there is no difference. Still, there are cases where the usability of this workflow in the
provided form might come to its limitations. This could be the case for example, when the sys-
tem model in VirSat is highly detailed and a lot of very small components are in the model. For
the level of detail of the thermal analysis this is beneficial, but if the orbital radiation influence fea-
ture is used, the computing time will increase drastically due to the resource-intensive boolean
operation when detecting the obstruction of a face. This boolean function is a bottleneck that in-
creases processing time of the FreeCAD script from a few seconds to minutes or hours, depending
on the size of the model. The thermal properties of such small components might not be relevant
for the whole system and could therefore potentially be neglected in the thermal model. To ig-
nore these components of the system model in the thermal model, it is only necessary to not add
a ”ThermalData” element to them. The workflow will then simply ignore this component. The de-
cision if a component is important for the thermal model or not must be evaluated by the thermal
engineers.

Another limitation for the workflow is the mesh. It is only possible to use a generic tetrahedral
mesh. This is a general purpose mesh that can fit complex geometries well, however for simple
geometries that are used in VirSat hexahedral meshes might be favored over the tetrahedral meshes.
If so, the FreeCAD script would have to be extended slightly to enable the use of other meshes, at
least if the user wants to include the orbital radiation in a dynamic simulation. This was also de-
scribed in section 4.3.8.1.

The workflow itself does not introduce a limitation for part complexity. However the complexity
of the parts is only determined by the geometries that can be imported in VirSat. With future re-
leases this might improve.

As mentioned, the main weakness of this workflow is the long computing time for the orbital ra-
diation influence. With this only being due to one single command, that takes some time for ex-
ecution, there might be a way for a workaround to make the execution of the script faster. In ad-
dition, the calculation of the orbital influence is only done with some simplification. For all three
types of radiation the values are considered as constant all over Earth’s surface. However, in real-
ity there are variations [17]. Finally, what is also ignored is the radiation incident on a face due to
reflections on other components. To model all these factors appropriately, substantially more ef-
fort would have to be spent than it was possible in this thesis. It also has to be taken into account,
that due to high extra effort, as well as additional required software packages, it was not possible
to really validate the orbital radiation feature. The values obtained seemed to be sane, but could
not be compared to reference values.
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Chapter 6

Outlook

Although this work provides a workflow and tools to execute a complete thermal analysis, there
are still many aspects to be considered before referring to the adaption of thermal analyses in
MBSE as complete. This work lays ground for this, but cannot cover all aspects to consider, as the
topic is simply too complex to be fully completed in such a short period of time. Nevertheless, the
necessary base functions and some extras are already implemented, the workflow does work and
the suggestions made in this section are more of complementary nature rather than required addi-
tions.

With the results obtained with the automated workflow matching those obtained with a manual
simulation in ANSYS to a high degree, it is safe to say that reasonable results can be achieved with
this workflow. Still, a full validation requires a lot more effort than it was possible to spend in this
work. This especially holds for the inclusion of the orbital radiation influences. In this work, their
validation was done by judging the results qualitatively. However, this is not enough for ensuring
correct results. Thus, a full validation using a FEA software that also supports the orbital radiation
influences would be beneficial.

The aspect that has most potential for improvement is the mesh. In this work only generic meshes
were used to establish the workflow. As the type of mesh as well as the mesh itself strongly de-
pend on the model to examine, more flexibility for using different types of meshes would be use-
ful in this workflow. As mentioned before, technically different mesh types are supported by the
workflow, however to enable the use of different mesh types together with the orbital radiation
feature, small additions in the FreeCAD script would have to be made. Another aspect is the anal-
ysis of the mesh size itself. To check convergence of the mesh, multiple simulations with varying
mesh sizes have to be compared to each other. In the current state, for each simulation the mesh
sizes of all components in the system model have to be changed accordingly, then the workflow
has to be executed again. Here, an automation of this process would be beneficial to quickly ana-
lyze the convergence of the mesh.

When this workflow is sufficiently mature, a tool like RCE, that allows to create simulation work-
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flows including multiple software packages, could be used to further automate it. This way, the
user would not have to open the different tools manually, but would just have to start the work-
flow while the remaining actions would be sequenced and executed by RCE.

While for an experienced user, most of the potential errors occurring might be relatively easy to
track down, an app that checks the consistency and integrity of the thermal model within VirSat
would be another useful addition, as it would help especially new users to find errors easier. Some
aspects this could potentially cover would be detecting missing parameters or spotting thermal
ports that are not assigned to a thermal interface.

Another aspect that has potential major improvement is the geometry modeling. VirSat itself of-
fers only the possibility to create the basic geometrical shapes. Of course, not every shape can be
modeled sufficiently with this. Here, boolean operations would significantly enhance the geomet-
rical modeling capabilities. While there is, in theory, the option to import geometries in *.stl for-
mat, this feature was often producing bugs, and was therefore not used in this work. However,
in future versions this feature might be improved, introducing much better modeling capabilities
as well. It is pointed out here, that the workflow itself in theory does not impose any restrictions
on the complexity of geometries. Still, if used with complex geometries, some testing for sanity
would be necessary as this could not be performed in this work.

For possible further improvement of the result quality, or smoothening of the workflow by de-
creasing computation times, the different solvers CalculiX offers could be evaluated for the best
suited one. Spooles is described as a fast, but has no multi-core capability. In addition it is limited
by the random-access memory (RAM) capacity [42]. Thus, another solver might be better suited
for larger models, while still delivering valid results.

Regarding post-processing, the present app that only determines maximum and minimum temper-
atures for the components, could be improved by introducing further functions. For example, in
dynamic simulation, differences between the temperatures across timesteps could be calculated to
determine the rate of temperature changes during the simulated time.

Furthermore, all parts of the workflow could be adapted in the concurrent engineering version of
VirSat, as it requires relatively little information, that can also be approximated, about the system
to work, and is executed quite fast. Thus, it works with low effort. This could help the thermal
engineers in concurrent engineering studies to evaluate different thermal control concepts. As all
apps currently address specifically the configuration tree, this would have to be changed to project
tree, if the workflow is intended to be used in the earliest phases. It would just be an adjustment
in the source code that is done quite fast.

Finally, the original intention was to model Compasso as a part of this work to conduct valida-
tion with this model. However in accordance with the project team it was decided that this task
would be scrubbed. One reason for this is that there was not sufficient valid data readily avail-
able to model Compasso appropriately and the second reason was that the whole validation pro-
cess would have been very exhaustive with a higher number of components. Instead, an example
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model for a payload was used to validate the solver and the workflow. In hindsight, this was the
better option, as a more complex model would have made the error tracing more difficult in the
validation process. Still, modeling Compasso would be a good first application of the provided
workflow and is therefore encouraged to do as soon as the project is advanced enough for this.
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Chapter 7

Conclusion

Fully adapting MBSE in all aspects of spacecraft development is a complex undertaking. Many
different models exist, many different analyses with interdependencies have to be executed. Still
high initial resource need in this case leads to significant time and resource saving potential. In this
thesis, a workflow is proposed to execute thermal analyses of a space system, using data from the
system model, stored in the MBSE tool VirSat. For this, the ”thermal” concept was established in
VirSat, providing a blueprint for the storage of data that is necessary for the execution of thermal
analyses. This concept covers a range of mandatory data for thermal analyses as well as some op-
tional additions like mesh size parameters.

In addition to the thermal concept, a number of apps for VirSat were written to support thermal
engineers in extracting relevant information from the system model. The apps are part of the
workflow and either convert system model data directly to the input format of CalculiX, or to an
intermediate format that can be read by a FreeCAD script, which is also part of this thesis, to even-
tually form a complete input set for the CalculiX FEA software.

The mentioned Python script for FreeCAD is utilized to automatically mesh the geometry exported
from VirSat and apply all boundary conditions and material properties to the correct subsets of the
mesh. The combination of the VirSat apps and the FreeCAD script essentially cover the whole pre-
processing process and the result of their execution is a complete simulation setup. As an extra
feature specifically for space systems, the FreeCAD script also provides the option to include an
externally obtained Sun vector, and Sun visibility data to model a time-dependent load on each
mesh face, that together represent the total solar radiation loads on the spacecraft. In addition,
similar data can be used to model the in-orbit heat flows on the spacecraft caused by Earth albedo
and Earth infrared radiation.

Finally, this thesis offers an app that allows VirSat to interpret and add the simulation result data to
the system model. This is enabled by obtaining maximum and minimum temperatures throughout
the simulation output for each component individually.
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7. Conclusion

The simulation results obtained with the workflow were examined by comparing them to the re-
sults obtained with a manually, independently created thermal model with the commercial FEA
software ANSYS. The deviations were quite small, indicating that the workflow creates the correct
thermal model. Lacking a suitable tool to model the orbit radiation influences, it was not possi-
ble to include this feature in the validation efforts. However, a qualitative evaluation was executed
and the results appear reasonable.
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Appendix A

CalculiX Input Script Description

A.1 Geometric Input

In a CalculiX input file the geometry must be provided as a finite element mesh. This means the
geometric model is not represented by different simple parametric shapes, but it is meshed before-
hand and therefore represented by the nodes and elements of the mesh that represent the geom-
etry. Before each node, element, or mesh group is defined, the name of the specific set has to be
set. This is important as material assignment, contact surfaces and volume loads, to name some,
are introduced using these set names.

Every node is defined by its node number and three cartesian coordinates in one line, separated
by commas. Elements, which are composed of nodes, share a similar syntax. Analogously to node
definition, the element number is defined first, then the numbers of the nodes that form the bor-
ders of the element are enumerated. Again, these numbers are separated by commas.

The third concept used in the geometry shall be called mesh group. A mesh group is a named
collection of nodes or elements that represents specific features of the geometry, for example a
single surface. Mesh groups play an important role in assigning all boundary conditions, surface
parameters and contact areas correctly. One variation of a mesh group is the surface mesh group.
This set is basically a regular mesh group with element numbers, but each line also references a
specific face of the called element. This way a surface can be represented by the equivalent mesh
element faces.

If the same set name is used more than once, the existing set is not replaced but extended by the
nodes or elements that are in the second set.

Page: 112



A.2 Thermal Input

A.2 Thermal Input

After specifying the geometry, the thermal information is written to the input file. It includes the
initial temperature, contact conductivities, material properties, surface properties and, finally, bound-
ary conditions.

The initial temperature is set with the keyword Initial Conditions. For a static analysis the initial
temperature has no influence on the results but must be specified anyways. In dynamic simula-
tions it has much more influence. For setting the initial temperatures, the nodes have to be called
using the appropriate node set name, then the temperature is set, separated by a comma from the
node set name. It is important that all nodes have an initial temperature allocated. If one node has
more than one temperature assigned, the last assignment overrides all previous ones.

After setting all initial temperatures the material properties are set. In CalculiX there is no direct
assignment of material parameters to elements. Instead, first a certain material is defined with the
Material keyword. Then, the name, thermal conductivity, specific heat capacity and density are
set for the material. The defined material with its parameters is afterwards allocated to the corre-
sponding elements. It is most desirable to create one element set for each component to assign a
material to the complete component by just assigning it to the respective element set once. With
the Solid Section keyword followed by the material name and the element set name, a material
is assigned to an element set after it is defined. This is repeated until all elements have a material
allocated.

Following the material properties, the areas of contact have to be described for CalculiX to inter-
pret and apply them correctly. A contact description in the sense of a CalculiX input file gener-
ally consists of two parts: The definition of the contact properties and the involved mesh faces.
To define the contact properties Surface Behavior is called after assigning a label to the contact
with Surface Interaction keyword. There are multiple possible parameters to set for the contact
behavior. However, for thermal analysis most of them are not used as they mainly describe me-
chanical behavior. Thus, they do not have to be set. Still, one mandatory information, even if not
relevant for the thermal analysis, is the pressure-overclosure relation stating the type of this rela-
tion and its slope. Linear pressure overclosure means the relation between pressure and overclo-
sure between the contacts follows a linear growing function while an exponential behavior is also
possible. In any case, this does not affect a purely thermal simulation as there are no mechanics
involved whatsoever. Thus, the value set for the slope does not influence the result of the sim-
ulation. What does influence the result of the simulation, in contrast, is the Gap Conductance
keyword, which specifies the thermal conductivity across the contact and is set after the surface
behavior. Furthermore, a temperature and pressure can be set. This only has an influence, if the
value of contact conductance is desired to be set variable for varying temperature and pressure
values and is therefore of no further interest here.

To complete contact specification, the user now has to assign two contact faces to the already de-
fined contacts. This is done with the Contact Pair keyword, succeeded by the contact label and the
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A.2 Thermal Input

contact type, which is in this work, for reasons of interchangeability of the contacting surfaces and
compatibility, always Surface to Surface a contact. With the other choice being Node to Surface
type it is not allowed to use both types within the same simulation setup. Thus, for the sake of
easier processing, all contact faces simply will be provided as surface element sets instead of hav-
ing to differentiate between nodes and surface elements. To complete the contact specification,
in the line below the before mentioned settings, the two surface element sets are listed, separated
by a comma. The contact is now completely defined for CalculiX being able to calculate with it.

When all contacts are specified, the boundary conditions are the next information to be written to
the input file. In a CalculiX thermal analysis, the user can set six types of them:

1. Convection

2. volume distributed heat flux

3. face distributed heat flux

4. concentrated heat flux

5. radiation

6. temperature.

Convection being negligible in space, thus for spacecraft only of interest if used as a closed sys-
tem, is ignored in this work, just as concentrated heat flux on single nodes, which would be not
practical as the user would have to select single nodes for this. If necessary, it is still possible to
add a concentrated heat flux manually.

Radiation assignment uses the Radiate keyword. To set a specific surface as a radiator, as well as
absorber, the radiation parameter is assigned to each individual mesh element face. In addition to
the single elements themselves, it has to be specified if the residual radiation when view factor is
lower than one is radiated towards an environment node (CR - cavity radiation) [42]. If CR is set,
the environment temperature must be specified for CalculiX being able to calculate the amount
of radiation coming from the environment. If this temperature is set negative, the view factors are
scaled to one instead of radiating to (and from) the environment node. As in space most of the
radiation is radiated to the environment node with the temperature of the cosmic background ra-
diation, this is a fixed setting for all simulations conducted. The syntax of the Radiate command
is that the actual face number of each element is wrapped with an R and the optional CR to one
expression (e.g. R2CR). This expression follows the element number and is followed by the tem-
perature of the environment node and the magnitude of the emissivity.

Volume distributed heat flux and face distributed heat flux are set by using the Dflux keyword. It
is followed by stating the element list or element numbers and, if applicable, the appropriate face
of the element for a face distributed heat flux. Finally, giving the value of the heat flux density ei-
ther as heat flow per volume for volume distributed heat flux or as heat flow per area for face dis-
tributed heat flux, respectively. The distributed heat fluxes can represent incoming solar radiation
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for example.

The last usable boundary condition is the temperature boundary condition. It is set with the Boundary
keyword with the actual specification following in the next lines. First, the node number or set of
nodes the boundary condition shall be applied to is referenced. Separated by a comma, the types
of boundary condition are specified. In this case, boundary condition 11, which is the temperature
boundary condition is chosen. Lastly, and again separated by a comma, the temperature value is
handed to the input file.

A.3 Simulation Configuration

For setting up a simulation one has to specify some general things about how the simulation shall
be executed. Accordingly, there are some commands that have to be employed for CalculiX to
properly set up the simulation. As some of the simulation specifications have to be set at a certain
point of the input file, some of the commands are actually written in between other commands
of the previous subsections. As a first general information, some physical constants for thermal
calculations have to be specified. The physical constants actually have to be fixed before the Step
keyword, because after this only boundary conditions and post-processing are specfied. The con-
stants are set by calling the keyword Physical Constants. To conduct a thermal analysis two phys-
ical constants are essential for the solver. First, the temperature of absolute zero in the desired
unit to enable correct calculation of the resulting radiation emission and heat flows in all units that
have a constant offset from Kelvin. Second, the Stefan-Boltzmann constant which is one parame-
ter of 2.8, used to calculate radiant fluxes.

Moreover, as CalculiX is also a software for mechanical simulation, it has to be stipulated what
kind of simulation it shall execute. This is done right after the Step keyword. To conduct a ther-
mal simulation, the keyword Heat Transfer is used. In the very same command the type of ther-
mal simulation, steady state or transient, is assigned. It is separated by a comma from the Heat
Transfer keyword.

The last information in the input file addresses post processing. Here the user can specify which
output is desired. CalculiX can create a file with all nodes (Node File) or all elements (El File) and
their respective parameters. Parameters of most interest for thermal calculations are the node
temperatures (NT) and the node or element heat fluxes (HFL). The desired parameters are listed
below the node or element file keywords.
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Appendix B

Step By Step Manual to Conduct a
Thermal Analysis with the Provided
Workflow

B.1 Step 1 - Modeling the system

1.1 First, a new project is created in VirSat. In the repository, the concepts Core, ProductStructure,
Visualization and thermal must be added from the registry. In addition, the apps feature must be
activated by clicking on Activateapps in the repository.

1.2 To import the necessary apps, they either can be added by drag and drop in the project ex-
plorer from another project, or the content of each app is copied to a newly created app, which is
then renamed accordingly (Project Explorer -> apps -> right click on app -> refactor-> rename)

1.3 Then, the model is created. Start this by creating a configuration tree, add the desired subsys-
tems and their components. Add the visualization for each component and arrange it accordingly.
Note that overlaps should be prevented when not intentionally used for generating a contact area
as described in the ”How To” in appendix B.6.

1.4 If not already present, create the ThermalControlSubsystem (or similar name). Right click on
the subsystem to add the ThermalAnalysis element. Then add the MaterialCollection to this ele-
ment. Now there are two options: - Import materials from an external .csv file. For this, place a
Materials.csv file in the project folder (Workspaces/runtime-virsat_thermal/DemoProjectManual),
containing the desired materials in the format (NameWithoutSpacesAndUnderscores, Thermal-
Conductivity[W/m/K],HeatCapacity[J/kg/K],Density[kg/m3],emissivity,absorptivity). Then execute
the ImportMaterials app. This will add the specified materials to the material collection - Manu-
ally create materials. Right-click on MaterialCollection to add a Material element. Then specify all
parameters of this material. Note that emissivity refers to IR-emissivity, while absorptivity refers to
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B.1 Step 1 - Modeling the system

absorptivity in the visible range. The value chosen for powerBalance will introduce a distributed
volume boundary condition on the component.

1.5 For each component with a visualization, that is to be considered in the analysis, add a Thermal-
Data element by right clicking on the component element configuration and selecting Add Thermal-
Data under thermal. Inside the ThermalData element create a ThermalElementParameters element.
Type in the required parameters and link the material to one of the imported/created materials.

1.6 In the ThermalAnalysis element, create a ThermalContacts element in which a ThermalPortList
and a ThermalInterface are created. In the ThermalPortList specify one ThermalPort for each com-
ponent (and name it TP:XXX), linking the component by referencing to the ThermalElementPara-
meters element of that component. In the ThermalInterfaceList create one ThermalInterface for
each contact between two components. Reference the two components’ thermal ports (in the
Contacts section) and specify the thermal contact conductivity of the contact. If desired, specify
also the maximum mesh sizes for the contact areas. An example on how this could look like is
provided in Fig. B.1. NOTE: If the two contacting components are overlapping each other, this will
be detected at a later step. The component specified first will cut the overlap out of the compo-
nent specified second.

Figure B.1: View on how a thermal interface is specified. Source: Own representation.

1.7 If the contacts and visualizations are specified, execute the WriteContacts app. And export the
geometry using the Cad Export Wizard under Files->Export to a desired location.

1.8 Start FreeCAD and choose the VirtualSatellite workbench. Import the before exported geome-
try using the appropriate button as depicted in Fig. B.2.

1.9 Make sure, the path used in the prepareModel script is the one where the contact files from
VirSat are exported to. Then execute prepareModel to obtain the set of new faces for each con-
tact. NOTE that ANY face number specified in VirSat later on refers to these face numbers, NOT
the default ones (This script is basically identical to the makeContactFaces() function of the Script-
_ProcessModelToInput script and therefore the face numbers used in the main script are gener-
ated in the prepareModel script.)

1.10 In the ThermalAnalysis element, create a BoundaryConditions element. For each temperature
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Figure B.2: View on the FreeCAD window. Import button and workbench dropdown menu are highlighted
in red. Source: Own representation.

boundary and face heat flux, create a corresponding element inside. Then reference the relevant
component to apply the boundary condition, and the value of the boundary condition (in K or
Wm−2, respectively). If applicable, specify the face number of the desired face from the prepared
model, as mentioned in the step before.

1.11 In the ThermalAnalysis element, create a MeshSizes element. If desired, for each component
an individual maximum mesh element size can be specified by adding a ComponentMeshSize for
each component, rename it after the component and then specify desired mesh size and reference
the according components ThermalElementParameters element.

1.12 If desired, for each component the individual faces can have individual face radiation param-
eters to account for different surface properties. To do this, add a SingleFaceRadiation object to
the components ThermalData element. Then add a FaceRadiation element for each surface that
differs from the overall material value specified in the MaterialCollection. In this FaceRadiation el-
ement, absorptivity(vis), emissivity(IR) and the face number of the prepared model in FreeCAD are
specified.

B.2 Step 2 - Preparing the Analysis

Now the system’s thermal aspects are modeled completely. The following steps are executed to
specify some simulation parameters and export the model from Virtual Satellite.

2.1 Inside the ThermalAnalysis element, create an AnalysisType element. Specify the type of sim-
ulation to be executed (Transient/Static). And, for transient simulations, specify the total time of
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Figure B.3: Example of a single face (Face4) that has individual radiation parameters assigned. Source:
Own representation.

simulation and the time step size in between. Then choose if the inclusion of the orbit influences
(such as solar radiation) is desired or not. If Include is chosen, the appropriate orbital data must be
supplied. For more information on this, read the ”How To” in appendix B.6. Note that choosing
Include substantially increases processing time in FreeCAD, as the obstruction of each face has to
be determined for each time step. The way this can be done in FreeCAD is very resource demand-
ing and therefore the process can take severe amounts of time at this stage.

2.2 Execute all export apps having a write in their name, or execute the combinedExport app.

B.3 Step 3 - Processing with FreeCAD

The thermal model is now in an intermediate state, some aspects are ready for CalculiX but most
have to be processed in FreeCAD. This part is almost completely automated, so if not desired the
user does not have to do anything apart from executing the script.

3.1 Check if all exported files are present in the desired directory (There must be files with the
endings .rd, .ehf, .bcf and .bfl for each component. In addition, the files MeshSizes.txt, Mate-
rials.inp, ValidateContactsMaster.txt, ValidateContactsSlave as well as the add_contact.inp and
main.inp) and, if orbital radiation is included, the files ”Sun_Vector.csv”, ”Solar_Intensity.csv” and
”Earth_Vector.csv” must be provided, specifying the Sun vector, Earth vector (and cosine of reflec-
tion angle), and the solar intensity for each time step.

3.2 If not imported any more, import the CAD model again using the Virtual Satellite Workbench.

3.3 In FreeCAD, it is possible to create a custom mesh instead of using the automatically gener-
ated one. For this, create a mesh element and mesh the desired component. Then name the mesh
element exactly after the component (name+_+ID). FreeCAD will then automatically add ”001”
behind this, which is fine. NOTE: By default, the script will reset the state of the FreeCAD doc-
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ument to delete all mesh elements and part elements it generates during runtime. To include a
default mesh, deactivate the reset() line by adding an ”#” before it. And make sure that before
executing the script, only the desired mesh elements and the default, imported parts are present!
Otherwise the model will not be consistent.

3.4 Execute the FreeCAD script Script_ProcessModelToInput.

B.4 Part 4 - Executing Simulation

When the FreeCAD script was executed successfully, all input for CalculiX is present in the direc-
tory. Now the simulation can be executed.

4.1 Open CalculiXlauncher3.4 and choose ccx2.16 and cgx2.16 versions. Then open the main.inp
file and click on RunSolverCCX.

B.5 Part 5 - Postprocessing

When the simulation ended successfully, the results are needed to be fed back to Virtual Satellite.
For the user, it might be also convenient to view the simulation results graphically, using CGX by
clicking on RunCGXPost− ProcessorMode. The simulation results were written to the main.frd file,
which can be interpreted from the VirSat app ReadSimulationResults.

5.1 With the main.frd file in the directory, execute the ReadSimulationResults (make sure that all
properties in the AnalysisType were not changed during the workflow, else the app will misin-
terpret the output file. It creates (if not already present) a ThermalAnalysisResults element in the
ThermalAnalysis element. In it, a new AnalysisResult is created for each analysis. The app will ob-
tain the maximum and minimum temperature value of the whole simulation, for every compo-
nent.

B.6 How To?

Set all paths correctly?

It is important that all paths throughout all apps and scripts are set to the same desired path. Else,
the files will be located wrong and cannot be found by the subsequent program that tries to ac-
cess the file. The locations where paths have to be set are:

1. In all export apps (every path they contain)

2. In the prepareGeometry script in FreeCAD

3. In the processModelToInput script in FreeCAD (only the path right at the top)
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Create a contact for two parts that have a contact without area?

Use the placement in the visualization to shift one component slightly into the other one. This
way an overlap is created and if the contact is specifies in VirSat, FreeCAD will cut the overlap-
ping piece out of the second component. This way a small contact face is created between the
components.

Obtain the files necessary to use orbital solar (and Earth) radiation influence?

To obtain these files a tool like STK or GMAT can be used. In it, the orbit of the spacecraft can
be modeled and the resulting Sun vector at the points of time relevant for the analysis can be
exported. In addition, the obstruction of the Sun by Earth f.e. must be exported (in STK it is Sun
Intensity. The files are to be supplied in the following structure:

For Sun_Vector.csv:
Header line
Timestep1, VectorX, VectorY, VectorZ (vectors relative to spacecraft fixed coordinate system)
Timestep2, VectorX, VectorY, VectorZ
...
An example for this is displayed in listing B.1

Listing B.1: Example of the structure of the Sun_Vector.csv file as it is generated by STK.
”Time (UTCG) ” ,” x (km) ” ,” y (km) ” ,” z (km) ”
30 Dec 2020 11:00:00.000 ,130253576.662236 ,36557761.626092 ,−57757642.069708
30 Dec 2020 11:01:00.000 ,130411397.929910 ,35989165.559428 ,−57757510.174463
30 Dec 2020 11:02:00.000 ,130566743.587159 ,35419870.024707 ,−57757353.951172
30 Dec 2020 11:03:00.000 ,130719612.464795 ,34849886.353209 ,−57757173.580512
30 Dec 2020 11:04:00.000 ,130870003.412705 ,34279225.936515 ,−57756969.353358
30 Dec 2020 11:05:00.000 ,131017915.292355 ,33707900.224151 ,−57756741.669519
30 Dec 2020 11:06:00.000 ,131163346.969396 ,33135920.721108 ,−57756491.036008
30 Dec 2020 11:07:00.000 ,131306297.306429 ,32563298.985220 ,−57756218.064825
30 Dec 2020 11:08:00.000 ,131446765.155935 ,31990046.624426 ,−57755923.470279

For Sun_Intensity.csv:
Header line
Timestep1, Intensity in percent
Timestep2, Intensity in percent
...
For Earth_Vector.csv
Header line
Timestep1, VectorX, VectorY, VectorZ, cos(ReflectionAngle)
Timestep2, VectorX, VectorY, VectorZ, cos(ReflectionAngle)
...

Page: 121



B.6 How To?

FreeCAD does not adapt a changed geometry

The Virtual Satellite workbench in FreeCAD stores copies of the geometry files in the correspond-
ing folder within the user files of FreeCAD. If a part is imported and a file with the same name is
already present within this folder, the workbench will just take that file. Thus, all files with part
names from the C:/Users/UserName/AppData/Roaming/FreeCAD/Mod/VirtualSatelliteCAD
folder must be deleted in that case.

The visualization does not appear in VirSat

If there is trouble with the visualization concept and or the 3D viewer, save the model and restart
VirSat. It should now show the visualization (provided the right project is selected in the 3D viewer).

In FreeCAD: ”ValueError: ... not in list”

No MeshSizes element was created in Virtual Satellite (1.11). Create the element, even if it is left
empty, and export the model again.

In FreeCAD: ”The meshregion:... is not used to create the mesh because the Char-
acteristicLength is 0.0 mm.”

This is perfectly normal if you don’t have specified a mesh size for a contact. It only says that the
mesh region was not created as there is no parameter for it.

Reduce the time FreeCAD needs to calculate the orbital radiation loads

Unfortunately, the boolean function used for determining if a face in FreeCAD is obstructed is
quite slow. To make the execution of the script as fast as possible, it is recommended to cut the
vector and intensity files at the last time step. Else, the script goes through the complete file and
calculates the course of the radiation load for every timestep in the vector files (which should gen-
erally be either equal to or more than the specified timesteps for the simulation).
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Appendix C

Simulation Setups

C.1 Base Model (Model Static 1)

The base model is the model used in the first validation simulation. Since all simulated models are
quite similar, for all other models only the parameters differing from the base model are provided
in their respective sections. Every other parameter will be as it is in the base model.

Simulation Type: Steady-state

Component 1: BaseplateXZ
Initial Temperature: 300 K

Characteristic mesh size: 30 mm

Material: Aluminum
Conductivity: 155 Wm−1 K

Specific Heat: 915 J kg−1

Density: 2700 kgm−3

Emissivity: 0.03
Heat Flow: None
Temperature Boundary Condition: None

Component 2: BaseplateXY
Initial Temperature: 300 K

Characteristic mesh size: 30 mm

Material: Aluminum
Conductivity: 155 Wm−1 K

Specific Heat: 915 J kg−1

Density: 2700 kgm−3

Emissivity: 0.03
Heat Flow: None
Temperature Boundary Condition: None
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Component 3: BaseplateYZ
Initial Temperature: 300 K

Characteristic mesh size: 30 mm

Material: Aluminum
Conductivity: 155 Wm−1 K

Specific Heat: 915 J kg−1

Density: 2700 kgm−3

Emissivity: 0.03
Heat Flow: None
Temperature Boundary Condition: None

Component 4: PayloadScience
Initial Temperature: 300 K

Characteristic mesh size: 30 mm

Material: Aluminum
Conductivity: 155 Wm−1 K

Specific Heat: 915 J kg−1

Density: 2700 kgm−3

Emissivity: 0.03
Heat Flow: None
Temperature Boundary Condition: Face 3, 300 K

Component 5: PayloadCommunications
Initial Temperature: 300 K

Characteristic mesh size: 30 mm

Material: Copper
Conductivity: 400 Wm−1 K

Specific Heat: 385 J kg−1

Density: 8900 kgm−3

Emissivity: 0.03
Heat Flow: None
Temperature Boundary Condition: None

Component 6: PowerBattery
Initial Temperature: 300 K

Characteristic mesh size: 30 mm

Material: Titanium
Conductivity: 10 Wm−1 K

Specific Heat: 480 J kg−1

Density: 4800 kgm−3

Emissivity: 0.03
Heat Flow: Volume, 30 W, applied to the volume of the mesh in CalculiX and the volume of the
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C.2 Model Static 2

retrieved part in ANSYS (slightly differing)
Temperature Boundary Condition: None

Contact 1: BaseplateXZ to BaseplateXY
Contact Conductivity: 4000 Wm−2 K

Contact Partner 1 mesh size: 0
Contact Partner 2 mesh size: 0

Contact 2: BaseplateXZ to BaseplateYZ
Contact Conductivity: 4000 Wm−2 K

Contact Partner 1 mesh size: 0
Contact Partner 2 mesh size: 0

Contact 3: BaseplateXY to BaseplateYZ
Contact Conductivity: 4000 Wm−2 K

Contact Partner 1 mesh size: 0
Contact Partner 2 mesh size: 0

Contact 4: BaseplateXZ to PowerBattery
Contact Conductivity: 4000 Wm−2 K

Contact 1 mesh size: 0
Contact 2 mesh size: 0

Contact 5: BaseplateXY to PayloadScience
Contact Conductivity: 4000 Wm−2 K

Contact Partner 1 mesh size: 0
Contact Partner 2 mesh size: 0

Contact 6: BaseplateYZ to PayloadCommunications
Contact Conductivity: 4000 Wm−2 K

Contact Partner 1 mesh size: 0
Contact Partner 2 mesh size: 0

C.2 Model Static 2

Base model modified by:

Contact 4: BaseplateXZ to PowerBattery
Contact Conductivity: 4000 Wm−2 K

Contact Partner 1 mesh size: 10 mm

Contact Partner 2 mesh size: 10 mm
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C.3 Model Static 3

C.3 Model Static 3

Base model modified by:

Component 6: PowerBattery
Initial Temperature: 300 K

Characteristic mesh size: 15 mm

Material: Titanium
Conductivity: 10 Wm−1 K

Specific Heat: 480 J kg−1

Density: 4800 kgm−3

Emissivity: 0.03
Heat Flow: 30 W

Temperature Boundary Condition: None

Contact 4: BaseplateXZ to PowerBattery
Contact Conductivity: 4000 Wm−2 K

Contact Partner 1 mesh size: 5 mm

Contact Partner 2 mesh size: 5 mm

C.4 Model Dynamic

Base model modified by:

Simulation Type: Transient Timestep: 1 s Number of timesteps: 100 Total time: 100 s

Component 1: BaseplateXZ
Initial Temperature: 300 K

Characteristic mesh size: 30 mm

Material: Aluminum
Conductivity: 155 Wm−1 K

Specific Heat: 915 J kg−1

Density: 2700 kgm−3

Emissivity: 0.03
Heat Flow: Face 3, 1380 Wm−1

Temperature Boundary Condition: None

Component 5: PayloadCommunications
Initial Temperature: 300 K

Characteristic mesh size: 30 mm

Material: Copper
Conductivity: 400 Wm−1 K

Specific Heat: 385 J kg−1
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C.4 Model Dynamic

Density: 8900 kgm−3

Emissivity: 0.03
Heat Flow: None
Temperature Boundary Condition: Complete, 300 K

Component 6: PowerBattery
Initial Temperature: 300 K

Characteristic mesh size: 15 mm

Material: Titanium
Conductivity: 10 Wm−1 K

Specific Heat: 480 J kg−1

Density: 4800 kgm−3

Emissivity: 0.03
Heat Flow: None
Temperature Boundary Condition: None
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D. Source Code

Appendix D

Source Code

The source code that was written in the course of this thesis is quite long and therefore it is sup-
plied in a separate data storage or separate file complementary to this document. The file is called
Heibrok_Master_Thesis_Code.zip and it hosts the code for the thermal concept, the two FreeCAD
scripts, and all VirSat apps. It is provided in regular *.txt text format.
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