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Abstract

Spatially distributed wind measurements were conducted in the atmospheric bound-

ary layer with a fleet of quadrotor UAVs (Unmanned Aerial Vehicle) at the Grenz-

schichtmessfeld (GM) Falkenberg during the FESSTVaL (Field Experiment on Sub-

Mesoscale Spatio-Temporal Variability in Lindenberg) campaign in summer 2021.

The big advantage of deploying the UAV fleet is the possibility to record the wind

field at different spatial points simultaneously with a high temporal resolution.

A particular flight pattern was performed to calibrate the UAV wind measures

using reference data of the 99 m mast at GM Falkenberg. The results show that not

only the mean wind but also the turbulence can be reasonably resolved up to 1 Hz.

In a second pattern, ten UAVs were placed in a horizontal plane in both the

streamwise and lateral directions of the flow. To align the pattern along the wind

direction, easily adaptable flight plans were created and the last available wind

measurements of the mast were used for the orientation.

Varying spatial distances between neighbouring UAVs in this horizontal mea-

surement pattern allow turbulence analyses as a function of distance. In this work,

the spatially distributed measurements are used to examine the homogeneity as-

sumption and Taylor’s hypothesis in atmospheric boundary layer flows. The mea-

surement strategy was repeated for a near neutral, a convective and a stable atmo-

spheric boundary layer to identify possible dependencies of these assumptions on

different atmospheric conditions.

Considering the measurement accuracy of the UAVs, the results show no signifi-

cant violation of the homogeneity assumption within the microscale with a maximum

separation distance of 205 m. Calculated cross-correlations and coherences between

pairs of UAVs aligned in streamwise direction reveal a decrease with distance, how-

ever. This indicates that Taylor’s frozen turbulence hypothesis is not unrestrictedly

valid for all scales. The strongest decrease with distance is observed for the stably

stratified case, followed by the unstably one. The lowest decrease is found for the

near neutral stratification. The measurement accuracies of the UAVs and a slight

misalignment of the measurement pattern with the actual prevailing wind direction

during the flight have to be considered, however, which are partly responsible for

the decline.
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For the investigated separation distances from 5 m to 205 m, the achieved mea-

surement duration of about 14 min is sufficient for the analyses of cross-correlations

and coherences. This duration is determined by the battery runtime. However,

the potential to resolve larger scales has already been demonstrated in the field by

replacing the UAVs with charged ones during the flight.
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Chapter 1

Introduction

In general, high Reynolds number flows can be described mathematically by the

deterministic Navier-Stokes equations and thus, in theory, the evolution of a system

could be predicted exactly. However, such flows have a high sensitivity to initial

and boundary conditions (Pope 2000). This means that experiments with the same

nominal conditions but with tiny perturbations can lead to a very distinct evolution

known as the deterministic chaotic nature of turbulent flows. Therefore, a general

approach is to treat turbulent flows as random fields and describe them statistically.

Thereby, one is interested in ensemble averages defined as the mean over all possible

realizations of the turbulent flow under the same nominal conditions (Wyngaard

2009). Clearly, this requires a high or even infinite number of repetitions of the same

experiment, which is already challenging in laboratory environments but impossible

in the atmosphere since exact identical weather events do not exist in nature.

This issue is commonly treated with the ergodic hypothesis, which states that

for stationary and homogeneous conditions, a temporal and a spatial mean con-

verges towards the ensemble mean, respectively (Wyngaard 2009). Measurements

in the atmospheric boundary layer are often based on single instruments like a sonic

anemometer at a fixed point. Under the assumption of the ergodic hypothesis, mea-

sured temporal averages are then interpreted as ensemble averages and with the

premise of homogeneity also as spatial averages. However, turbulence is never really

stationary and even more critical is the assumption of homogeneity since such condi-

tions are never really met in natural environments. Therefore, further assumptions

like quasi-stationarity (Foken and Wichura 1996) and local homogeneity (Pope 2000)

are made frequently. It is questionable whether these assumptions are always ap-

propriate and if a temporal average at a single measurement point is representative

for the upstream spatial region in heterogeneous or complex terrain.

The absence of ergodicity can lead to systematic errors when calculating turbu-

lent fluxes with the eddy covariance method using a single instrument: If temporal

and spatial mean values are not equal, so-called dispersive fluxes arise as an ad-
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2 Introduction

ditional term in the covariances (Margairaz et al. 2020), which cannot be resolved

with a single instrument. Neglecting these dispersive fluxes, which can be caused by

organised convective cells in the convective boundary layer, may be the main reason

for systematic underestimation of fluxes (Mauder et al. 2020).

The Taylor hypothesis (Taylor 1938; Stull 1988) is a second commonly used

hypothesis for studying spatial structures of turbulent eddies with a single measure-

ment device. It states that the turbulence can be assumed to be frozen and advected

by the mean wind. Hence, one can convert a time difference into a spatial distance.

The hypothesis has been studied theoretically (Lumley 1965; Wyngaard and Clifford

1977), with simulations (Horst et al. 2004; Dosio et al. 2005; Bahraminasab et al.

2008) and there have been experiments conducted with lidar measurements (Schlipf

et al. 2011; Higgins et al. 2012) to test the hypothesis. Still, concerning its numerous

use in atmospheric boundary layer research, it is worth doing further investigations

on this subject.

Spatially distributed wind measurements have been performed during the HATS

field campaign (Horst et al. 2004) with crosswind arrays of sonic anemometers to

investigate spatially filtered and unfiltered turbulence as an experimental analogy to

large-eddy-simulations (LES). Such an experiment with many sonic anemometers is

logistically demanding and therefore tricky to repeat routinely. Moreover, it is hard

to measure up to high altitudes or in complex terrain straightforwardly.

Remote sensing instruments (Radar, Sodar, Lidar) provide somewhat more flex-

ibility since they can measure wind at multiple distances along the line-of-sight

(LOS) up to several kilometres using the doppler shift between the transmitted and

received signals. Lidar measurements in staring mode (e.g., O’Connor et al. 2010)

have the disadvantage that they can only measure the wind component in the line-

of-sight direction. Therefore, often scanning methods like velocity-azimuth-display

(VAD) scans (e.g., Smalikho and Banakh 2017), range-height-indicator (RHI) scans

(e.g., Wildmann et al. 2019) or plan-position-indicator (PPI) scans (e.g., Krishna-

murthy et al. 2011) are applied. However, such methods introduce time lags between

different scanning directions, and thus, the atmosphere is not explored simultane-

ously. Three-dimensional wind vectors can also be obtained by using at least three

linear, independent lidar beams intersecting at the measurement point (Wildmann

et al. 2018). But with this approach, the 3D wind is only measured at a single

location and the repetition for different ones again is only possible with time delays.

The use of UAVs (Unmanned Aerial Vehicle) offers an easy and flexible method

for atmospheric measurements. Thermodynamic quantities and turbulent wind

fields have been recorded both with fixed-wing vehicles (Wildmann et al. 2015; Kral

et al. 2021) and multicopters. The latter are easier to operate because of their possi-

bility to start and land vertically. Wind measurements with multicopters have been
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performed with attached external sensors like sonic anemometers (Nolan et al. 2018;

Shimura et al. 2018; Thielicke et al. 2020; Reuter et al. 2020) or hot wire/element

probes (Cuxart et al. 2019; Molter and Cheng 2020). A second method is the use

of only onboard sensors (Palomaki et al. 2017; Brosy et al. 2017; Wang et al. 2018;

Bell et al. 2020) from which the wind is retrieved by an appropriate algorithm.

Although a single UAV can fly to many measurement points sequentially, it

is impossible to measure at different locations simultaneously. Therefore, Wetz

et al. (2021) used a fleet of ten quadrotor UAVs for wind measurements at spatially

distributed points within the project SWUF-3D (Simultaneous Wind measurement

with Unmanned Flight Systems in 3D swarms). They found reasonable results for

both horizontal wind speed and direction using a simple, but robust wind retrieving

algorithm. Due to this success, they extended the UAV fleet by 25 new quadrotors.

Further steps in this project are the extension of the wind algorithm and in addition

to the calculation of mean variables, also the investigation of turbulence quantities.

The master thesis is embedded in this project, and tries to answer the following

questions:

(1) How well can the mean horizontal wind be measured by the UAVs using an

advanced algorithm?

(2) How well can the UAVs capture turbulence? Which scales can they resolve

and what is the dependency on atmospheric conditions?

(3) What advantage brings the possibility to measure the wind at different spatial

points simultaneously with the accuracy answered in (1) and (2)? Can signif-

icant conclusions be drawn about the homogeneity assumption, and what can

be said about the applicability of the Taylor hypothesis?

After this introduction, the thesis starts with a short theoretical part about

turbulence in the atmospheric boundary layer (chap. 2): It introduces the idealized

atmospheric boundary layer, the ergodic hypothesis, the energy cascade theory and

the Taylor hypothesis. Chapter 3 describes the UAV fleet, the wind algorithm,

the field campaign, the performed flight patterns and the data processing. After

the presentation of the calibration performance, three case studies are provided in

chapter 4. The findings of chapter 4 are discussed in more detail in chapter 5. The

thesis ends with the statement of the main conclusions and an outlook (chap. 6).



Chapter 2

Turbulence in the Atmospheric

Boundary Layer

2.1 Idealized Atmospheric Boundary Layer over

Homogeneous, Flat Terrain

The atmospheric boundary layer (ABL) is the lowest part of the atmosphere which

is directly influenced by the earth’s surface (Stull 1988). In this region, atmospheric

motions are affected by surface friction and energy exchange with the surface, result-

ing in strong vertical gradients in wind speed and temperature. These processes lead

to instabilities making the flow turbulent. Turbulence is responsible for the effective

exchange of momentum, energy, moisture and other trace constituents between the

surface and ABL, mixing within the ABL and entrainment of free tropospheric air

into the ABL (Markowski and Richardson 2010).

While mechanically induced turbulence caused by surface friction and corre-

sponding wind shear is always a source of turbulence, thermally induced buoyancy

effects can be an amplifying or a dampening factor. Dependent on the sign of the

surface sensible heat flux, cooling or warming of the adjacent air occurs influenc-

ing the (static) stability. A common measure for this static stability is the vertical

gradient of potential temperature Θ. This potential temperature is given through

(Stull 1988)

Θ = T

(
p0

p

)R/cp
(2.1)

with the temperature T , the pressure p, the standard reference pressure p0 =

1000 hPa, the gas constant of dry air R and the specific heat at constant pres-

sure cp. The potential temperature Θ is the temperature an air parcel would attain

if it is adiabatically brought from pressure p to standard reference pressure p0. For

adiabatic motions, Θ is a conserved quantity. In unstably stratified air, the mean

4



2.1 Idealized Atmospheric Boundary Layer over Homogeneous, Flat Terrain 5

Figure 2.1: Daily evolution of the ABL during fair weather conditions. Tan means

nonlocally statically unstable air, light green indicates neutral stratification and darker

blues means stronger static stability. Taken from Stull (2017).

vertical potential temperature decreases with height (dΘ/dz < 0), in stably strati-

fied air it increases with height (dΘ/dz > 0) and for neutral conditions it is constant

(dΘ/dz = 0) (Stull 2017).

Because of the diurnal cycle of the net radiation balance, the static stability

and thus the structure and depth of the ABL have a daily evolution. Figure 2.1

shows an idealised diurnal evolution of the ABL over homogeneous, flat terrain for

fair weather situations associated with anticyclonic conditions: The development of

the convective boundary layer (CBL) starts after sunrise, when the net radiation

balance becomes positive and the ground starts to heat up leading to a positive

sensible heat flux. This upward flux warms the ambient air and buoyancy effects

lead to vertical mixing (thermally induced turbulence). In the fully developed CBL,

the potential temperature decreases strongly near the surface (Fig. 2.2a). This lowest

layer (approx. 10% of the CBL) is called the surface layer (SL) and is characterized

through nearly constant fluxes with height (Stull 2017). Above the surface layer,

the mechanically and thermally induced turbulence leads to strong vertical mixing

resulting in the mixed layer (ML). In this layer, which covers around 80% of the CBL,

mean profiles are approximately constant with height (Fig. 2.2a). The mixed layer

is topped by the entrainment zone (EZ) often characterized by a strong inversion.

Here, mixing with potentially warm air from the free atmosphere (FA) may occur due

to overshooting turbulent thermals. Due to this entrainment, the mixing layer grows

in height and further the CBL is warmed from above. If the lifting condensation

level is reached for some ascending thermals, the CBL is topped by fair weather

cumulus clouds. Typical boundary layer heights are 1 –2 km during daytime.
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(a) (b)

Figure 2.2: Idealized mean vertical profiles of temperature T , potential temperature Θ,

mixing ratio r and wind speed M for (a) day-time and (b) night-time ABL. The dashed

line G indicates geostrophic wind and MBL is the average wind speed in the atmospheric

boundary layer. Tan indicates statically unstable air, green means neutral stratification

and blue is statically stable air, where darker blue indicate higher stability. Taken from

Stull (2017).

Slightly before sunset the surface net radiation balance becomes negative and

thermals stop to form. Consequently turbulence intensity decays in the well-mixed

layer, but the layer remains neutrally stratified, called the residual layer (RL)

(Fig. 2.2b). Below the residual layer a stably stratified boundary layer (SBL) starts

to grow from the bottom. The stably stratified air near the surface suppresses

thermally induced turbulence and only shear in the mean wind induced by surface

friction (mechanically induced turbulence) tends to generate turbulence. Hence,

turbulence in the SBL is in general weaker and more sporadic (Stull 1988). As

a consequence less mixing occurs, especially for weak wind conditions. Therefore

effective turbulent mixing is mainly confined to the surface layer (SL) and upper

portions of the boundary layer are basically decoupled from the surface. This de-

coupling process may lead to supergeostrophic wind speeds aloft the SL (Fig. 2.2b)

due to inertial forces, a so-called low level jet (Markowski and Richardson 2010).

Typical heights of the SBL are 100 –200 m.

In some cases, where less surface cooling or warming occurs and strong winds

prevail, a (near) neutral boundary layer can form with almost constant potential

temperature with height (Stull 2017). In the idealized case of a neutrally stratified

boundary layer, the wind profile takes the logarithmic form (Stull 2017)

u(z) =
u∗
κ

ln

(
z

z0

)
(2.2)

with the height above ground level (AGL) z, the friction velocity u∗, the von Kármán

constant κ ≈ 0.4 and the roughness length z0.
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2.2 Ensemble Average and Ergodicity

As outlined in chapter 1, the chaotic nature of turbulent flows demands a statistical

treatment. Reynolds (1895) first had the idea to separate the flow into a mean and

fluctuating part. Accordingly, a space and time dependent turbulent flow variable

a(x, t) can be decomposed

a(x, t) = 〈a(x, t)〉+ a′(x, t) , (2.3)

where 〈a(x, t)〉 is the ensemble average and a′(x, t) its fluctuating part.

The ensemble average of a turbulent quantity a(x, t) is defined as the expected

value over all possible realizations of the turbulent flow under the same nominal

conditions, mathematically expressed trough (Wyngaard 2009)

〈a(x, t)〉 := AE(x, t) := lim
N→∞

1

N

α=N∑
α=1

a(x, t;α) . (2.4)

Here, α denotes the realization number. Equation (2.4) implies that the ensemble

average is in general a function of both space and time.

Clearly, it is impossible to determine the ensemble average with equation (2.4)

in real flow scenarios within the atmospheric boundary layer, as no repetition of an

experiment is possible under exactly the same conditions. Instead one can measure

the time average at position x over a period T for a single realization n via

a(x, t) := AT (x, t, T ;n) :=
1

T

∫ T

0

a(x, t+ t′;n)dt′ (2.5)

or (theoretical) a horizontal spatial average over an area S for a specific time t and

realization m with

[a(x, t)] := AS(x, t, S;m) :=
1

S

∫∫
S

a(x + x′, t;m)dS . (2.6)

For a stationary process, which means that the turbulence statistics are in-

dependent of absolute time t, the ensemble average is only a function of space

(AE = AE(x)). Furthermore, one expects that the entire turbulence information

is contained in the time series as the averaging time T increases. Hence, the time

average over the single realization n should converge towards the ensemble mean,

i.e.,

lim
T→∞

AT (x, t, T ;n) = AE(x) . (2.7)

Further, for homogeneous conditions, which means that the turbulence statistics are

independent of space, the ensemble average is only a function of time (AE = AE(t))

and with increasing horizontal area S one expects that the spatial average for a

single realization m converges towards the ensemble mean, i.e.,

lim
S→∞

AS(x, t, S;m) = AE(t) . (2.8)
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Thus, equations (2.7) and (2.8) imply that for both stationary and homogeneous

conditions, the time average and the spatial average converge towards the space and

time independent ensemble mean. The equivalence of time, space and ensemble

averages under the specified conditions is called ergodicity (Wyngaard 2009).

In the subsequent sections, a time average indicated by ” ” is treated as en-

semble average in the sense of equation (2.7) and ” ′ ” indicates its fluctuating part.

2.3 Energy Cascade and Kolmogorov Hypotheses

One basic concept in turbulence theory is to describe turbulent flows as a composi-

tion of eddies with different sizes (Stull 1988). Each of these eddies is characterized

by a wavelength λ and corresponding wavenumber k = 2π/λ. Hence, turbulent sig-

nals can be written as Fourier decompositions. Corresponding (co-)spectra provide

information on how much eddies of a certain size contribute to the total (co-)variance

of the turbulence variable (e.g., Lumley and Panofsky 1964).

Richardson (1922) introduced the idea of the energy cascade: Most of the tur-

bulent kinetic energy is contained in large eddies, which are created by instabilities

of the mean flow. These eddies are again affected by instabilities and therefore

they break up. This process continues and so the energy is successively transferred

to smaller and smaller scales. That energy cascade ends with the dissipation of

turbulent kinetic energy into heat by viscous forces.

This picture of the energy cascade leads to an idealized energy spectrum

(Fig. 2.3), which can be separated into three regions: Energy input from the

mean flow occurs in the energy containing range. Eddies in this range are highly

anisotropic and are affected by the boundary conditions of the flow. Therefore, the

magnitude of the spectral density depends on external parameters.

The second region in the spectrum is called the inertial subrange. In this region,

the turbulent kinetic energy is neither generated nor dissipated, but only transported

through. Kolmogorov (1941b) claimed the existence of the inertial subrange by the

hypothesis that there has to be a range in the spectrum, where the turbulence is

locally isotropic. Here, the term ”local” refers to the specific range in the spectrum

and the term ”isotropic”, which means directional independence, has to be consid-

ered statistically. A direct consequence of this hypothesis is that the spectral density

can neither depend on external parameters nor on the molecular viscosity. Hence,

the spectral density is only a function of wavenumber k and dissipation rate ε. Al-

though dissipation is no important process in the inertial subrange, the dissipation

rate ε has to be considered as a variable since it determines at which rate the energy

finally dissipates and therefore also characterises the cascade through the inertial
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Figure 2.3: Idealized energy spectrum with 1© energy containing range, 2© inertial sub-

range and 3© dissipation range. Note the logarithmic axes scales.

subrange. Dimensional analysis leads to the spectral density (Pope 2000)

F (k) = αε2/3k−5/3 (2.9)

with the Kolmogorov constant α.

Finally the turbulent kinetic energy is dissipated into heat in the dissipation

range. Kolomgorov’s theory suggests that in this range only the dissipation rate ε

and viscosity ν determine the spectral density. From this hypothesis and dimensional

analysis Kolmogorov time scale, micro scale and velocity scale can be obtained (Pope

2000) characterising the dissipation range.

2.4 Taylor Hypothesis

As already stated in chapter 1, it is often of interest to have information on the

eddies’ size and spatial structure of turbulence. However, it is nearly impossible

to have multiple instruments employed in the field to generate a snapshot picture

of the ABL. Instead, spatial information is often retrieved from a single time series

with the help of Taylor’s frozen turbulence hypothesis. It states, that the turbulence

can be assumed to be frozen when it passes the sensor and the unchanged pattern

is solely advected by the mean wind (Taylor 1938; Stull 1988).

Thus -formulated in 1D- a time difference ∆t can be converted to a spatial

distance ∆x with

∆x = u∆t , (2.10)

where u denotes the mean wind speed in streamwise direction.
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Further, when the turbulent field is treated as a composition of eddies, a mea-

sured frequency f can be converted to an eddie’s size λ via

λ =
u

f
. (2.11)

Of course, turbulence is not really frozen, and thus the hypothesis is only ap-

plicable when the time scale of the evolution of turbulent eddies is longer than it

takes to pass the sensor (Stull 1988). In practice, the applicability of the hypothesis

is routinely estimated with a simple rule-of-thumb relating the standard deviation

σu =
√
u′2 as a measure of the activity of turbulence and the mean advection ve-

locity u. The ratio σu/u is known as turbulence intensity. The hypothesis is said to

be valid, whenever (Willis and Deardorff 1976)

σu
u
< 0.5 . (2.12)

A more general test for the applicability of the hypothesis can be achieved,

when more than one measurement device is available. For that, we start with the

covariance function of a turbulent variable a for two time series measured at points

separated by a longitudinal distance ∆x. For abbreviation, the notation a := a(x, t)

and a∆x := a(x − ∆x, t) is used. That covariance function has the form (Lumley

and Panofsky 1964)

Raa∆x
(τ) = a′(t)a′∆x(t− τ) , (2.13)

where τ denotes the time lag. Normalization of the covariance function by the

standard deviations leads to the cross-correlation function

ρaa∆x
(τ) =

Raa∆x
(τ)√

a′(t)2

√
a′∆x(t− τ)2

=
a′(t)a′∆x(t− τ)√
a′(t)2

√
a′∆x(t− τ)2

(2.14)

taking values in the interval [-1:1]. In an ideal case, where Taylor’s frozen turbulence

hypothesis is perfectly valid, equation (2.14) would be one whenever ∆x/τ = u. This

is illustrated in Figure 2.4 for a simple theoretical signal of the form

a(t) =

c, if − 1 < t < 1

0, else
(2.15)

measured by a sensor at position x. The same pattern previously passed an upstream

sensor at position x− δx with a time shift of uδx.

The cross-correlation ρaa∆x
(∆x = δx, τ) has the same shape as the autocorre-

lation function ρaa∆x
(∆x = 0, τ), but is shifted by uδx.

Note, that ρaa∆x
(∆x = δx, τ = 0) = ρaa∆x

(∆x = 0, τ = uδx). This fact is often

used to calculate turbulent length scales from the autocorrelation function under

the assumptions of Taylor’s frozen turbulence hypothesis.
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(a)

−4 −3 −2 −1 0 1 2 3 4

t

0

c

a

uδx

∆x = 0

∆x = δx

(b)

−4 −3 −2 −1 0 1 2 3 4

τ

0

1

ρ
a
a

∆
x
(τ

)

uδx

∆x = 0

∆x = δx

Figure 2.4: (a) Theoretical signal as function of time t for two sensors separated by

a distance δx. The frozen signal is advected by the mean wind u. (b) Corresponding

cross-correlation functions ρaa∆x as function of time lag τ .
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Testing the validity of the Taylor hypothesis dependent on the eddies’ scales

can be achieved in terms of spectral analysis when calculating the Fourier transform

of the cross-covariance function leading to the cross spectral density (Lumley and

Panofsky 1964)

Saa∆x
(f) =

∫ +∞

−∞
Raa∆x

(τ)e−i2πfτdτ . (2.16)

The cross spectral density is in general complex valued and can be decomposed into

real and imaginary part

Saa∆x
(f) = Coaa∆x

(f)− iQaa∆x
(f) (2.17)

with the so called cospectrum Coaa∆x
(f) and quadrature spectrum Qaa∆x

(f). From

that, one can calculate the coherence

γ2
aa∆x

(f) =
|Saa∆x

(f)|2
Saa(f)Sa∆xa∆x

(f)
, (2.18)

which is the square of the absolute value of the cross spectral density normalized

by the power spectral densities of the two time series. The form of equation (2.18)

resembles a frequency-dependent squared correlation coefficient and thus the coher-

ence γ2
uu∆x

(f) can take values between zero and one. It takes the value one, whenever

the Fourier components at the frequency f of the two timeseries have proportional

amplitudes throughout the ensemble (Lumley and Panofsky 1964). Thus, if the

Taylor hypothesis is perfectly valid for all scales, the coherence should be one for all

frequencies.



Chapter 3

Data and Methods

3.1 UAV Fleet

3.1.1 System Description

The UAV fleet consists of 34 Holybro QAV250 quadrotors. Figure 3.1 shows a

labelled image of such a UAV and Table 3.1 provides more detailed information on

the hardware and the sensors. Each quadrotor has a labelling between 2 and 35.

The individual UAVs contain the Pixhawk R© 4 Mini flight controller with an

integrated Internal Measurement Unit (IMU) consisting of gyroscope, accelerometer,

magnetometer, barometer and a GNSS system. The PX4 software processes the

measured sensor data. Since these are noisy, the software includes a Kalman filter

that estimates the system’s state.

The processed data are used to stabilise the vehicle at a specific position or fly

predefined trajectories. Further, the data are logged to a SD card, and therefore,

they are also available after the flights. Flight times up to 17 min are possible with

the used battery. The temperature and humidity sensor IST HYT271 is the only

payload of the system.

3.1.2 Fleet Communication

Installed on a ground station laptop, the open-source software c© QGroundCon-

trol (QGC) developed by the Dronecode Foundation (Gagne et al. 2020) ensures

the control of the UAV fleet (Fig. 3.2). The communication between the vehicles

and the QGC relies on a 2.4 GHz WLAN-connection with Standard 802.11.g/n. All

UAVs and the ground station have fixed IPs and are connected via a local network

provided by a router (LANCOM OAP-822). Datagrams are exchanged via UDP

ports and the communication is based on the MAVLink v2 protocol.

The software QGC allows to upload a priori generated flight plans to the ve-

13
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L

LiPo Battery

Temperature
and Humidity
Sensor

WLAN-Antenna

RC-Antenna

WLAN-Module 
and RC-Receiver

GNSS-Antenna
with Magnetometer

Autopilot with 
integrated
IMU

Electromotor

Figure 3.1: Holybro QAV250 quadrotor.

Table 3.1: Hardware of Holybro QAV250 quadrotor.

Mass 0.66 kg (incl. battery)

Dimension (length, width, height) 0.25 m x 0.2 m x 0.2 m

Frame Carbon fibre

Rotors 4 x 3-blade T5040C, ø 127 mm, Poly-

carbonat

Motors 4 x Electromotors DR2205 KV2300

Battery LiPo, 3500 mAh

Accelerometer and gyroscope Two redundant sensors: Invensense

ICM-20689 and Bosch BMI055

Magnetometer iSentek IST8310

Barometer Amsys MS5611

GNSS ublox Neo-M8N GPS/GLONASS

Voltage and current sensor for battery

supervision

Holybro Power Module PM07

Temperature and humidity sensor IST HYT271 (weight: 2 g)

hicles. When creating these flight plans, it has to be taken care that the paths of

the individual vehicles do not cross and that collisions are avoided. Further, the

software monitors the fleet during the flight and different commands can be given

to a single vehicle or the whole fleet. This includes instructions like ’Start-all’,

’Return-to-launch’ or ’land-all’.

As an additional backup, the vehicles are connected to a Graupner MZ-12 re-

mote control (RC). A pilot can navigate a single UAV manually with this control.
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Figure 3.2: Schematic depiction of fleet communication. Credits: Norman Wildmann.

3.2 Wind Algorithm

The algorithm for retrieving the wind vector from quadrotor measurements is still

in the development phase. In the following, an intermediate state is shortly summa-

rized, which resolves the horizontal wind vector. This state is an extension of the

algorithm presented in Wetz et al. (2021) and is the basis for all calculations within

this work.

The underlying idea is to treat a quadrotor as a rigid body and solve the equa-

tions of motions in a reference system that moves with the vehicle (body system)

using only internal sensor data. Resulting wind forces are then transformed to wind

speeds with an appropriate calibration relation.

Introducing the mass m of the vehicle, the gravity constant g, the position

vector in the body system

Xb =
[
x y z

]T
, (3.1)

the angular velocity vector in body frame

ωb =
[
p q r

]T
, (3.2)

and the Euler angles in a fixed inertial frame

Φi =
[
φ θ ψ

]T
, (3.3)
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the linear two-dimensional equations of motion in the body system read

m(ẍ+ qż − rẏ) = −mg[sin(θ)] + Fw,x (3.4a)

m(ÿ + pż − rẋ) = −mg[cos(θ) sin(φ)] + Fw,y . (3.4b)

Here, the first terms on the left side are the accelerations, the second and third

terms on the left side are the gyroscopic terms, the first terms on the right side are

the gravitational forces and the last terms are the wind drag.

In a stable hover state, one can assume that the terms on the left hand side of

equations (3.4a) and (3.4b) can be neglected, leading to

Fw,x = mg[sin(θ)] (3.5a)

Fw,y = mg[cos(θ) sin(φ)] . (3.5b)

Further, the vehicles are operated in the weather vane mode meaning that the yaw

angle ψ is used to minimize the amplitude of the roll angle φ, such that the quadrotor

always tries to yaw into the wind direction. Wetz et al. (2021) assumed that this

adjustment occurs instantaneously and thus neglected equation (3.5b), such that

only the pitch angle θ determines the dynamics. Here, this assumption is not made

and both equations are considered.

Wetz et al. (2021) used the Rayleigh drag equation for the conversion of wind

forces to wind speed. In the approach presented here, this relationship is more

generalised in the form of

Vw,j = cj(Fw,j)
bj , (3.6)

with j = x, y , the wind vector component Vw,j and the calibration constants

cj, bj. For the determination of these calibration constants, reference measurements

are needed (sec. 3.3). A detailed description of how these constants are obtained

for each individual vehicle will be outlined in the publication Wetz and Wildmann

(2022).

The fitted wind components in body system are then used to calculate the wind

speed

ff =
√
V 2

w,x + V 2
w,y . (3.7)

The wind direction is determined by the orientation of the vehicle via the yaw angle

ψ. However, a yaw offset ∆ψ is determined for each quadrotor by calibrating the

mean values against a reference device (Wetz and Wildmann 2022), yielding the

total yaw angle

Ψ = ψ + ∆ψ . (3.8)
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Due to the response time of the weather vane mode, the instantaneous values are

further corrected accordingly, leading to the wind direction (Wetz and Wildmann

2022)

dd = Ψ + tan

(
Vw,y

Vw,x

)
. (3.9)

From the obtained wind speed and wind direction, zonal velocity

U = −ff sin(dd) (3.10)

and meridional velocity

V = −ff cos(dd) (3.11)

are calculated.

3.3 Field Campaign and Reference Instrumenta-

tion

The measurement campaign FESSTVaL (Field Experiment on Sub-Mesoscale

Spatio-Temporal Variability in Lindenberg) initiated by the Hans-Ertel-Zentrum

für Wetterforschung (HErZ) took place at the Meteorologisches Observatorium

Lindenberg-Richard-Aßmann-Observatorium (MOL-RAO) in summer 2021. The

campaign had the goal to investigate submesoscale phenomena like cold pools and

wind gusts associated with thunderstorms. As part of this campaign, measurements

have been conducted with the UAV fleet at the Grenzschichtmessfeld (GM) Falken-

berg between June 21 and July 2.

GM Falkenberg (52◦ 10′ N, 14◦ 07′ E, 73 m above sea level) is located about

80 km south-east of Berlin. Typical differences in surface elevation are less than

100 m over a distance of 10 km around the site. The surface is dominated by grass-

land and cropland, but there are also some larger pine forest areas to the west

(Tab. 3.2 and Fig. 3.3).

At the site, the German Weather Service (DWD) maintains operational mi-

crometeorological and boundary layer measurements. The main object is a 99 m

high mast with various sensors attached. Table 3.3 gives an overview of all sensors

whose data are used in this work. The two sonic anemometers at 50 m and 90 m AGL

serve as the main reference devices for the UAV measurements.
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Table 3.2: Land use of GM Falkenberg.

Scale (radius around tower) Land use

100 m grassland

500 m grass- and cropland

10 km grass- and cropland (60%), pine

forests (30%), lakes (5%) and settle-

ments (5%)

500 m
tower

N

Figure 3.3: Satellite image of GM Falkenberg and surrounding area.
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Table 3.3: Reference instrumentation of 99 m mast.

Instrumentation Levels (m) Sensor type

Cup anemometers 10, 20, 40, 60, 80, 98 Thies cup anemometer

4.33303.22.000

Wind vanes 40, 90 Thies wind vane

4.3121.32.000

Sonic anemometers 2, 50, 90 METEK-1 USA

Temperature and humid-

ity sensors

10, 20, 40, 60, 80, 98 Vaisala HMP-45 aspi-

rated radiation shield

Young model 43408

H2O gas analyzer 2, 50, 90 LI75000RS

Barometer 1 Vaisala PTB220A

Precipitation sensor 1 OTT Hydromet GmbH:

Pluvio (DWD version)

Sensor for shortwave ra-

diation

2 Kipp&Zonen CM24

Sensor for longwave radi-

ation

2 Kipp&Zonen CG4R

3.4 Flight Patterns

Different flight patterns have been performed during the field campaign, including

calibration flights, vertical ”drone tower” flights, validation flights for lidar VAD

scans and horizontal flight patterns. In this section, only the calibration and hori-

zontal flight patterns are described as they are relevant for this work.

For the calibration flights, five UAVs were placed 20 m west of the tower at 50 m

and 90 m AGL in a north-south orientated line with a spacing of 5 m (Fig. 3.4a).

Data from these flights were used for calibration (sec. 3.2) using sonic data as a

reference. This thesis does not show the entire calibration procedure; that can be

found in Wetz et al. (2021) and Wetz and Wildmann (2022). Instead, the perfor-

mance of the calibration is presented. Section 3.5 gives detailed information about

the corresponding data processing.

Figure 3.4b shows a schematic representation of the horizontal flight pattern.

The mean wind direction of the last 10 min measured by the tower was used as a

reference for determining the orientation of the pattern. Flexibly adjustable flight

plans were created to align in total ten UAVs in a horizontal plane in both the

streamwise x- and lateral y-direction. Here, the spacings between neighbouring

UAVs were varied in a way such that as many different distances as possible are

represented between 5 m and 205 m in x-direction and between 10 m and 70 m in
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Figure 3.4: (a) Calibration pattern (b) Horizontal pattern with differing distances be-

tween neighbouring vehicles. Here, x denotes streamwise and y lateral direction. The

orange dot indicates the position of the vertical profiling UAV.

y-direction when the UAVs are combined pairwise in the corresponding direction.

This gives the possibility to calculate turbulence quantities as a function of the sep-

aration distance. Besides this horizontal pattern, in most of the cases one quadrotor

additionally acted as a vertical background profiler by ascending with a constant

speed of 1 m s−1.

This horizontal pattern offers different evaluation possibilities: First, it allows

the comparison of the different time averages of the spatially separated UAV mea-

sures. An assessment of the validity of equation (2.7) is given when an independent

test for (quasi-)stationarity after Foken and Wichura (1996) is applied. The idea of

this test is outlined in section 3.5.3. If stationarity is fulfilled, the spatially sepa-

rated recordings can then provide an examination of the homogeneity assumption

within the microscale with a maximum separation distance of 205 m. A proposed

(quasi-)homogeneity test is also presented in section 3.5.3.

Besides the check of the homogeneity assumption, the varying distances be-

tween the UAVs in the horizontal pattern allow the calculation of cross-correlation

functions (eq. (2.14)) and coherences (eq. (2.18)) for different spatial distances and

thus can give an assessment of Taylor’s frozen turbulence hypothesis as outlined in

section 2.4.

This measurement strategy was repeated at various heights and for different at-

mospheric conditions (neutral, convective and stable boundary layer), but the sepa-

ration distances were always exactly the same as indicated in Figure 3.4b. Moreover,

the UAVs were replaced such that longer measurement periods have been achieved.

In this thesis, however, data are mainly evaluated for single horizontal patterns
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without replacement. Only at some parts, results for longer measurement periods

are outlined.

3.5 Data Processing

3.5.1 Interpolation, Filtering and Coordinate Rotation

The raw data from a single vehicle’s sensors all have different time stamps and

sampling resolutions. Therefore, the first step in processing was to bring them to

a common time stamp. Hence, the data of each UAV were interpolated to a single

time series with a resolution of 20 Hz. This resolution corresponds to the sampling

rate of the sonic anemometer’s raw data.

Afterwards, the ascent and descent were removed from the time series and only

the period was selected during which the vehicle was hovering. This was done by

looking where the three translational velocities of the quadrotor remained below a

threshold for a certain time. Here, a limit of 0.5 m s−1 was used. Obviously, the

effective measurement time is reduced when eliminating the time needed to fly to

and from the measurement position.

For the hover state, zonal and meridional wind components were then computed

with the algorithm presented in section 3.2. After that, a FFT low pass filter with a

cut-off frequency of 1 Hz was applied to filter out high-frequency sensors noise. The

choice of the cut-off frequency seems arbitrary at first, but we will see in chapter 4

that it is reasonable when examining power spectra.

For each vehicle the wind components were then rotated into a streamwise

coordinate system. Since the current algorithm resolves only the horizontal wind

components, a ’single rotation’ instead of the standard double or triple rotation (e.g.,

Golzio et al. 2019) was applied. This rotation involves

α = arctan

(
U

V

)
(3.12a)

u = U cos(α) + V sin(α) (3.12b)

v = −U sin(α) + V cos(α) . (3.12c)

Here, U is the zonal, V the meridional, u the streamwise and v the lateral velocity

component. This rotation nullifies the mean lateral wind component (v = 0).

The selection of the averaging period for this rotation and the subsequent anal-

ysis slightly differs for the calibration and horizontal pattern flights. Therefore, they

are presented separately.
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Calibration Flights

For the calibration flights, the entire period in hover state (approx. 14 min) for

every quadrotor was used as an averaging time to lose as few data as possible. Since

the calibration flights are used to compare UAV and sonic anemometer measures,

the time interval for the corresponding sonic data was separately determined for

each vehicle, ensuring exact matching. Further, the sonic data were also filtered

with a cut-off frequency of 1 Hz and a single rotation was applied for a meaningful

comparison. A double rotation had also been applied to the sonic data for randomly

selected examples, but this did not result in significant differences compared to the

single rotation.

Further two quality controls were applied to avoid erroneous data: Pairs of

UAV and sonic measures were discarded from the comparison, where the mean

wind direction measured by the UAV was between 330 ◦ and 50 ◦ via north, since

here the tower’s configuration leads to a disturbance of the flow. Further, only data

are compared, where the mean wind speed measured by the sonic anemometer was

higher than 3 m s−1. This ensures that the weather vane mode worked adequately

and the UAV faced in wind direction.

Horizontal Flight Patterns

For the horizontal pattern, it is advantageous to have a matching time interval for

all UAVs involved. Therefore, the interval was set to the time when the last vehi-

cle in the pattern started hovering until the first quadrotor started its return flight.

Since the vehicles did not start simultaneously and had different paths to fly to their

measurement position, the effective averaging period is reduced (approx. 13.5 min).

After this processing step, the various vehicles still had slightly different time stamps,

since the initial interpolation to 20 Hz was individually done for each UAV. But for

computing cross-correlation functions (eq. (2.14)) and coherences (eq. (2.18)), it is

useful to have a common one. Hence, all other vehicles were interpolated to a ref-

erence quadrotor. Analogously, the previously filtered sonic data were interpolated

to the same time stamp as all UAVs involved.

In this work, only horizontal patterns are evaluated, which do fulfil the two

quality controls (wind direction not between 330 ◦ and 50 ◦ via north and mean

wind speeds higher than 3 m s−1). Thus, the findings can be compared with the

calibration results.

3.5.2 (Co-)variances and Spectra

The variances u′2 and v′2 and the covariance u′v′ were calculated applying a linear

detrending beforehand. Cross spectral densities and power spectral densities were
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computed using Welch’s average periodogram method (Welch 1967). Hereby, a

Hanning window was used as a window function. Furthermore, the spectra were

scaled by a scaling frequency, such that the densities are given in units of Hz−1

and integration over the frequency range is possible. For visualizations, the spectral

densities were further averaged over logarithmically spaced bins.

3.5.3 Stationarity and Homogeneity Tests

The idea of the (quasi-)stationarity test after Foken and Wichura (1996) is outlined

for the covariance a′b′ of two turbulence variables a and bmeasured by a single device:

The recorded time series is split into M shorter intervals and for each subinterval

the covariance a′b′i is calculated. The averaged value of this covariances

a′b′SI =
1

M

M∑
i=1

a′b′i (3.13)

is then compared with the covariance calculated over the whole interval a′b′WI in

the form of

ST =

∣∣∣∣a′b′SI − a′b′WI

a′b′WI

∣∣∣∣ · 100% . (3.14)

Stationarity is assumed, when ST < 30%. Within this work, M = 5 subintervals

were used.

Performing a test for (quasi-)homogeneity analogous to equation (3.14)

would require many more spatially distributed measurements for a

single time point than available. Therefore, a comparable test for

(quasi-)homogeneity for a turbulence quantity q is proposed using the spatial

mean of the time averaged quantity

[q] =
1

N

N∑
i=1

qi (3.15)

as a reference. Here, N is the total number of UAVs involved and the index i runs

over all vehicles in the horizontal pattern. The proposed test then reads

HT =

∣∣∣∣∣∣
√

1
N

∑N
i=1(qi − [q])2

[q]

∣∣∣∣∣∣ · 100% , (3.16)

which relates the standard deviation as a measure of spatial variability to the spatial

mean of the time averaged quantity. Clearly, the question arises what threshold one

should use for HT below which one can assume homogeneity. In analogy to the

stationarity test, the author proposes a threshold value of 30%.



24 Data and Methods

3.5.4 Treatment of Pattern Misalignment

When calculating cross-correlation functions (eq. (2.14)) and coherences (eq. (2.18))

in streamwise direction, it has to be taken into account that the mean wind direction

over one flight can differ from the direction in which the horizontal pattern was

aligned. As mentioned in section 3.4, this direction of the pattern was determined

by tower measurements and often the last available values had quite a delay to the

start of the UAV flights. Therefore, the orientation of the pattern was sometimes

also estimated from previous UAV flights. This often led to a misalignment of the

pattern and measured wind direction in the order of 10◦. This misalignment is

expressed through

β = ddpattern − dd , (3.17)

with the alignment of the pattern ddpattern and the measured mean wind direction

dd.

This misalignment has mainly two effects (Fig. 3.5): First, the turbulence signal

is not advected exactly trough both measurement devices in x-direction, instead it

is displaced by

∆ = ∆x sin(β) . (3.18)

Second, the theoretical time delay according to the Taylor Hypothesis, where one

expect maximal correlation between two time series, has to be reduced by cos(β),

i.e.,

∆t =
∆x cos(β)

u
. (3.19)

This corresponds to the time difference after which a turbulent structure is closest to

the second sensor when it has previously passed through the first sensor. For the cal-

culation of the displacement (eq. (3.18)) and the theoretical time delay (eq. (3.19)),

the mean values for dd and u of the two individual measurements were used.

The influence of the displacement on the maximum value of the cross-correlation

function can be examined when the cross-correlation function is calculated between

quadrotors aligned in x-direction with those aligned in y-direction. For a fixed

∆x, cross-correlation functions can be calculated as a function of total displace-

ment (Fig. 3.5)

∆Total = ∆x sin(β) + ∆y cos(β) . (3.20)

Dependent on the signs of β and ∆y, the two terms can sum up or partly cancel

each other.
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Figure 3.5: Schematic representation of the situation when the wind direction does not

match with the pattern alignment. The blue arrow shows the wind direction and the dark

dots indicate the measurement points. The turbulence pattern does not travel exactly

through the two points in x-direction, but with a displacement ∆ (eq. (3.18)). Further,

the definition of the the total displacement ∆Total (eq. (3.20)) is illustrated.

3.5.5 Data for Atmospheric Conditions

Pre-processed data from the tower are used to assess the atmospheric boundary con-

ditions during the evaluated horizontal flight patterns. Only temperature measures

at different levels were converted to potential temperatures. The necessary values

for pressure were obtained from the surface value by integrating the hydrostatic

equation over an assumed isothermal layer.

Vertical temperature profiles of the UAVs are employed to judge the atmo-

spheric conditions as well. At the time of writing this thesis, corrections for possible

biases in the temperature data had not been conducted yet. To better compare the

measured vertical gradients with the tower measurements, however, a constant offset

was added to the temperature data at some points based on a subjective comparison

of the datasets. This is pointed out in the corresponding parts in chapter 4.



Chapter 4

Results

This chapter starts with the presentation of the calibration performance (sec. 4.1).

The purpose of that section is to estimate the measurement accuracy of the UAVs

to be able to interpret the subsequent findings adequately. Afterwards, three case

studies are presented. The main objective is to investigate the homogeneity assump-

tion and the Taylor hypothesis for a neutral (sec. 4.2), a convective (sec. 4.3) and

a stable (sec. 4.4) atmospheric boundary layer with respect to the accuracy of the

UAV measures and the horizontal measurement strategy.

4.1 Calibration Results

The calibration flights were conducted throughout the two-week long measurement

campaign to encompass as many different atmospheric conditions as possible. This

should ensure that the measurement accuracies found here can be transferred to all

case studies investigated subsequently.

The performance of the calibration is evaluated in the form of scatter plots

comparing sonic and UAV measurements (Fig. 4.1). Shown are 14 min averages of

low-pass filtered data with a cut-off frequency of 1 Hz. As mentioned in section 3.5.1,

data have been discarded where the wind direction was between 330 ◦ and 50 ◦ over

north or where the mean wind speed was less than 3 m s−1.

Table 4.1 summarises the performance of the calibration in terms of root mean

square error σRMS and correlation coefficient r. Further, linear regression models

y = ax + b are fitted to the data. The p-values for the null hypothesis that the

slope a of the linear fits is zero, are very small (< 10−20) for all variables. This is

also reflected in high to very high correlation coefficients (Tab. 4.1).

The linear fit for the mean wind speed (Fig 4.1a) indicates that the UAV mea-

surements are systematically slightly too low for the higher depicted values. The

linear fits for the mean wind direction (Fig. 4.1b) and streamwise variance (Fig. 4.1c)

26
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Table 4.1: Root mean square error σRMS and correlation coefficient r between sonic

anemometer and UAV measures calculated from the data of the calibration flights.

Variable σRMS r

u 0.21 m s−1 0.99

dd 4.6 ◦ 0.98

u′2 0.15 m2 s−2 0.95

v′2 0.13 m2 s−2 0.96

u′v′ 0.08 m2 s−2 0.90

almost coincide with the identity lines. Thus, deviations between UAV and sonic

measurements can be treated mainly statistically. The slope of the fit for the lat-

eral variance is slightly lower than one (Fig. 4.1d). But the fit almost lies on the

identity line in the range where most of the data have been recorded. The fit for

the horizontal covariance shows that the absolute values of the UAV measurements

are underestimated for the negative values (Figure 4.1e). Furthermore, given the

small magnitude of the measurements and the calculated root mean square error,

high relative errors are present.
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Figure 4.1: Calibration results for (a) mean wind speed, (b) mean wind direction, (c) vari-

ance of streamwise velocity, (d) variance of lateral velocity and (e) covariance of horizontal

velocities. 14 min mean values of UAV and sonic measurements are compared. All data

have been low pass filtered with a cut-off frequency of 1 Hz.
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4.2 Near Neutral Boundary Layer

4.2.1 Atmospheric Conditions

An upper level trough and corresponding surface low with center over West Poland

influenced the weather at the site on 2021-06-30. A cold front slowly moving over

Brandenburg led to precipitation from the morning to early afternoon (Fig. 4.3e).

Overcast sky with very low cloud base (approx. 200 m) from the morning till after-

noon dampened the incoming solar radiation, such that no pronounced daily cycle of

net radiation, sensible heat flux (Fig. 4.3a), turbulent kinetic energy (Fig. 4.3b) and

potential temperature (Fig. 4.3c) developed. Instead the air temperature decreased

during the rain period. In addition, more available energy was converted into latent

heat than into sensible heat due to the wet soil after the rainy phase (Fig. 4.3a).

These conditions led to suppressed convectively driven turbulence. Instead,

turbulence was mainly driven by shear in a westerly flow with moderate wind

speeds (Fig. 4.3d). Hence, the atmosphere near the ground was near neutral strati-

fied (Fig. 4.2a and 4.3c) with an almost logarithmic wind profile (Fig. 4.2b).
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Figure 4.2: Vertical profiles of (a) temperature and (b) wind speed for the near neutral

case on 2021-06-30 during the horizontal flight pattern. Tower measurements are 1 min

averages with start of the averaging time at 16:09:00 UTC and UAV values are moving

averages of 5 s with start of the profile at 16:09:36 UTC. A constant value of 0.4 ◦C has

been subtracted from the UAV temperature measures for a better comparison of the

gradients. In (b) a logarithmic fit after equation (2.2) with u∗ = 0.56 ms and z0 = 0.14 m

is additionally depicted.
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Figure 4.3: Tower measurements of daily cycle of (a) surface fluxes, (b) turbulent kinetic

energy at different heights, (c) potential temperature at various levels, (d) wind speed at

several heights and (e) precipitation for the near neutral case on 2021-06-30. The surface

fluxes and turbulent kinetic energy have been processed with an averaging time of 30 min,

the temperature and wind speed values are 10 min averages and the precipitation is the

sum over 10 min. The time labels are at the end of the averaging interval. The green

rectangle indicates the time of the horizontal flight pattern.
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4.2.2 Spatially Distributed Measurements in the Horizontal

Pattern

The horizontal pattern for the near neutral case took place at 90 m AGL between

2021-06-30 16:05:00 and 2021-06-30 16:18:30 UTC with an orientation of the x-axis

towards 260◦ (Fig. 4.4a). Figure 4.5 shows the filtered timeseries of streamwise ve-

locity for the sonic and the two nearest UAVs #11 and #12. For a better comparison,

the series of the sonic and of UAV #12 are shifted by the advection time with the

mean wind speed (eq. (3.19)). Qualitatively, the time series give the impression that

the quadrotors can resolve the turbulence in a meaningful way. (Quasi-)stationarity

tests after Foken and Wichura (1996) indicate that we can assume stationary con-

ditions during the flight period (Tab. 4.2).

Spatially separated measurements of mean wind speed (Fig. 4.4b) indicate that

all quadrotors except UAV #18 underestimate the speed by 0.1-0.4 m s−1. This is in

accordance with the findings in section 4.1 for the given magnitude of mean wind

speed (Fig. 4.1a). The measured wind direction is slightly higher than the alignment

angle of the pattern of 260◦ for all quadrotors and the sonic except for UAV #7.

Thus, small displacements (eq. (3.18)) of a measured turbulent structure are present.

All quantities of interest (mean wind speed, mean wind direction, stream-

wise variance, lateral variance and horizontal covariance) show deviations from the

sonic (Fig. 4.4) in the order found for the calibration flights (Tab. 4.1). There are

some larger deviations, but these are not attributed to a single UAV for all variables.

There are neither significant differences between quadrotors aligned in x- direction

and those aligned in y-direction nor is there a discernible trend along one direction.

Except for the horizontal covariance, calculated standard deviations of the spa-

tially distributed UAV measurements (Tab. 4.3) are lower than the measurement

accuracies inferred from Table 4.1. This means that possible inhomogeneities are

masked by the measurement uncertainty. Despite the influence of the measurement

uncertainty on the variability, the flow for these variables would be considered homo-

geneous (Tab. 4.3) according to the proposed (quasi-)homogeneity test (eq. (3.16)).

The (quasi-)homogeneity test for the horizontal covariance yields exact the proposed

threshold value of 30% (Tab. 4.3).

Table 4.2: (Quasi-)stationarity test after equation (3.14) for the near neutral case on

2021-06-30. Stationarity is assumed for values below 30%.

Variable sonic UAV #11

u′2 7% 5%

v′2 7% 5%

u′v′ 20% 12%
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Table 4.3: Standard deviation σUAV of spatially distributed UAV measurements and

(quasi-)homogeneity test HT after equation (3.16) for the near neutral case on 2021-06-

30.

Variable σUAV HT

u 0.18 m s−1 2%

dd 2.8 ◦ –

u′2 0.11 m2 s−2 6%

v′2 0.09 m2 s−2 6%

u′v′ 0.11 m2 s−2 30%
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Figure 4.4: (a) Horizontal pattern with wind barbs in knots and UAV labelling for the

near neutral case on 2021-06-30. The light gray in the background indicates corn field

and the dark gray grassland. Spatially distributed measurements of (b) mean wind speed,

(c) mean wind direction, (d) variance of streamwise velocity, (e) variance of lateral veloc-

ity and (f) covariance of horizontal velocity components. Black dots are measurements of

quadrotors in x-direction of the flight pattern and gray dots are measurements of quadro-

tors in y-direction. The gray dotted lines are sonic measurements. The root mean square

errors after Table 4.1 are shown as error bars.
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Figure 4.5: Time series of streamwise velocity for the near neutral case on 2021-06-30.

Shown are series for the sonic anemometer and the two nearest UAVs #11 and #12. The

timeseries of the sonic and of UAV #12 are shifted according to equation (3.19).

4.2.3 Power Spectra

Figure 4.6 shows filtered and unfiltered power spectral densities for the sonic

anemometer and the two nearest UAVs #11 and #12. Kolmogorov’s law (eq. (2.9))

for the inertial subrange is additionally drawn as reference.

The spectra match reasonably for the lower frequency range, and they start to

follow Kolomogorov’s law. Around f = 1 Hz, however, the unfiltered UAV spectra

start to deviate from the sonic spectrum and the theoretical line. Internal sensor

noise causes this behaviour. After a peak at around f = 2 Hz, the unfiltered UAV

spectra drop. This decrease is caused by the integrated Kalman filter.

The shown spectra demonstrate that the choice of the cut-off frequency of 1 Hz

is appropriate for this particular case. However, the (co-)variances are systematically

underestimated when higher frequencies are neglected. This error can be estimated

when the variances for filtered and unfiltered sonic data are compared. That cal-

culation reveals a relative error for the streamwise variance of about 3%. However,

one has to consider that the unfiltered sonic spectrum deviates from Kolmogorov’s

law in the high-frequency range (Fig. 4.6). Therefore, the systematic relative error

for the streamwise variance may be smaller in reality.
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Figure 4.6: Power spectral densities multiplied by frequency of streamwise velocity for

the near neutral case on 2021-06-30. Shown are unfiltered and filtered spectra for the sonic

and the two nearest UAVs #11 and #12.

4.2.4 Cross-correlation and Coherence

Figure 4.7a shows cross-correlation functions calculated between vehicle #11 and all

other quadrotors in the x-direction. Further, vertical lines are depicted indicating

the theoretical expected positions of the peaks after equation (3.19). Differences

between the locations of the maxima and the theoretical expected ones, named lag

error, are plotted in Figure 4.7b. In this plot, however, x is not seen as the fixed

position of UAV #11. Instead, results are considered for all possible combinations

of the vehicles in x-direction.

The absolute value of the lag error grows with increasing distance ∆x. This may

partly be explained by the fact that the mean wind speed is calculated as the average

of the measured values for each combined pair. Since the UAVs slightly underes-

timate the mean wind speed for this specific case (Fig. 4.4b), the theoretical time

lag (eq. (3.19)) is slightly overestimated. Therefore, the lag errors were additionally

calculated using sonic data, which leads to smaller deviations from zero (Fig. 4.7b).

Thus, considering this systematic uncertainty, the maxima occur at time lags that

are compatible with the Taylor hypothesis.

Further, the magnitude of the peaks decreases with increasing distance ∆x

(Fig. 4.7a). This is shown in more detail in Figure 4.8a, where the maxima of
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all pairwise correlation functions are depicted. That decrease with distance ∆x or

equivalent evolution time ∆t (eq. (3.19)) gives a hint that Taylor’s frozen turbulence

hypothesis is not totally valid or at least not for all scales. The turbulent eddies

evolve during the travel time leading to cross-correlation maxima smaller than one.

At this point, it should be mentioned that the turbulence intensity calculated with

sonic data was 0.16 during the flight, after which the Taylor hypothesis is considered

applicable (eq. (2.12)).

It should be noted, however, that even if Taylor’s frozen turbulence hypothesis

were perfectly valid, the cross-correlation would only be exactly one if the instru-

ments were free of measurement uncertainty. Moreover, as discussed in section 3.5,

a non-perfect alignment of the pattern’s x-axis with the mean wind direction leads

to displacements of the turbulent structures.

The influence of these displacements is investigated in Figure 4.8b. There, max-

ima of cross-correlation functions are plotted for fixed ∆x, but for different total dis-

placements (eq. (3.20)). The values were obtained by combining the UAVs #11, #12,

#13 and #14 aligned in the x-direction with the quadrotors #18, #9, #15 and #7 in

the y-direction. For a fixed ∆x, a clear dependence of the cross-correlation maxima

on the total displacement can be seen. Therefore, the displacements (eq. (3.18))

are plotted as an additional axis in Figure 4.8a. Unfortunately, there is no obvious

approach - or at least the author is not aware of it - to find a universal relation dis-

tinguishing between the exact magnitudes of the decrease caused by the evolution

of the eddies during the advection time and the decline caused by the displace-

ment. However, the displacements must be taken into account when interpreting

the results.

The dependence of Taylor’s hypothesis on the eddies’ scales is shown in Fig-

ure 4.9 through calculated coherences. Two main results can be deduced: First,

the coherence decreases with decreasing eddy size for a fixed separation distance

∆x. Second, coherence decreases with increasing separation distance ∆x (evolution

time ∆t) for a fixed scale. Taken together, this means that the smaller eddies evolve

relatively quickly and thus, the idea of treating them as frozen becomes questionable.

However, larger eddies change their shape more slowly, and Taylor’s hypothesis is

applicable for a longer time. This finding is discussed in more detail in chapter 5.

The UAVs in the measurement pattern were replaced so that a longer mea-

surement duration of about 25 min was achieved and larger scales could be resolved.

The appendix shows the corresponding coherence plot (Fig. A.1). Since vehicle #21,

which replaced vehicle #11, had problems during the flight, x is the fixed position

of the combined quadrotors #12 22 in this plot. The coherence for the larger re-

solved scales is almost one for the investigated distances (evolution times). These

eddy sizes are much larger than the dimensions of the measurement pattern and the
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results show that they almost not evolve while moving from one sensor to the next.

This means that the shorter measurement period without exchanging the UAVs is

sufficient for the scale of the measurement pattern to investigate the decrease of

coherence. Longer measurement times would only be necessary if larger distances

between the UAVs were also considered.
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Figure 4.7: (a) Cross-correlation function of streamwise velocity for different ∆x as

function of time lag τ for the near neutral case on 2021-06-30. Here, x is the fixed position

of vehicle #11. The vertical lines show the theoretically expected locations of the maxima

according to equation (3.19). (b) Difference between the locations of the peaks and the

theoretical ones (lag error) calculated with sonic data (light gray) and with mean values of

corresponding UAV pairs (dark gray). In contrast to (a) x is not fixed, instead all possible

combinations of the vehicles are shown, with the coloured dots matching the combinations

in (a). A second axis has been added, where the distances ∆x have been converted to

time differences ∆t after equation (3.19).
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Figure 4.8: (a) Maxima of cross-correlation function of streamwise velocity depending on

distance ∆x. In contrast to Figure 4.7a, x is not fixed, instead all possible combinations

of the vehicles in x-direction are considered. Coloured values correspond to the peaks in

Figure 4.7a. The axis on the top is the displacement after equation (3.18). A second axis on

the bottom has been added where the distances ∆x have been converted to time differences

∆t after equation (3.19). (b) Maxima of cross-correlation functions as a function of the

absolute value of total displacement (eq. (3.20)). For that, UAVs in x-direction have been

combined with vehicles in y-direction. The values depicted with black triangles and the

blue dot are also shown in (a).
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Figure 4.9: Coherence of streamwise velocity for different spatial distances ∆x or equiv-

alent evolution time ∆t (eq. (3.19)) for the near neutral case on 2021-06-30. Here, x is

the fixed position of vehicle #11. Frequencies have been converted to wavelengths after

equation (2.11) (top axis).

4.3 Convective Boundary Layer

4.3.1 Atmospheric Conditions

An upper level low over the North Sea and a weak ridge over the Iberian Peninsula

and western France determined the synoptic weather situation over Europe on 2021-

07-02. A frontal system over Central Europe was not present. After an overcast

night, the sky cleared up in the morning hours leading to a pronounced diurnal

cycle of net radiation with a significant part of the energy being converted into

sensible heat (Fig. B.1a). This led to a convectively driven daily cycle of turbulent

kinetic energy (Fig. B.1b) and potential temperature (Fig. B.1c). The horizontal

flight pattern took place around the maxima of these quantities.

Unfortunately, no vertical profile was performed at exactly the time the horizon-

tal pattern was conducted. Therefore, the last available vertical profile is depicted

in Figure 4.10, which was performed around 43 min before. The author checked
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also tower profiles during the flight, but they do not show large deviations from the

displayed profiles. Inferred from the tower profile, a superadiabatically stratified

surface layer up to slightly above 50 m (Fig. 4.10a) with a weak wind speed gradient

(Fig. 4.10b) was present.
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Figure 4.10: Vertical profiles of (a) temperature and (b) wind speed for the convective

case on 2021-07-02 conducted around 43 min before the horizontal flight pattern. Tower

measurements are 1 min averages with start of the averaging time at 14:31:00 UTC and

UAV values are moving averages of 5 s with start of the profile at 14:30:44 UTC. A con-

stant value of 1 ◦C has been subtracted from the UAV temperature measures for a better

comparison of the gradients.

4.3.2 Spatially Distributed Measurements in the Horizontal

Pattern

The horizontal pattern for the convective case took place at 50 m AGL between

2021-07-02 15:13:45 and 2021-07-02 15:27:15 UTC with an orientation of the x-

axis towards 290◦ (Fig. B.2a). Timeseries of the sonic and the two nearest UAVs

can be found in the Appendix (Fig. B.3). Stationarity can be assumed during the

flight (Tab. 4.4).

Excluding UAV #7, the interpretation of the results is analogous to the neu-

tral case (sec. 4.2.2): Without UAV #7, all variables fulfil the (quasi-)homogeneity

test (Tab. 4.5) and standard deviations of the spatially distributed UAV measures

are below the measurement accuracy (Tab. 4.1). However, UAV #7 shows deviations

from the other quadrotors for all variables (Fig. B.2) resulting in higher values of
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the standard deviations (Tab. 4.5). Furthermore, the (quasi-)homogeneity test for

the horizontal covariance fails at a threshold of 30%.

Of course, this may be due to exceptional behaviour of this specific UAV under

the prevailing conditions. But on the other hand, UAV #7 has a special position in

the pattern, namely it is at the border where the underlying surface changes from

corn- to grassland (Fig. B.2a), which may have an influence. That finding will be

discussed in more detail in chapter 5.

Table 4.4: (Quasi-)stationarity test after equation (3.14) for the convective case on 2021-

07-02. Stationarity is assumed for values below 30%.

Variable sonic UAV #11

u′2 11% 6%

v′2 3% 2%

u′v′ 15% 11%

Table 4.5: Standard deviation σUAV of the spatially distributed UAV measurements and

(quasi-)homogeneity test HT after equation (3.16) for the convective case on 2021-07-02.

Shown are values including UAV #7 and values without that vehicle.

Variable σUAV HT σUAV\#7 HT\#7

u 0.17 m s−1 3% 0.14 m s−1 2%

dd 3.6 ◦ – 2.1 ◦ –

u′2 0.12 m2 s−2 12% 0.11 m2 s−2 10%

v′2 0.15 m2 s−2 14% 0.11 m2 s−2 11%

u′v′ 0.09 m2 s−2 53% 0.04 m2 s−2 26%

4.3.3 Power Spectra

Figure 4.11 shows filtered and unfiltered power spectral densities for the convective

case. As for the neutral case (sec. 4.2.3), the unfiltered UAV spectra start to deviate

from Kolmogorov’s law at a certain frequency attributed to internal sensor noise.

Here, this deviation starts at around 0.8 Hz. Thus, when using filtered 1 Hz data,

the contribution from 0.8 Hz to 1 Hz leads to an overestimation of the variance.

However, the relative deviations of variances calculated with cut-off frequencies of

0.8 Hz and 1 Hz are less than 0.5%. Therefore, the used cut-off frequency of 1 Hz is

appropriate and causes no great systematic error.

A greater systematic error results from neglecting the contribution between 1 Hz

and 20 Hz. Estimated by comparing filtered and unfiltered sonic data, this leads to

an underestimation of around 2% for the streamwise variance.
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Figure 4.11: Power spectral densities multiplied by frequency of streamwise velocity for

the convective case on 2021-07-02. Shown are unfiltered and filtered spectra for the sonic

and the two nearest UAVs #11 and #12.

4.3.4 Cross-correlation and Coherence

For this case, no clear global correlation maximum can be identified for large sepa-

ration distances ∆x (e.g., ∆x = 205 m in Fig. B.4a). Therefore, the local correlation

maxima in the range ±5 s around the expected time lag (eq. (3.19)) have been used

to derive the maxima shown in Figure B.5a. These maxima of the cross-correlation

function (Fig. B.5a) decrease with distance much faster than for the neutral case,

e.g., the correlation maximum for the neutral case was 0.79 for ∆x = 125 m, whereas

here it is only 0.51 for the same distance.

One reason for this may be the fact that the deviation between the pattern

alignment and the measured mean wind direction was around 15◦. Therefore, the

displacements (eq. (3.18)) for this case are much larger than for the neutral case,

which have a significant influence (Fig. B.5b). On the other hand, the stability, the

average wind speed, and the height above the ground also differ between the two

cases. But the turbulence intensities are comparable. For this case, it is 0.18.

Further, the coherence values are lower (Fig. B.6) than for the neutral case

(Fig. 4.9) for a fixed frequency. Note, however, that for the resolved frequencies, the

corresponding eddy sizes are smaller than for the neutral case due to the smaller

mean wind speed.
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4.4 Stable Boundary Layer

4.4.1 Atmospheric Conditions

On 2021-06-29, the measurement site was located downstream of the weather system

that was responsible for the situation on 2021-06-30 (sec. 4.2.1). No low level clouds

were present during the night, so the surface cooled down and a stable layer formed

with a strong potential temperature gradient near the surface (Fig. C.1c and 4.12a).

Further a low-level jet formed with a strong vertical wind speed gradient (Fig. C.1d

and 4.12b).

In the afternoon, a convergence line caused the formation of a convective system.

Although the main part of the system did not directly cross the site, the associated

gust front reached it and caused a significant drop in temperature (Fig. C.1c), strong

increase in turbulent kinetic energy (Fig. C.1b) and wind speed (Fig. C.1d) and some

light rain (Fig. C.1e).

The analysed horizontal flight pattern was performed during the stable phase

in the morning. Several vertical profiles have been conducted during and after

this flight (Fig. 4.12). Figure 4.12a illustrates the warming from the ground and

the transition from the stable boundary layer into the daytime convective bound-

ary layer. During this transition, vertical mixing causes the decay of the low-level

jet (Fig. 4.12b). Despite the strong vertical wind shear during the flight, the strong

thermal stratification suppressed the turbulence and thus the turbulence intensity

was only 0.04.
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Figure 4.12: UAV vertical profiles of (a) potential temperature and (b) wind speed for

the stable case on 2021-06-29. Shown are moving averages of 5 s. The labels indicate the

beginning of the vertical profiles. The dotted black curves with start time at 04:26:40 UTC

correspond to the profile during the horizontal pattern.

4.4.2 Spatially Distributed Measurements in the Horizontal

Pattern

During the morning transition, the horizontal pattern was operated in a continu-

ous mode at 90 m AGL with the orientation of the x-axis towards 150◦. For that,

the UAVs were replaced twice so that continuous measurements of 40 min were re-

alised (Fig. 4.13). For a better comparison, however, only one of the three individual

flights is evaluated. Chosen is the last one, because here almost the same UAVs were

used as for the other two case studies. This is also true for the first one, but there the

stationarity test failed, while stationarity can be assumed for the last one (Tab. 4.6).

During the selected flight, UAV #9 had some problems and therefore it does not

appear in the analysis. The selected flight started at 04:22:44 UTC and ended at

04:36:22 UTC.

Inspection of the calibration results show that the deviations of the variances

for low values are smaller than the overall root mean square errors (Tab. 4.1).

Therefore, the root mean square errors were recalculated for ranges with small vari-

ances (Tab. 4.7) to achieve a meaningful estimate of the measurement uncertainties
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Figure 4.13: Time series of wind speed for the stable case on 2021-06-29. Shown are

series of the sonic and the combined series of the UAVs #11 21 and #12 22. The green

rectangle indicates the evaluated flight.

for cases with low turbulence. A similar calculation of root mean square errors

for selected ranges around the measured values for the neutral and convective case

showed that these errors are very similar to the deviations listed in Table 4.1. This

means that, apart from cases with low turbulence, the values listed in Table 4.1 are

a good estimate of the measurement uncertainties.

Mean wind speed and mean wind direction are well captured by the UAVs

(Fig. C.2). However, the magnitudes of the (co-)variances (Fig. C.2) are smaller

than the measurement accuracies inferred from Table 4.7 and thus the (co-)variances

are not resolvable by the UAVs in a meaningful way for this case. The UAVs over-

estimate the very low variances (Fig. C.2d and C.2e) with relative deviations from

the sonic up to more than 100%. At a threshold value of 30%, the homogene-

ity test (eq. (3.16)) fails for the streamwise variance and the horizontal covariance

(Tab. 4.8). But the calculated standard deviations (Tab. 4.8) lie below the mea-

surement accuracies (Tab. 4.7). Thus, possible inhomogeneities are masked by the

measurement accuracies and the failure of the homogeneity tests might be attributed

to the variability caused by measurement noise.
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Table 4.6: (Quasi-)stationarity test after equation (3.14) for the stable case on 2021-06-

29. Stationarity is assumed for values below 30%.

Variable sonic UAV #11

u′2 14% 15%

v′2 16% 16%

u′v′ 21% 28%

Table 4.7: Recalculation of root mean square errors for the calibration flights for low

(co-)variance values. The limits refer to sonic data.

Variable σRMS

u′2 < 0.5 m2 s−2 0.05 m2 s−2

v′2 < 0.5 m2 s−2 0.06 m2 s−2

−0.05 m2 s−2 < u′v′ < 0.05 m2 s−2 0.07 m2 s−2

Table 4.8: Standard deviation σUAV of spatially distributed UAV measurements and

(quasi-)homogeneity test HT after equation (3.16) for the stable case on 2021-06-29.

Variable σUAV HT

u 0.21 m s−1 3%

dd 3.3 ◦ –

u′2 0.03 m2 s−2 44%

v′2 0.02 m2 s−2 26%

u′v′ 0.01 m2 s−2 35%

4.4.3 Power Spectra

Compared to the spectra of the other two cases (Fig. 4.6 and 4.11), the absolute

height of the spectra in Figure 4.14 is significantly lower, reflecting the low turbulence

during this flight. Furthermore, to the left of about 0.1 Hz, both the spectra of the

sonic and the UAVs drop. This indicates that the largest energy-carrying eddies are

on the order of 0.1 Hz, which corresponds to a wavelength of about 60 m.

The spectra clearly show the overestimation of the UAVs for the lower frequen-

cies (Fig 4.14). There is only a small frequency range, where the spectra match

reasonably well (0.3-0.8 Hz).

Comparing filtered and unfiltered sonic data, the underestimation of the stream-

wise variance is around 10% if a cut-off frequency of 1 Hz is used. Note, however,

that the sonic deviates strongly from the theoretical Kolmogorov law for the higher

frequencies.
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Figure 4.14: Power spectral densities multiplied by frequency of streamwise velocity for

the stable case on 2021-06-29. Shown are unfiltered and filtered spectra of the sonic and

the two UAVs #11 and #12.

4.4.4 Cross-correlation and Coherence

For distances more than 15 m no global maximum can be identified in the cross-

correlations (Fig. C.3). Therefore, as for the convective case (sec. 4.3.4), local

correlation maxima in the range ±5 s around the expected time lag (eq. (3.19))

have been inferred to derive Figure C.4a. In contrast to the convective case, how-

ever, where no clear peak but a broad maximum around the theoretical time delay

was observed (Fig. B.4a), the curves here are pretty much flat for large distances

(Fig. C.3). Therefore, it is difficult to determine a correlation maximum at all, and

it is questionable how meaningful the used approach is.

The correlation maxima determined by this approach show a rapid decay

with distance. Similarly, the coherence strongly decreases with distance and

scale (Fig. C.5). On the one hand, these observations are likely due to the strong

measurement noise. On the other hand, it seems reasonable that the eddies exhibit

weak coherence since they contain low energy.



Chapter 5

Discussion

In chapter 4 three case studies have been presented separately. The most important

results are compared and discussed in more detail in this chapter. Furthermore, the

chapter will serve to comment on the potential and limitations of the UAV fleet and

the applied methods for atmospheric boundary layer research.

5.1 Applicability of UAV Measurements for

Studying Turbulence in the Atmospheric

Boundary Layer

The results of chapter 4 show that the measurement system consisting of 34 UAVs

can not only reasonably capture the mean wind field but also turbulence with the

overall estimated accuracies summarized in Table 4.1. But the fleet reaches its

limitations due to sensor noise when dealing with low turbulence flows (sec. 4.4).

A joint representation of the power spectra (Fig. 5.1) illustrates the low energy

contained in the turbulent flow of the stable case. Furthermore, it becomes clear

again that the frequency filter of 1 Hz is appropriate since the UAV spectra for all

three cases deviate from Kolmogorov’s law at the higher frequencies attributed to

sensor noise. Neglecting the range between 1–20 Hz leads only to small systematic

errors for the neutral (sec. 4.2.3) and convective case (sec. 4.3.3). In stable boundary

layer flows with low turbulence and small eddies, the small-scale turbulence is of

much more importance. These, however, cannot be resolved with the UAVs due to

the measurement noise.

For stable situations with small eddies, the runtime of the battery would be

sufficient to resolve all relevant scales (sec. 4.4.3). For the neutral and convective

case, it is questionable whether the measurement duration of around 13.5 min was

sufficient to capture all relevant scales of the turbulent flow and if the time average
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reflects the ensemble mean (eq. (2.7)). The neglect of larger scales due to the limited

measurement duration did not pose a problem for the analysis of coherence and

cross-correlation in the studied microscale (sec. 4.2.4 and Fig. A.1). But for larger

measuring distances or other applications, this may have an impact. Although more

extended measuring periods have been achieved by replacing the UAVs, this shows

another limitation of the UAV fleet: It is helpful for case studies, but it is not

suitable for long-term observations.
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Figure 5.1: Unfiltered power spectral densities multiplied by frequency of streamwise

velocity for the neutral, convective and stable case. Solid lines corresponds to UAV #11

and dotted lines to sonic anemometer measures. Further, Kolomogorov’s law (eq. (2.9))

is indicated for the three cases.

5.2 Determining Correlation and Coherence with

the Horizontal Pattern

The orientation of the horizontal measurement pattern along the mean wind di-

rection was intended to mimic the usual decomposition of the turbulent wind field

into streamwise and lateral directions already in the experimental setup. With the

help of the spatially distributed UAVs in the streamwise direction, the development

of a turbulent structure during advection can be tracked. Further, analysis as a

function of different spatial separations is possible due to varying distances between
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neighbouring UAVs. One of the main objectives within this thesis was to investigate

cross-correlation and coherence in the streamwise direction and thereby examine the

Taylor hypothesis. Although not addressed in this work, this measurement setup

could also be used to directly calculate structure functions or turbulence length scales

without the need to convert temporal differences into spatial distances (eq. (2.10))

under the assumption of Taylor’s hypothesis.

In principle, this setup is well suited for investigating spatial correlations and

coherences (sec. 4.2.4, 4.3.4 and 4.4.4). Yet there is a main limitation mentioned

several times in chapter 4: Since the mean wind direction during the flight cannot

be determined in advance and can only be estimated from previous measurements,

misalignments occurred that have a crucial influence on the results. E.g., for pattern

misalignments on the order of 15◦, which were present for the convective and stable

case, the displacement after equation (3.18) is around 50 m for ∆x = 200 m. That

this displacement has a significant impact can be seen, e.g., in Figure B.5b. For

∆x = 75 m and a very small total displacement of approx. 1 m, the cross-correlation

is 0.68, whereas for a total displacement of approx. 54 m it is only 0.21. Apart

from this example, as pointed out in section 4.2.4, there is no general approach

to deduce values for correlation and coherence for a theoretically perfect alignment

from the measurements with displacement. Thus, this uncertainty persists in the

results and one has to think about improvements of the measurement strategy in

future campaigns (chap. 6).

5.3 Spatial Correlation and Coherence for Differ-

ent Atmospheric Conditions

The idea of totally frozen turbulence transported by the mean wind does not reflect

the true nature of turbulent flows. In fact, turbulence is dissipative and energy is

transferred from larger to smaller eddies (sec. 2.3). Thus eddies evolve and change

their shape during the advection time.

Deviations from unity of the coherence and consequently of the cross-correlation

in streamwise direction have already been studied earlier by Pielke and Panofsky

(1970), Panofsky and Mizuno (1975) and Schlez and Infield (1998). They suggested

an exponential decay of longitudinal coherence with the semi-empirical formula

γ2 = exp

(
−ασu

u

f∆x

u

)
= exp

(
−ασu

u

∆x

λ

)
. (5.1)

Here, α is called a decay constant and it accounts for eddy decay during the advection

time. For neutral stratification a value of α = 30±10 is suggested (Schlez and Infield

1998). According to equation (5.1), loss of coherence depends on the constant α,
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turbulence intensity σu/u, separation distance ∆x and eddy scale λ.

Strictly, equation (5.1) was suggested for the coherence along a Lagrangian

trajectory (Panofsky and Mizuno 1975). When considering the loss of coherence

along the mean wind direction instead of along the actual trajectory, lateral diffusion

caused by wind direction fluctuations should be included as an additional term in the

exponential decay. This diffusion has more impact on stable conditions (Panofsky

and Mizuno 1975).

The semi-empirical formula (eq. (5.1)) reflects the findings in the sections 4.2.4

and 4.3.4: Coherence decreases with decreasing scale and/or increasing distance.

The small eddies evolve faster and are mainly responsible for the decrease in cross-

correlation for small separation distances. With increasing distance, the evolution

of larger eddies more and more contribute to this decay.

After equation (5.1), the coherence value should be the same for cases with fixed

turbulence intensity, separation distance and wavelength if the constant α is univer-

sal, i.e., independent of other conditions such as stability or measurement height.

To investigate if α is universal, the coherence curves for a separation distance of

∆x = 5 m are reconciled in Figure 5.2 as a function of wavelength. The distance

of 5 m was chosen so that the displacement should not have a significant influence.

Since the turbulence intensities for the neutral and convective case are comparable

(0.16 and 0.18), the corresponding coherence curves should look similar for a uni-

versal α. However, the curve for the convective case falls more rapidly than for the

neutral case. Accordingly, fits after equation (5.1) yield a decay constant αneut = 15

for the neutral and αconv = 29 for the convective case. These two values are within

or close to the value range α = 30± 10.

The different decay constants may hint that coherence in convective boundary

layers might generally be lower than in neutral boundary layers. Buoyancy-driven

turbulence might lead to a more considerable mixing, resulting in lower coherence

values. In addition, the measurement height possibly also has an influence. For the

convective case, the pattern was at 50 m, while for the neutral case it was at 90 m.

Closer to the ground, the eddies become smaller, which, as shown, generally have

lower coherence values. In particular, the results also indicate that the applicability

of the Taylor hypothesis might not only depend on the turbulence intensity as the

simple rule of thumb suggests (eq. (2.12)).

The decay constant αstab = 763 for the stable case is much larger than for the

other two cases. One reason for this is that equation (5.1) is not directly applicable

for stable stratifications (Panofsky and Mizuno 1975). Furthermore, the significant

measurement noise for low turbulence conditions plays a role, which is somehow

included in the constant. Moreover, it is questionable how meaningful the coherence

values are for the depicted larger scales since the largest energy-carrying eddies are
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relatively small for the stable case (sec. 4.4.3).
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Figure 5.2: Measured coherence of streamwise velocity as function of wavelength λ for the

neutral, convective and stable case (solid lines) with fixed separation distance ∆x = 5 m.

Dotted lines are fits after equation (5.1) with αneut = 15, αconv = 29 and αstab = 763.
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Figure 5.3: Maxima of cross-correlation function of streamwise velocity as function of

distance ∆x for the neutral, convective and stable case.
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The different decreasing coherences also directly affect the cross-

correlations (Fig. 5.3). It should be noted, however, that in addition to the

measurement noise, the increasing displacement also contributes significantly to the

decay for large separation distances in this plot. In particular, the strong drop of

the last four values of the convective case might be attributed to this displacement.

When inferring information on the spatial structure of turbulence with a single

measurement device using Taylor’s frozen turbulence hypothesis, the eddies have to

maintain their shape to a certain degree while passing the sensor. Here, different

time scales are required for eddies of different sizes. Obviously, smaller eddies have

to retain their shape for a shorter time than larger ones in order to be resolved by

a single sensor.

This means that for an eddy of size λ, which equals a separation distance of

two sensors ∆x(= u∆t), the calculated coherence γ2
uu∆x

(λ) measures the persistence

during the advection. Following this idea, Higgins et al. (2012) used Raman lidar

data and wavelet decompositions to investigate the dependency of Taylor’s hypoth-

esis on the different scales. For calculated autocorrelations along the Lagrangian

path for different wavelet composites, they set an arbitrary persistence threshold of

20% for which they accepted the applicability of the Taylor Hypothesis.

Using the same threshold of 20% as Higgins et al. (2012) for the calculated

coherences, this is hardly fulfilled for the conditions λ = ∆x (Fig. 4.9, B.6 and

C.5). However, the measurement uncertainties and lateral displacement already

mentioned several times must be taken into account, which are partly responsible

for the decline of coherence. Further the chosen threshold is arbitrary and it is

application dependent, how severe restrictions have to be made about the persistence

of a turbulent structure during its passage past a single sensor.

5.4 Homogeneity in the Microscale

Surface heterogeneities of the relatively flat terrain around GM Falkenberg have

been extensively investigated during the LITFASS experiments (e.g., Beyrich et al.

2002; Platis et al. 2017). Significant differences in turbulent fluxes were found de-

pendent on the main land use classes (Beyrich et al. 2002). However, the dimensions

studied were much larger than the ones explored here, e.g., during the LITFASS-98

experiment a mesoscale area of around 20 km×20 km was considered (Beyrich et al.

2002).

In this work, the homogeneity assumption is investigated on the microscale with

a maximum separation of 205 m between two vehicles. For a quantitative analysis,

a homogeneity test was proposed. It should be mentioned again that the suggested

threshold of 30%, below which homogeneity is assumed, was set arbitrarily. If this
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limit is appropriate has to be further investigated in the future.

Taking this threshold and considering the measurement accuracy, it was argued

that there is no significant sign for the violation of the homogeneity assumption in

the microscale. Only the measures of UAV #7 for the convective case (sec. 4.3.2)

show deviations from the other vehicles for all examined variables. Of course this

can be caused by general issues of the vehicle. The few calibration flights available

for this vehicle, however, do not show significant deviations from the other vehicles

except for the wind direction, which is systematically underestimated (Fig. 4.1b).

This underestimation has been observed also for the near neutral case (Fig. 4.4c).

All other quantities seem to be consistent with the other vehicles. Thus a general

problem of UAV #7 does not appear to be present and therefore the deviation might

possibly have physical reasons.

UAV #7 is located on the edge, where the surface changes from corn- to grass-

land (Fig. B.2a). Changes in the roughness length or in the thermal properties of

the underlying surface can cause the formation of Internal Boundary Layers (Foken

2016) downstream of the transition. However, as vehicle #7 is directly located at

the transition, the measurement at 50 m should be only influenced by the upstream

conditions. Therefore it could be that UAV #7 has a different footprint than the

other vehicles due to its location in the pattern. Though, estimated footprints and

corresponding landcover classifications after Kljun et al. (2015) for the different po-

sitions in the pattern do not show considerable differences due to the small scale

of the measurement pattern compared to the length and width (Fig. 5.4) of the

footprints. Furthermore, the recorded temperature values of the vehicles aligned in

the y-direction of the pattern show no significant deviations of vehicle #7 (Fig. 5.5).

If the underlying surface had an influence, one might expect that this would be

reflected not only in the wind measurements but also in the temperature data.

This means that it remains rather an unresolved question what explains the

observed deviations of vehicle #7 and further investigations would be needed for

drawing significant conclusions. Still, the considerations presented here can serve as

a guideline for such studies in the future.
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Figure 5.4: Estimated footprint after Kljun et al. (2015) for the sonic anemometer for

the convective case on 2021-07-02 calculated with the measurement height zm = 50 m, the

zero-displacement height d = 0.1 m, the mean wind speed u = 6 m s−1, Obukhov length

L = −40 m, standard deviation of lateral velocity fluctuations σv = 1.1 m s−1, friction

velocity u∗ = 0.38 m s−1 and mean wind direction dd = 305◦. Shown are contour lines in

steps of 10%. Units of the axis labels are in meters.
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Figure 5.5: Measured temperatures of the UAVs aligned in the y-direction of the hori-

zontal pattern for the convective case on 2021-07-02.



Chapter 6

Conclusions and Outlook

Internal sensor noise of the UAVs prevents capturing of low turbulence flows asso-

ciated with stable boundary layers (sec. 4.4). Two selected examples showed that

the UAVs can reasonably resolve the turbulence up to a resolution of 1 Hz for mod-

erate turbulence intensities with the algorithm used within this work (sec. 4.2.3 and

4.3.3).

Within the measurement accuracy, there was no significant sign evident that

the homogeneity assumption is violated in a relatively flat terrain for the microscale

between 5 m and 205 m (sec. 4.2.2, 4.3.2, 4.4.2 and 5.4). The same studies could

be conducted for larger distances in such terrains in the future. The UAV fleet

might help to detect possible surface heterogeneities that are noticeable only on

larger scales. The measures of the fleet might then reflect the turbulent wind field

more realistically than a single point measurement. This also holds for complex

terrain, where the UAVs can provide a relatively easy access for spatially distributed

measurements.

Furthermore, it became apparent that the fleet is well suited for studying cross-

correlation and coherence. Decreases of cross-correlations and coherences (sec. 4.2.4,

4.3.4 and 4.4.4) indicated the limited applicability of Taylor’s frozen turbulence

hypothesis. The discussion in section 5.3 leads to the idea of investigating the

decreases in cross-correlations and coherences as a function of different turbulence

intensities and stabilities in more detail in future studies. Moreover, such coherence

studies could be performed not only for basic atmospheric boundary layer research

but also for applied research. An example of this would be the study of wake vortices

of wind turbines.

It turned out that, apart from the measurement noise, the main limitation was

the misalignment of the horizontal pattern with the mean wind direction. Therefore,

in future studies, one could arrange the UAVs not only in one line according to the

last measured wind direction but in several lines with slightly different orientations

or in a grid-like pattern. In these setups, it should be ensured that there is always
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a line along which the displacements are small. Moreover, as an other idea, more

complex flight plans could be created allowing the UAVs to adapt the pattern to

the wind direction during the flight.

It was shown that the averaging time of around 14 min is sufficient for the di-

mension of the horizontal measurement pattern for investigating cross-correlation

and coherence (sec. 4.2.4). However, resolving larger scales in possible future cam-

paigns would need also longer averaging times. This has already been realised in

the field by exchanging the UAVs.

The wind algorithm was further developed during the writing of this thesis and

now includes acceleration terms as a correction for deviations from the hover state,

which offers a meaningful turbulence resolution up to 2 Hz (Wetz and Wildmann

2022). The algorithm will be extended to include the vertical wind component as

a future goal. Then, also turbulent vertical fluxes can be obtained at spatially

separated points.
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Near Neutral
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Figure A.1: Coherence of streamwise velocity for different spatial distances ∆x or equiv-

alent evolution time ∆t (eq. (3.19)) for the near neutral case on 2021-06-30. Here, x is

the fixed position of the combined vehicles #12 22. Frequencies have been converted to

wavelengths after equation (2.11) (top axis).

61



Appendix B

Convective

(a)

00 : 00 06 : 00 12 : 00 18 : 00 00 : 00

Time (UTC)

-600

-400

-200

0

200

su
rf

ac
e

fl
u

x
(W

m
−

2
)

net radiation

sensible heat

latent heat

(b)

00 : 00 06 : 00 12 : 00 18 : 00 00 : 00

Time (UTC)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

T
K
E

(m
2

s−
2
)

2 m

50 m

90 m

62



63

(c)

00 : 00 06 : 00 12 : 00 18 : 00 00 : 00

Time (UTC)

288.0

290.0

292.0

294.0

296.0

p
ot

en
ti

al
te

m
p

er
at

u
re

(K
) 10 m

20 m

40 m

60 m

80 m

98 m

(d)

00 : 00 06 : 00 12 : 00 18 : 00 00 : 00

Time (UTC)

2.00

3.00

4.00

5.00

6.00

7.00

8.00

f
f

(m
s−

1
)

10 m

20 m

40 m

60 m

80 m

98 m

Figure B.1: Tower measurements of daily cycle of (a) surface fluxes, (b) turbulent kinetic

energy at different heights, (c) potential temperature at various levels, (d) wind speed at

several heights for the convective case on 2021-07-02. The surface fluxes and turbulent

kinetic energy have been processed with an averaging time of 30 min, the temperature and

wind speed values are 10 min averages. The time labels are at the end of the averaging

interval. The green rectangle indicates the time of the horizontal flight pattern.
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Figure B.2: (a) Horizontal pattern with wind barbs in knots and UAV labelling for the

convective case on 2021-07-02. The light gray in the background indicates corn field and

the dark gray grassland. Spatially distributed measurements of (b) mean wind speed, (c)

mean wind direction, (d) variance of streamwise velocity, (e) variance of lateral velocity

and (f) covariance of horizontal velocity components. Black dots are measurements of

quadrotors in x-direction of the flight pattern and gray dots are measurements of quadro-

tors in y-direction. The gray dotted lines are sonic measurements. The root mean square

errors after Table 4.1 are shown as error bars.
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Shown are series for the sonic and the two nearest UAVs #11 and #12. The timeseries for

the sonic and UAV #12 are shifted according to equation (3.19).
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Figure B.4: (a) Cross-correlation function of streamwise velocity for different ∆x as

function of time lag τ for the convective case on 2021-07-02. Here, x is the fixed position

of vehicle #11. The vertical lines show the theoretically expected locations of the peaks

according to equation (3.19). (b) Difference between the locations of the maxima and

the theoretical ones (lag error). In contrast to (a) x is not fixed, instead all possible

combinations of the vehicles are shown, with the coloured dots matching the combinations

in (a). A second axis has been added where the distances ∆x have been converted to time

differences ∆t after equation (3.19).
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Figure B.5: (a) Maxima of cross-correlation function of streamwise velocity depending

on distance ∆x. In contrast to Figure B.4a, x is not fixed, instead all possible combi-

nations of the vehicles in x-direction are considered. Coloured values correspond to the

peaks in Figure B.4a. The axis on the top is the displacement after equation (3.18). A

second axis has been added on the bottom where the distances ∆x have been converted

to time differences ∆t after equation (3.19). (b) Maxima of cross-correlation functions

as a function of total displacement (eq. (3.20)). For that, UAVs in x-direction has been

combined with vehicles in y-direction. The values depicted with black triangles and the

blue dot are also shown in (a).
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Figure B.6: Coherence of streamwise velocity for different spatial distances ∆x or equiv-

alent evolution time ∆t (eq. (3.19)) for the convective case on 2021-07-02. Here, x is

the fixed position of vehicle #11. Frequencies have been converted to wavelengths after

equation (2.11) (top axis).
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Figure C.1: Tower measurements of daily cycle of (a) surface fluxes, (b) turbulent kinetic

energy at different heights, (c) potential temperature at various levels, (d) wind speed at

several heights and (e) precipitation for the stable case on 2021-06-29. The surface fluxes

and turbulent kinetic energy have been processed with an averaging time of 30 min, the

temperature and wind speed values are 10 min averages, and the precipitation is the sum

over 10 min. The time labels are at the end of the averaging interval. The green rectangle

indicates the time of the horizontal flight pattern.
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Figure C.2: (a) Horizontal pattern with wind barbs in knots and UAV labelling for the

stable case on 2021-06-29. The light gray in the background indicates corn field and the

dark gray grassland. Spatially distributed measurements of (b) mean wind speed, (c) mean

wind direction, (d) variance of streamwise velocity, (e) variance of lateral velocity and (f)

covariance of horizontal velocity components. Black dots are measurements of quadrotors

in x-direction of the flight pattern and gray dots are measurements of quadrotors in y-

direction. The gray dotted lines are sonic measurements. The shown error bars are the

root mean square errors after Table 4.1 for the mean wind speed and direction and after

Table 4.7 for the (co-)variances.
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Figure C.3: Cross-correlation function of streamwise velocity for different ∆x as function

of time lag τ for the stable case on 2021-06-29. Here, x is the fixed position of vehicle

#11. The vertical lines show the theoretically expected locations of the peaks according

to equation (3.19).
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Figure C.4: (a) Maxima of cross-correlation function of streamwise velocity depending

on distance ∆x. In contrast to Figure C.3, x is not fixed, instead all possible combinations

of the vehicles in x-direction are considered. Coloured values correspond to the maxima in

Figure C.3 determined with the approach presented in section 4.4.4. The axis on the top

is the displacement after equation (3.18). A second axis has been added on the bottom

where the distances ∆x have been converted to time differences ∆t after equation (3.19).

(b) Maxima of cross correlation functions as a function of total displacement (eq. (3.20)).

For that, UAVs in x-direction has been combined with vehicles in y-direction. The values

depicted with black triangles and the blue dot are also shown in (a).
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Figure C.5: Coherence of streamwise velocity for different spatial distances ∆x or equiv-

alent evolution time ∆t (eq. (3.19)) for the stable case on 2021-06-29. Here, x is the

fixed position of vehicle #11. Frequencies have been converted to wavelengths after equa-

tion (2.11) (top axis).
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