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Abstract

Seagrasses are one of the world’s most productive ecosystems, playing an important role in climate

change mitigation and adaptation. They are vast natural carbon sinks which have important, yet

largely overlooked and underestimated implications into national climate agendas like the Nation-

ally Determined Contributions of the Paris Agreement. Precise knowledge of spatially-explicit sea-

grass distribution and country-specific in-situ blue carbon data is crucial for the ten countries which

currently recognise this ecosystem within their Nationally Determined Contributions. This thesis

combines open Sentinel-2 multi-temporal data with the open cloud computing platform Google

Earth Engine to quantify country-scale seagrass extents and associated carbon stocks. The limited

availability of reference data restricted the implementation of the created cloud-native mapping

approach to only one country - The Bahamas. The mapped Bahamian seagrass covers an area

between 11,779.44 and 27,629.32 km2, which can store 181,610,083.57 to 455,509,862.63 Mg

carbon, and sequesters between 31.02 and 72.75 Mt CO2 per year. This equals 17 to 40 times the

amount of CO2 emitted by The Bahamas in 2018, causing a carbon-neutral state and underlining

the importance of the seagrass ecosystem for the Bahamian Nationally Determined Contributions.

The generated data inventories could support interdisciplinary scientific research and management

efforts within a regional and global climate action context.
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Chapter 1 INTRODUCTION

1 Introduction

This introduction will present the relevance of this thesis, its scope and define the research objec-

tives.

1.1 Motivation

Climate change affects and alters the world’s natural system causing an increase in extreme weather

events, and the rise of ocean and land surface temperatures. In the years 2011 to 2020 the average

global land surface temperature was 1.59°C higher than in the years 1850 to 1900, and the temper-

ature over the ocean 0.88°C. These changes have been brought about by the increase in greenhouse

gas emissions over the last decades (IPCC, 2021). One driver is the emission of CO2 through the

human use of fossil fuels, which increased by 47% since 1750 (Siikamäki et al., 2013; IPCC, 2021).

Therefore, the United Nations Framework Convention on Climate Change (UNFCCC) adopted the

Paris Agreement with the aim to limit the global average temperature rise to ideally below 1.5°C

above pre-industrial levels (UNFCCC, 2016). In order to reach this goal, member countries put

forward self-defined plans on climate change mitigation and adaptation actions referred to as Na-

tionally Determined Contributions (NDCs) (UNFCCC, n.d.c). These plans comprise of a variety

of strategies, including the utilisation of nature-based solutions like the carbon storage potential of

coastal ecosystems (Seddon et al., 2020). One of these ecosystems is the seagrass habitat, which

occupies only 0.2% of the ocean floor but can sequester up to 10% of the annual oceanic carbon

burial (Duarte et al., 2005; Fourqurean et al., 2012). Since 1990, this ecosystem has been degrading

at an annual rate of 7% (Waycott et al., 2009; Fourqurean et al., 2012). Even though the inclusion

of seagrass meadows into NDCs can support the achievement of climate change targets of several

countries, it is only recognised by a few (UNEP, 2020b). Country-scale seagrass extents, related

carbon stocks and sequestration rates are necessary to assess the country-specific importance of

this ecosystem (McKenzie et al., 2020). Moreover, these data inventories can support protection

and restoration efforts (Roelfsema et al., 2014). The use of common time-consuming and expen-

sive field surveying methods combined with the vast global distribution of seagrass results in large

data gaps, particularly in less-developed countries. Therefore, satellite remote sensing provides

a good alternative to map these vast and commonly remote areas. However, current approaches

for seagrass remote sensing often lack the needed spatial resolution or quality of imagery (Veettil

et al., 2020).
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Chapter 1 INTRODUCTION

1.2 Objectives

In order to minimise the aforementioned data gap and to enhance the state of seagrass remote

sensing, this thesis aims to develop scalable algorithms for seagrass extent and carbon inventory

mapping for the ten countries which recognised this ecosystem within their NDCs. These al-

gorithms will be developed in the cloud computing platform Google Earth Engine (GEE), will

utilise high-resolution multi-temporal Sentinel-2 archives, and combine the generated maps with

country-specific carbon in-situ data. The overall goal of this thesis can be divided into the follow-

ing sub-objectives:

1. The design of cloud native algorithms for Sentinel-2 image pre-processing.

2. The implementation of machine learning frameworks for seagrass classification.

3. The generation of country specific seagrass carbon stock and sequestration potential ranges.

4. The evaluation of the scalability of objective 1 and 2.

5. The evaluation of the importance of the generated data for the Nationally Determined Con-

tributions.
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Chapter 2 LITERATURE REVIEW

2 Literature Review

The following chapters will provide detailed information on the seagrass ecosystem, its related

carbon stocks and its implications into the Paris Agreement. Moreover, the principles of aquatic

remote sensing, Sentinel-2 and GEE will be covered.

2.1 Seagrass

Seagrasses are marine flowering plants which consist of about 72 species, six families, and twelve

genera (Short et al., 2011; den Hartog and Kuo, 2006). These angiosperms can form vast intertidal

and subtidal meadows with a submarine pollination mechanism allowing for reproduction, whereas

the ability to perform photosynthesis favours the plants growth (Green and Short, 2003). Rhizomes

and roots serve as an anchoring system to secure the plant from being displaced by strong water

currents (Green and Short, 2003; Short et al., 2007). Its leaves vary greatly between species and

can range from small rounded ones of 2 to 3 cm to strap-like blades of more than 4 m (Green

and Short, 2003). Seagrass is often confused with algae due to its appearance but can be easily

distinguished by the algal absence of seeds, flowers, and rooting system (Figure 1) (Seagrasswatch,

2021).

Figure 1: Physiology of algae and seagrass (Seagrasswatch, 2021).
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2.1.1 Distribution

The seagrass biome is one of the most widespread coastal habitats and can be found in at least

157 countries across all continents except Antarctica (UNEP-WCMC and Short, 2018). It covers

over 300,000 km2 of seafloor worldwide and is distributed within six geographic bioregions: the

Temperate North Atlantic (from North Carolina, USA to Portugal), the Tropical Atlantic (both

tropical coasts of the Atlantic, the Caribbean Sea, Gulf of Mexico, Bermuda and The Bahamas),

the Mediterranean (the Mediterranean, Black, Caspian and Aral Seas, and northwest Africa), the

Temperate North Pacific (from Korea to Baja, Mexico), the Tropical Indo-Pacific (East Africa,

South Asia, tropical Australia and the Eastern Pacific), and the Temperate Southern Oceans (New

Zealand, temperate Australia, South America and South Africa) (UNEP-WCMC and Short, 2021;

Short et al., 2007) (Figure 2).

Figure 2: Global map of seagrass distribution, species richness and bioregions (Short et al., 2007; UNEP-

WCMC and Short, 2018; UNEP, 2020a).

Saline conditions and light availability are essential for the plants growth and limit its living envi-

ronment to shallow waters between mean sea level and 90 m of depth (Duarte, 1991). This causes

seagrass to occur mainly in estuaries, lagoons and on shallow banks, where the minimum light

requirements of 2 to 3% surface irradiance can be met (Short et al., 2007; Lee et al., 2007). While

these plants generally grow best at salinities of 35‰, some species can tolerate ranges between 4

and 65‰, which enables them to survive in brackish and hypersaline waters (Waycott et al., 2009;

Hemminga and Duarte, 2000). Another reason for their vast distribution is their ability to tolerate
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temperature ranges from 0 to 45°C while withstanding water temperature variations of more than

20°C. Temperate species have their optimal growth temperature between 11.5 and 26°C, whereas

tropical and subtropical species favour temperatures ranging from 23 to 32°C (Lee et al., 2007).

Other factors influencing the distribution of seagrass are turbidity, nutrients, oxygen, sulphides and

water currents (Veettil et al., 2020). The close proximity in which most seagrass meadows grow to

other coastal habitats like mangroves, coral reefs, tidal marshes, and kelp forests is the cause for

these ecosystems to be interconnected and interdependent (UNEP, 2020b).

2.1.2 Ecosystem Services

Marine ecosystems provide a number of benefits, so called ’ecosystem services’, to humans and

their well-being worldwide, but especially to the nearly 2.4 billion (about 40% of the world’s pop-

ulation) living within 100 km of the coasts (United Nations, 2017; UNEP, 2006). These ecosystem

services can be further categorised into the following groups: provision services such as food sup-

ply; regulation services such as climate regulation; cultural services such as tourism; and support-

ing services such as soil formation and habitat provision, which are necessary for the production

of all other services. All service groups are interconnected and supported by the preservation of

biodiversity (UNEP, 2006).

Covering about 46% of the global area of marine ecosystems (seagrass, mangroves, and coral),

seagrass has a high impact on human and animal well-being by providing a wide range of ser-

vices (UNEP, 2020b). The almost constantly submerged and complex three-dimensional structure

of seagrass meadows provides shelter for many fish and invertebrates throughout the tidal cycle,

while also being the food source of animals like dugongs, manatees, sea turtles, and waterfowls

(Waycott et al., 2011; Green and Short, 2003). These meadows therefore support the fishing in-

dustry by serving as nursing habitats for over 20% of the world’s 25 largest fisheries (Unsworth

et al., 2019). Thus, seagrass ecosystems are important for seafood supply which represents the

main source of animal protein for about 17% of the global population and more than half in many

least-developed countries (United Nations, 2017). Another seagrass service is water quality im-

provement through filtration and uptake of nutrients and pollutants, as well as human, fish and coral

disease control through pathogens removal (UNEP, 2020a). Climate change induced sea level rise,

flooding, and land erosion affects about 100 million people living in coastal areas who benefit from

healthy seagrass (Twomey et al., 2020). Their submerged canopies can minimise these impacts by
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reducing water flow and wave energy by 40% per metre of seagrass bed, while also stabilising the

sediment through their roots (Fonseca and Cahalan, 1992; Cullen-Unsworth and Unsworth, 2013).

This stabilisation combined with their ability to trap sediments can cause seabed elevation at a

rate of 31 mm per year and therefore contributes to the adaptation to sea level rise (Potouroglou

et al., 2017). Moreover, seagrass meadows play an important role in climate change mitigation as

they represent significant carbon sinks which are estimated to sequester 27.4 Tg carbon per year

(Fourqurean et al., 2012) (Chapter 2.2). This uptake of carbon through photosynthesis can increase

seawater pH and create potential acidification refugia for nearby calcifying organisms like corals

(Manzello et al., 2012). Furthermore, seagrass areas are of religious and spiritual importance, and

create touristic, recreational and educational opportunities (UNEP, 2020a). The total economic

value of these ecosystem services is estimated to be US $3,400,000 per km2 per year (Short et al.,

2011).

2.1.3 Threats

Marine habitats face a number of land-, sea-, and climate-based threats causing their global deteri-

oration (UNEP, 2020a). Since 1990, seagrass areas have been declining at a rate of approximately

7% per year with a total habitat loss of 29% since 1879 (Waycott et al., 2009). Human activities

such as boating, trawling, and coastal development can cause the direct displacement of seagrass

meadows, while the input of contaminants from urban and agricultural run-off slowly alters sea-

grass health (Grech et al., 2012). Climate change intensified rainfall events increase the amount

of pollutants and sediment load which enter the oceans and can therefore reduce light availability

for marine habitats. In areas with long water resident times, like lagoons and bays, strong rainfall

events can also reduce sea surface salinity and hinder seagrass growth (Waycott et al., 2011). An-

other threat these plants are facing is sea level rise, which causes light availability reduction and

therefore seagrass migration to shallower areas. This migration could be inhibited by the presence

of impervious surfaces like anthropogenic structures and cause the loss of habitat area (Saunders

et al., 2013). Despite their general tolerance to wide ranges of sea surface temperatures (Chapter

2.1.1), a temperature increase can lead to ecosystem degradation since many seagrass meadows

are already growing at their maximum temperature tolerance (Waycott et al., 2011). Even though

these threats and the consequences regarding seagrass habitat loss are well researched, only 16%

of its area currently lies within marine protected areas (MPAs) (UNEP, 2020a).

6
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2.2 Blue Carbon

Blue carbon describes the carbon stored in vegetated coastal ecosystems such as salt marshes,

mangroves, macroalgae, and seagrass meadows (Duarte et al., 2013b). Despite only covering

0.2% of the ocean floor, seagrass meadows account for nearly 10% of the oceanic yearly carbon

burial with carbon sequestration rates 35 times faster than tropical rainforests (Duarte et al., 2013a;

Fourqurean et al., 2012; Macreadie et al., 2015; Mcleod et al., 2011). This carbon (C) is stored in

the above-ground biomass (AGB) (leaves and stems), the below-ground biomass (BGB) (roots and

rhizomes), and the underlying sediment (Macreadie et al., 2014; Bandeira, 1997):

Ctotal =CAGB +CBGB +Csoil (1)

Total living biomass carbon has a global average of 252±48 Mg carbon per km2, two-thirds of

it being CBGB, and one-third being CAGB (Figure 3) (Fourqurean et al., 2012). An increase in

the below- to above-ground biomass ratio causes a rise of total seagrass carbon (Brodie et al.,

2020) (Figure 4). Parts of this carbon can be exported from the meadows through animal graz-

ers (Valentine and Heck, 1999). The amount of carbon contained in the top metre of sediment

features a global average of 19,420±2,020 Mg carbon per km2, exceeding those of non-vegetated

marine sediments by two to tenfold, and those of terrestrial forests by 30 to 50 fold (Fourqurean

et al., 2012; Duarte et al., 2005, 2013b; Mcleod et al., 2011). This carbon can be sustained for

millennia due to low soil oxygen levels, slow composition rates, and vertical sediment accretion

which causes marine soil to not become saturated with carbon (Macreadie et al., 2012; Duarte

et al., 2013b; Mcleod et al., 2011). About 50% of seagrass sediment carbon is estimated to be

allochthonous due to the constant exchange between marine ecosystems through currents, tides,

and waves (Kennedy et al., 2010; Santos et al., 2021). Both biomass and sediment carbon are

dependent on light availability and decrease with water depth (Duarte, 1991; Serrano et al., 2014).

The species P. sinuosa, for instance, shows a fourfold decrease in organic carbon in the top metre

of sediment from 2 to 4 m to 6 to 8 m water depth, while P. oceanica meadows show a fourteen- to

sixteenfold decrease from 2 to 32 m (Serrano et al., 2014). Additionally, carbon content decreases

with sediment depth since it is closely linked to the presence of roots (Fourqurean et al., 2012;

Brodie et al., 2020). Other factors influencing total seagrass blue carbon storage are bioturbation,

nutrient input, soil oxygen content, and species composition (Brodie et al., 2020). Global blue

carbon stocks per seagrass meadow area range from 1,000 to 829,000 Mg carbon per km2, with a

mean of 108,000 Mg carbon per km2 which is comparable to 396,000 Mg carbon dioxide (CO2)
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equivalents per km2 (The Blue Carbon Initiative, 2014). Globally, the seagrass ecosystem could

store between 4.2 and 8.4 Pg carbon (Fourqurean et al., 2012).

Figure 3: Ratio of soil (Csoil), below-ground (CBGB), and above-ground carbon (CAGB) in Mg C km-2

(Adapted from Fourqurean et al., 2012).

Taking current habitat loss rates into account, a sequestration potential loss of 6 to 24 Tg carbon

per year and a release of 0.15 to 1.02 Pg CO2 per year is estimated, shifting seagrasses from

carbon sinks to carbon sources (Fourqurean et al., 2012; Pendleton et al., 2012; Macreadie et al.,

2014). This release of carbon is equivalent to economic damages of 6 to 42 billion USD annually

(Pendleton et al., 2012).

Figure 4: Model of a seagrass blue carbon ecosystem and sediment depth independent relationships between

seagrass carbon storage, and physical and biological parameters. AGB denotes above-ground biomass, BGB

denotes below-ground biomass, and C donates organic carbon (Adapted from The Blue Carbon Initiative,

2014; Brodie et al., 2020).
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2.3 Paris Agreement

The Paris Agreement’s aim is to reinforce actions on climate change mitigation by limiting the

global average temperature rise for the twenty-first century to below 2°C, ideally below 1.5°C,

above pre-industrial levels (UNFCCC, 2016). It was adopted on the 12th of December 2015 at

the twenty-first session of the Conference of the Parties to the UNFCCC and the eleventh session

of the Kyoto Protocol (UNFCCC, n.d.b,n). The agreement was signed by 191 countries and en-

tered into force on the 4th of November 2016 (UNFCCC, n.d.d). To reach this long-term goal the

NDCs were established (UNFCCC, 2016). These NDCs require each country to put forward self-

defined measures on how to achieve emission reduction and adaptation to climate change impacts

(UNFCCC, n.d.c). Moreover, countries are required to regularly report on their implementation

efforts and emissions. In support of the member states, especially developing and least-developed

countries, the agreement provides enhanced capacity-building, financial resources, and a technol-

ogy framework (UNFCCC, n.d.b). To determine the progress of these set efforts each country

is obligated to communicate their revised NDCs every five years (UNFCCC, n.d.b, 2016). Each

successive NDC must demonstrate improved measures and represent the highest possible ambition

(UNFCCC, 2016).

Coastal blue carbon ecosystems are vast natural carbon sinks and therefore contribute to national

carbon stock inventories in support of the Paris Agreement’s main goal of climate change miti-

gation and adaptation. These ecosystems are being recognised in the NDCs of several countries.

Sixty-four out of the 185 countries which submitted their NDCs by 2019 mentioned marine and

coastal ecosystems regarding their climate change adaptation and mitigation abilities, although

only ten recognise seagrass specifically. Eight of these mention seagrass in terms of adaptation

and five with a reference to mitigation. Only one country, The Bahamas, has set a measurable

target of protecting 20% of the nearshore marine environment by 2020 (UNEP, 2020a; The Gov-

ernment of the Bahamas, 2015).
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2.4 Coastal Aquatic Remote Sensing

Precise knowledge of seagrass’ spatial extent is necessary to estimate their impact on country-scale

carbon stock inventories and therefore on the requirements of the Paris Agreement (McKenzie

et al., 2020). Remote sensing provides a less time-consuming and inexpensive alternative to tra-

ditional land- or boat-based surveying methods, especially for remote areas (Hossain et al., 2015;

Veettil et al., 2020). Commonly used space- and airborne remote sensing data include hyperspec-

tral and multispectral optical imagery, and Light Detection and Ranging (LiDAR) measurements

(Li et al., 2012; Phinn et al., 2008; Pan et al., 2016). Current satellite-based approaches for sea-

grass mapping feature spatial resolutions of 0.30 to 30 m, temporal resolutions of one to 17 days,

spectral bands of the visible spectrum between 400 and 700 nm, and infrared radiation between

1,000 and 2,000 nm (UNEP, 2020a; Veettil et al., 2020).

The aquatic nature of seagrass requires additional processing of satellite data compared to the

conventional terrestrial remote sensing. This is based on the fact that the path of light is influenced

by water as an additional medium to air (Roelfsema et al., 2013). When light reaches the water

surface, it either penetrates into it or is reflected back into the atmosphere (Phinn et al., 2018).

In the case that sunlight is directly reflected towards the sensor as a function of sun position and

sensor viewing angle in relation to the water, a light pollution effect called sunglint can occur (Kay

et al., 2009; Phinn et al., 2018). This effect can be either limited to waves at certain viewing angles,

or cover large parts of an image (Phinn et al., 2018). Radiation gets refracted and partly attenuated

as it penetrates the air-water interface, and while travelling towards the bottom (downwelling)

and back to the water surface (upwelling) (Kirk, 1977; Lee et al., 1999). This attenuation is a

result of the presence of suspended sediments and phytoplankton in the water column, which

cause spectral scattering and absorption. These effects increase with water depth and turbidity,

and cause an exponential reduction in light intensity (Veettil et al., 2020; Phinn et al., 2018).

Absorption, and therefore attenuation, affects longer wavelengths stronger, rendering the visible

spectral range the most suitable for seagrass detection (Åhlén et al., 2003; Veettil et al., 2020).

Within the visible range, mainly blue and green bands are used for the differentiation of shallow

water bottom features, because the light sensed by the red band is completely absorbed at a depth

of about 3 m (Åhlén et al., 2003). In optically deep waters, all radiation is absorbed before reaching

the seabed, leaving no bottom signal to be returned to the sensor (Phinn et al., 2018).
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Figure 5: Schematic model of coastal aquatic remote sensing (Adapted from Komatsu et al., 2020).

Phinn et al. (2018) concludes that seagrass meadows cannot be detected by airborne or satellite

remote sensing if water clarity is strongly reduced by dissolved or suspended material, in clear

waters of more than 15 m depth, or if the meadows have densities lower than 20%.
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2.5 Sentinel-2

Sentinel-2 is a multi-spectral imaging mission within the Copernicus programme of the European

Space Agency (ESA). The mission aims to monitor earth’s surface changes and consists of two

sun-synchronous, identical satellites named Sentinel-2A and Sentinel-2B (ESA, 2015). Sentinel-

2A was launched on the 23rd of June 2015, and Sentinel-2B on the 7th of March 2017 (ESA,

2020). The satellites are phased at 180° to each other, causing a revisit frequency of five days at

the Equator. Both satellites have a swath width of 290 km, and cover land and coastal areas between

56° South and 83° North. They passively collect data of all European islands, the Mediterranean

Sea, all world islands greater than 100 km2, all waters within 20 km of the shore, and all closed

seas. The satellites are equipped to sample thirteen spectral bands, four at 10 m, six at 20 m, and

three at 60 m spatial resolution. User products are released as Level-1 (Top-of-Atmosphere) and

Level-2 (Bottom-of-Atmosphere) products (ESA, 2015).

Seagrass habitat mapping requires satellite imagery to have a finer resolution than the habitat’s

dimensions in order to minimise mixed pixel creation. Meadows generally have a horizontal scale

between several metres to thousands of metres (Komatsu et al., 2020). Sentinel-2’s high spatial

and temporal resolution, its coverage of coastal areas, and ESA’s free and open data policy qualify

this mission as suitable for seagrass mapping (Traganos and Reinartz, 2018c).
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2.6 Google Earth Engine

GEE is a cloud computing platform which combines multi-petabyte analysis-ready data with a

high-performance, parallel computation service allowing for rapid multi-image processing and

analysis (Gorelick et al., 2017; Traganos et al., 2018b). It follows the client-server programming

model in which scripting and computationally light operations are performed in the local program-

ming environment (client side/browser) while computationally heavier processes are executed by

Google’s cloud server (server side) (Gorelick et al., 2017; Navarro, 2017). The integrated geospa-

tial data repository consists of a large number of freely available datasets, including satellite and

aerial imagery, environmental variables, and climate forecasts. Additionally, users can integrate

and process their own datasets. GEE offers the usage of JavaScript and Python as scripting lan-

guages, as well as more than 800 internal functions. These range from simple mathematical func-

tions to complex and powerful image processing operations. Rapid scripting and result visualisa-

tion are supported through a web-based interactive development environment with the possibility

to examine results by panning and zooming. Moreover, GEE provides a wide range of machine-

learning toolkits for supervised and unsupervised classification, regression, and confusion matrices

for accuracy assessment. Its web-based nature allows for an easy sharing of user generated datasets

and scripts (Gorelick et al., 2017).

The computational power of GEE has been used for a variety of data-heavy, aquatic remote sensing

projects like coral reef, tidal flat and surface water mapping, as well as satellite-derived bathymetry

estimation (Lyons et al., 2020; Murray et al., 2019; Donchyts et al., 2016; Traganos et al., 2018b).

Previously, it has also been implemented for large-scale seagrass mapping in the work of Traganos

et al. (2018a).
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3 Methodology

The following methodology documentation covers the chosen study areas, the auxiliary data ac-

quisition, the image pre-processing procedure, the seagrass classification frameworks, and the cal-

culation of related carbon stocks and sequestration potentials.

3.1 Study Area

The ten countries which recognise seagrass within their NDCs are The Bahamas, The Kingdom

of Bahrain, Honduras, Kiribati, Mauritius, Mexico, Saint Kitts and Nevis, Sri Lanka, Sudan, and

The United Arab Emirates (Figure 6). Three of these, The Bahamas, Mexico, and The United

Arab Emirates, have included seagrass in both their mitigation and adaptation actions. Honduras,

Mauritius, Saint Kitts and Nevis, Sri Lanka, and Sudan only focus on adaptation actions, while

The Kingdom of Bahrain and Kiribati merely target mitigation (UNEP, 2020a).

Figure 6: Map of countries with a specific reference to seagrass within their Nationally Determined Contri-

butions, world-wide seagrass distribution, and table of actions taken by countries (UNEP, 2020a)
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The study area stretches over three bioregions (Tropical Atlantic, Tropical Indo-Pacific, and Tem-

perate North Pacific) and covers a total area of 9,398,913 km2 (Table 1) (Short et al., 2007; Flan-

ders Marine Institute, 2019). Seventeen species can be found in this region: Cymodocea serru-

lata, Enhalus acoroides, Halodule uninervis, Halodule wrightii, Halophila beccarii, Halophila

decipiens, Halophila engelmanni, Halophila ovalis, Halophila stipulacea, Phyllospadix scouleri,

Phyllospadix torreyi, Syringodium filiforme, Syringodium isoetifolium, Thalassia hemprichii, Tha-

lassia testudinum, Thalassodendron ciliatum, and Zoestra marina. Kiribati represents the country

with the lowest biodiversity with only one species, while Mexico shows the highest biodiversity

with seven different species (Green and Short, 2003). It also has the longest coastline at 9,330 km.

The country with the shortest coastline is The Kingdom of Bahrain (ChartsBin, 2010).

Table 1: Summary of country-specific Exclusive Economic Zone (EEZ) areas in km2, coastline length

(CL) in km, associated bioregion, and number of species (No. of Sp.) (Flanders Marine Institute, 2019;

ChartsBin, 2010; Short et al., 2007; Green and Short, 2003). Country names are represented as ISO 3166

Alpha-3 codes: BHS = The Bahamas, BHR = Kingdom of Bahrain, HND = Honduras, SDN = Sudan, LKA =

Sri Lanka, KNA = Saint Kitts and Nevis, ARE = United Arab Emirates, MUS = Mauritius, MEX = Mexico,

KIR = Kiribati. Bioregion abbreviations denote: TA = Tropical Atlantic, TIP = Tropical Indo-Pacific, TNP

= Temperate North Pacific.
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3.2 Auxiliary Data Acquisition

The following chapters describe the acquisition of in-situ carbon data and country-scale carbon

emissions, as well as the methodology used to calculate country-specific carbon stock and seques-

tration potential ranges.

3.2.1 In-situ Data Collection

A systematic technical review was implemented to collect country-scale seagrass blue carbon data.

For this, Google Scholar, and the reference lists of related articles were used to identify relevant

literature regarding country-specific seagrass species composition, carbon inventories, carbon se-

questration rates and biomass. The search was based on the following term combinations: [(coun-

try OR bioregion) + (’seagrass’ OR more precise species)] OR [(country OR bioregion) + (’sea-

grass’ OR more precise species) + (’carbon’ OR ’sequestration’ OR ’biomass’ OR ’blue carbon’

OR ’soil carbon’). Articles were then screened for in-situ biomass and carbon data in the form of

species- or region-specific ranges. Therefore, literature which only stated averaged numbers for

biomass or carbon stocks were excluded.

3.2.2 Areal Carbon Stock Range Calculation

In order to calculate total carbon inventory ranges for each target country (Section 3.5), the litera-

ture review based in-situ data was harmonised. For this, the country-level average minimum and

maximum carbon content was calculated. If no country-specific data was available, bioregional

averages were used.

First, the range for biomass carbon was estimated. Dry weight biomass was converted to biomass

carbon following Fourqurean et al. (2012):

Biomass Carbon = 35% Dry Weight Biomass (2)

In the case that both dry weight biomass and biomass carbon were stated, the latter was chosen.

Total biomass (TB), AGB, and BGB were calculated as follows (Fourqurean et al., 2012):

T B = AGB+BGB

AGB =
1
3
∗T B =

1
2
∗BG

BGB =
2
3
∗T B = 2∗AGB

(3)
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To minimise uncertainties some papers were excluded from the calculation based on the kind of

data they provide. Since AGB:BGB ratios can vary significantly between species, papers which

only state only one kind of biomass (AGB or BGB) were excluded when there were more than two

other sources stating TB (Duarte and Chiscano, 1999). Moreover, sources which define regional

AGB and BGB ranges based on different sites were excluded when there were more than two other

sources of TB. This is due to the fact that different study sites do not necessarily show the same

species composition and therefore self-calculated TB values are not fully representative. If a paper

presents both species- and regional-level ranges, the regional ones were used.

To prevent incorrect weighting, species and regional specific ranges were created separately before

calculating the final average range. The prevalence of species was taken into account if given. In

the last step, carbon stock ranges in Megagrams per km2 were created as followed:

Cmin =CT Bmin +Csoilmin

Cmax =CT Bmax +Csoilmax

(4)

3.2.3 Carbon Emissions

Country-scale carbon emissions between 1960 to 2018 were derived from Friedlingstein et al.

(2020). These emissions were later (Chapter 3.5) used to evaluate the seagrass carbon sink poten-

tial per country.
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3.3 Image Pre-Processing

In order to achieve the best possible seagrass classification result, Sentinel-2’s image archive was

pre-processed and reduced to a single composite per country (Figure 7).

Figure 7: Schematic pre-processing workflow. Blue boxes represent image products, green boxes show used

methods. L2A denotes Level 2A, and ROI denotes region of interest.

3.3.1 Sentinel-2 Imagery

The Sentinel-2 Bottom Of Atmosphere (Level 2A) image archive within GEE was utilised for the

country-scale pre-processing and seagrass mapping procedure. For this, four years’ worth of im-

ages, taken between the 28th of March 2017 and the 28th of March 2021, were used (see Table 2

for image count per country). These images are orthorectified, projected in Universal Transverse

Mercator (UTM)/World Geodetic System 1984 (WGS84), and were clipped to the regions of in-

terest (ROI). ROIs cover Exclusive Economic Zones (EEZ) and nearshore landmasses. EEZs were

taken from Flanders Marine Institute (2019) and processed using ArcGIS in order to keep land

pixels to allow for the pixel-based land masking (Chapter 3.3.4). Non-island EEZs were manually

extended to cover parts of the nearshore land. For island countries, the EEZ shape file was edited

using ArcGIS’ union-function with the option to not allow for gaps.
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Table 2: Number of Sentinel-2 Level-2A Images processed per country. Country names are represented as

ISO 3166 Alpha-3 codes: BHS = The Bahamas, BHR = Kingdom of Bahrain, HND = Honduras, SDN =

Sudan, LKA = Sri Lanka, KNA = Saint Kitts and Nevis, ARE = United Arab Emirates, MUS = Mauritius,

MEX = Mexico, KIR = Kiribati.

3.3.2 Environmental Noise Filtering

The pre-filtered Sentinel-2 archive was further processed to reduce cloud and sunglint effects.

First, the Red Edge 4 (20 m resolution) and Water Vapor (60 m resolution) bands were used to

mask insufficient pixel values at the scene edges of every image in the collection (GEE, n.d.a). The

enhanced archive was then filtered for images with a mean solar zenith angle of less than 70%. This

filter value was used to allow for enough scenes to reduce sunglint effects while excluding images

with possibly insufficient data due to long atmospheric paths between radiation source and sensor.

For further filtering, the Sentinel-2 imagery was joined with the corresponding Cloud Probability

dataset (GEE, n.d.a). This collection was filtered for images with a cloudy pixel percentage of

less than 25%, and the QA60 bitmask band in 60 m resolution was used to mask out opaque and

cirrus clouds in each image (GEE, n.d.b). Moreover, images were masked using Sentinel’s Scene

Classification Map band which contains information on cloud shadows and cirrus clouds in 20 m

resolution. Additionally, the Cloud Probability dataset’s probability band was utilised to mask

pixels with a cloud probability of over 30%. In the last step, all pixel values were divided by

10,000 for a conversion from integers to values in the range of 0 to 1.

3.3.3 Multi-Temporal Composition

In order to create a single multi-temporal composite with reduced interference of sunglint, tur-

bidity, waves, remaining clouds, and haze, a GEE-reducer based on the 20th percentile of each

pixel was used (Thomas et al., 2021). This reducer minimises high-reflectance obstacles within

the image (Traganos et al., 2021).
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3.3.4 Land Masking

Land pixels were identified and masked using the combined Otsu and Canny edge filter method

of Donchyts et al. (2016). This method uses the Modified Normalised Difference Water Index

(MNDWI) (Equation 5) as input for the Canny edge filter in order to detect pixels located near

water-land edges with sharp value changes (Xu, 2006).

MNDWI =
Green−SWIR1
Green+SWIR1

(5)

The lower the index value, the more likely the pixel represents land mass. Detected edges were

buffered by 10 m and used for Otsu-based thresholding, which aims to decrease intra-class variance

within a gray-scale histogram (Otsu, 1979).

In order to not exceed GEE’s computation time, the amount of input pixels was limited by manu-

ally defined bounding boxes. For sparsely vegetated countries (Bahrain, Sudan, and United Arab

Emirates) the threshold which defines the sensitivity of the Canny edge filter was set to 0.4, and

the sigma value which defines the standard deviation of the Gaussian smoothing kernel was set to

0.3. The values for all other countries were set to 0.9 and 1, respectively. Additionally, the number

of buckets for the Otsu-histogram was set to 100, and an Otsu-threshold minimum of 0.05 was

chosen.

3.3.5 Above-Surface Reflectance Transformation

The normalised water leaving reflectance composite Rhown was corrected to account for the differ-

ence in the optical pathway between the air and water column. For this, the above-surface remote

sensing reflectance (Rrs), which describes the ratio of the water leaving radiance to downwelling

radiance just above the water surface, was obtained as followed (Traganos and Reinartz, 2018b):

Rrs =
Rhown

π
(6)

Moreover, the environmental noise of optically deep water within two 32x32 pixel areas was cal-

culated using a standard deviation reducer for the bands B2 (Blue), B3 (Green), B4 (Red), B8

(Near Infrared), and B11 (Shortwave Infrared 1). One polygon was placed close to the centre of a

Sentinel-2 tile, and another one was placed at the overlapping border of two tiles. The calculated

noise was then compared to the optimal value of <0.00025 sr-1 (Chapter 4.2.1) (Dörnhöfer et al.,

2016; Giardino et al., 2015; Brando and Dekker, 2003).
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3.3.6 Deep Water Masking

Optically deep waters were masked out in order to limit the classification input to areas with a

possibility for seagrass growth and to avoid misclassification. These optically deep waters are

defined as areas where reflectance is not affected by bottom signals, and were identified using

Otsu thresholding (Traganos and Reinartz, 2018c). For this thresholding, two indices and self-

defined bounding boxes were used. First, a normalised index based on Sentinel-2’s band 2 (Blue)

and band 3 (Green) was implemented due to their ability to penetrate deep into the water column

(Traganos and Reinartz, 2018c; Alkhatlan et al., 2019):

Shallow Water Index =
Green−Blue
Green+Blue

(7)

Increased water depth corresponds to an increased Shallow Water Index value since the reflectance

of the green band, which has a higher absorption ability, decreases proportionately faster than the

reflectance of the blue band (Stumpf et al., 2003). Moreover, the MNDWI was applied to detect

optically deep water areas, which show higher values than shallow waters. Minimum threshold

values were set to -0.5 for the Shallow Water Index, and to -0.3 for MNDWI. The number of

buckets for both histograms was set to 100, and the use of self-defined bounding boxes allowed for

a manual histogram adjustment which helped to achieve stronger bio-modal distribution.

Additionally, the National Oceanic and Atmospheric Administration’s (NOAA) ETOPO1 1 Arc-

Minute Global Relief Model was used to mask pixels of more than 1 km depth (NOAA National

Geophysical Data Center, 2009).

The accuracy of the masking output was estimated using nautical charts and a visual ocean colour

assessment. Remaining deep water pixels were masked manually following a visual examination

of the image.

3.3.7 Land Water Masking

The Global Administrative Unit Layers 2015 (GAUL) dataset, implemented by the Food and Agri-

culture Organization of the United Nations (FAO), was manually edited and used to mask land-

based water bodies (FAO UN, 2014). Polygon editing was based on visual examination of the

coastline and applied to un-mask areas with possibilities for seagrass growth like salt-water la-

goons and river deltas.
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3.3.8 Below-Surface Reflectance Transformation

The sub-surface remote sensing reflectance (rrs), which describes the ratio of the water leaving

radiance to downwelling radiance just below the water surface, was derived from Rrs following

Lee et al. (1998):

Rrs =
ζ rrs

1−Γrrs
(8)

The water-to-air radiance-divergence factor ζ was set to 0.5, and Γ within the denominator was set

to 1.5 (Lee et al., 1998, 1999). The latter accounts for effects of internal reflection from water to

air which can be large for shallow waters (Lee et al., 1998; Traganos and Reinartz, 2018b).
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3.4 Seagrass Classification

The classification ready image generated in Chapter 3.3 is the base for the unsupervised and super-

vised classification approach (Figure 8). This chapter therefore also covers the input-data prepara-

tion and the accuracy assessment.

Figure 8: Schematic classification workflow. Blue boxes represent data products, green boxes show used

methods.

3.4.1 Unsupervised Classification

An unsupervised classification was used to gain an understanding of possible pixel clusters and

to assess the necessity for a supervised classification. For this, the K-means clustering method

ee.Clusterer.wekaKMeans() was applied to the classification ready image within GEE. This classi-

fier divides an image into a given number of classes based on the spectral intensities of pixel (Rekik

et al., 2006). Five-thousand training points were randomly selected and used to create five discrete

classes. This number of classes was based on the observed number of marine habitats in Bahamian

waters by the Allen Coral Atlas (ACA) project. These classes are: Seagrass, Coral/Algae, Rock,

Rubble, and Sand (Allen Coral Atlas, 2020).

3.4.2 Input-Data Preparation

The supervised classification (Section 3.4.3) was based on data provided by the ACA. This data

included classified maps in raster format and ground truth data in vector format. Due to the ACA’s

use of PlanetScope satellite imagery with a spatial resolution of 3.125 m, a reprojection and res-
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olution reduction was necessary to match the 10 m resolution of Sentinel-2 (Allen Coral Atlas,

2020). In order to do this, the vector data was converted into raster format and combined with the

image pixel values beforehand. Then the ee.Reducer.mean() reducer was used to create pixels of

lower resolution. The resolution of the classified data was resampled using the majority reducer

ee.Reducer.mode() to allocate the most frequent class to each 10 m-pixel. This extent was then

combined with the image pixel values. Both classified and ground truth data were divided into two

classes: Seagrass and Non-Seagrass (merged class of Coral/Algae, Rock, Rubble, and Sand).

To account for possible misclassifications by the ACA, the classified data was harmonised with the

ground truth data using Sentinel-2’s spectral bands B1 to B5. For this, the minimum and maximum

reflectance per class of the ground truth data was used to filter out pixels of the classified data which

did not fall within this range (Figure 9). The leftover spectral ranges will be referred to as Spectral

Range 1 in the following.

Figure 9: Harmonisation procedure for ACA’s classified data with the ground truth data (Spectral Range 1).

Bars show spectral ranges and red parts show pre-filtered data. Min denotes minimum and Max denotes

maximum.
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Moreover, a second version (Spectral Range 2) was created using the minimum and the 80th per-

centile of the seagrass ground truth data as a filter for itself and for classified seagrass pixels (see

Figure 10). This aimed to reduce the number of high reflectance mixed pixels which could have

been created by the resolution reduction and which are likely to represent a combination of the

seagrass and sand habitat.

Figure 10: Harmonisation procedure for ACA’s classified seagrass data with the seagrass ground truth data

(Spectral Range 2). Bars show spectral ranges and red parts show pre-filtered data. Min denotes minimum

and Max denotes maximum.

3.4.3 Supervised Classification

Six supervised classification frameworks were designed and applied to the multi-temporal Ba-

hamas composite. These frameworks were based on the machine learning algorithm Random

Forests by Breiman (2001) to solve the binary classification problem (Seagrass and Non-Seagrass).

This classifier uses multiple self-learning decision trees to allocate pixels to given classes and is

robust regarding outliers and noise (Breiman, 2001). Following the classification procedure of the

ACA, the number of trees was set to 15 and the number of seeds to 42 (Lyons et al., 2020). The

classifier was used in a probabilistic mode to allow for a soft classification. Therefore, it generated

a per-pixel probability of 0 to 100% determining how likely it is that a given pixel is seagrass. The

probability threshold over which a pixel is assigned to the Seagrass class was chosen after exam-

ination of the accuracy assessments (Chapter 4.3.4). Five thousand points per class were used to

train the classifier, and 500 additional and independent points per class to validate it. These points

were extracted from the image via stratified sampling of the first five Sentinel-2 bands.
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The six classification frameworks (Figure 3) can be divided into three main models which were

run twice, each using two different spectral ranges (Spectral Range 1 and Spectral Range 2 of

Chapter 3.4.2). The first model (ClassBased) used the harmonised ACA classified data as training

data (TD), and the ground truth data as validation data (VD). To not cause spatial auto-correlation

between TD and VD, a 2,000 m buffer was created around the VD and used to mask underlying

pixels before TD points were sampled. The second model (GeoSplit 1) used only ground truth

data which was split into TD and VD depending on location. Ground truth data in the north of

the image was assigned TD, and ground truth data in the south was assigned VD. The third model

(GeoSplit 2) followed a similar approach to GeoSplit 1, but used the northern part of the ground

truth data as VD, and the southern part as TD. These GeoSplit-models were created to further

minimise geospatial auto-correlation.

Table 3: Overview of used classification frameworks. Spectral Range 1 and 2 refer to Chapter 3.4.2. ACA

denotes Allen Coral Atlas.

3.4.4 Accuracy Assessment

The overall accuracy (OA), producer’s accuracy (PA), user’s accuracy (UA), and the F1-score

(harmonised mean of PA and UA) of both classes were estimated for each probability threshold

between 0 and 100% in increments of 1. These metrics were based on the following equations

(Story and Congalton, 1986):

OA =
Number o f correctly classi f ied pixels

Number o f V D pixels
(9)
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PA =
Number o f correctly classi f ied pixels in each class

Number o f V D pixels o f the same class
(10)

UA =
Number o f correctly classi f ied pixels in each class

Total number o f V D pixels classi f ied as the same class
(11)

F1− score = 2∗ UA∗PA
UA+PA

(12)

3.4.5 Seagrass Area Estimation

The results of the accuracy assessment were then used for a quantitative comparison of the classifi-

cation frameworks. Furthermore, the probability threshold for which the F1-score of the Seagrass

class drops nearest to 100% probability determined the threshold over which a pixel is assigned

Seagrass. The two classification frameworks which yield the highest F1-score at the determined

probability threshold were used to set the minimum and maximum habitat extent. To assess the

protected area of seagrass, the UNEP-WCMC (2021) MPAs were used. Moreover, the seagrass

habitat extent was compared to the total EEZ area, the mapped shallow water area, and the ACA

seagrass extent.
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3.5 Carbon Stock and Sequestration Potential Calculation

Country-scale carbon stock ranges were calculated following the Tier 1 and Tier 2 approach of

The Blue Carbon Initiative (2014). These approaches represent different levels of certainty. Tier

1 assessments are based on published IPCC (Intergovernmental Panel on Climate Change) default

values of globally averaged carbon estimates and show a lower level of certainty. A higher accuracy

and certainty is reached through Tier 2 assessments, which use country-specific in-situ data (The

Blue Carbon Initiative, 2014). For the latter assessment, values estimated in Chapter 3.2.1 were

used. Minimum carbon range values were multiplied with the minimum classified seagrass extent,

and maximum carbon range values were multiplied with the maximum seagrass extent.

Country-scale sequestration potentials were calculated using the minimum and maximum seagrass

extent and the country-specific average sequestration rates collected in Chapter 3.2.1. To compare

each country’s sequestration potential with their emissions, carbon was converted to CO2 following

Fourqurean et al. (2012):

CO2 = 3.67∗Carbon (13)
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4 Results

Due to the lack of TD and VD for seagrass classification, only one out of ten countries was classi-

fied. The following results for carbon and emission data acquisition, image pre-processing, habitat

classification, and seagrass area and carbon calculations therefore apply only to The Bahamas.

4.1 Auxiliary Data Acquisition

This chapter summarises the findings for country-specific carbon stock inventories and emissions.

4.1.1 Seagrass Carbon Data

Globally averaged estimates for carbon stocks of the seagrass ecosystem (Tier 1 assessment) range

from 910 to 82,900 Mg carbon per km2 (Table 4), with an average of 10,800 Mg carbon per km2

(IPCC, 2014).

The systematic technical review for Bahamian carbon stocks (Tier 2 assessment) shows a range

between 15,417.55 Mg carbon per km2 and 16,486.47 Mg carbon per km2, with an average of

15,952.01 Mg carbon per km2 (Buchan, 2000; Dierssen et al., 2010; Fourqurean et al., 2012; van

Tussenbroek et al., 2014). Total biomass carbon accounts for 2.12% (327.55 Mg C km-2) of the

minimum carbon, and for 6.48% (1,068.92 Mg C km-2) of the maximum one. These numbers are

based on the three occurring species Thalassia testudium, Syringodium filiforme, and Halodule

wrightii. Soil carbon therefore accounts for more than 90% of the total carbon stock range, and is

based on averaged bio-regional data due to the lack of Bahamian soil carbon inventories.

Tier 2 ranges fall within the global averaged estimates, with a minimum 14,507.55 Mg carbon per

km2 greater than the Tier 1 minimum, and a maximum 6,413.53 Mg carbon per km2 lower than

the Tier 1 maximum.

Sequestration rates for Bahamian seagrass average 0.0026 Mt CO2 per km2 per year (Alongi, 2018;

Dierssen et al., 2010).
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Table 4: Seagrass carbon stock ranges for Tier 1 (global average) and Tier 2 (country-scale) assessments

based on IPCC (2014); Buchan (2000); Dierssen et al. (2010); Fourqurean et al. (2012); van Tussenbroek

et al. (2014).

4.1.2 Carbon Emissions

In 2018, Bahamian CO2 emissions from the use of coal, gas, and oil equaled 1.81 Mt and accounted

for 0.0049% of the world’s emissions. Between the years of 1985 and 2018 CO2 emissions av-

eraged 1.87 Mt, with a trough of 2.86 Mt in 1986 and a peak of 1.41 Mt in 2013 (Figure 11)

(Friedlingstein et al., 2020).

Figure 11: Carbon emissions of The Bahamas between 1985 and 2018 (Friedlingstein et al., 2020).

30



Chapter 4 RESULTS

4.2 Image Pre-Processing

The image pre-processing results include the achieved environmental noise values, masking thresh-

olds and the pre-processed composite.

4.2.1 Environmental Noise

The environmental noises for the tile-centered deep water polygon (Polygon 1) of The Bahamas

range from 0.000151 to 0.000211 sr-1, therefore falling within the limits of optimal noise (<0.00025

sr-1) (Dörnhöfer et al., 2016; Giardino et al., 2015) (Table 5). This limit is not met by the noise of

the polygon placed on overlapping tile edges (Polygon 2), which achieved values between 0.00035

and 0.000608 sr-1. Both polygons show minimal environmental noises in B11, and maximum

noises in B2.

Table 5: Environmental noise of the below-surface reflectance (Rrs) of optically deep water using two 32x32

pixel area polygons and standard deviations for the bands B2 (Blue), B3 (Green), B4 (Red), B8 (Near

Infrared), and B11 (Shortwave Infrared 1).

4.2.2 Masking Efforts

All histograms used for the Otsu-based maskings achieved bi-model distributions (Figure 12).

The land masking threshold based on the MNDWI equals 0.15, the optically deep water masking

threshold based on the Shallow Water Index is -0.43, and the MNDWI threshold for optically deep

water masking equals 0.27.
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Figure 12: Histograms and thresholds (red) for A) MNDWI-based land masking, B) Shallow Water Index-

based and C) MNDWI-based optically deep water masking.
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4.2.3 Pre-Processed Image

Figure 13 displays the pre-processed Sentinel-2 2A rrs image, as well as a nautical chart for the

same region. Non-masked water areas match depth levels of less than 25 metres (Landfall, 2021).

Optically shallow waters cover an area of 114,059.25 km2, which equals 18.40% of the total Ba-

hamian EEZ.

Figure 13: A) True colour below surface-reflectance Sentinel-2 composite of The Bahamas. B) Nautical

chart of The Bahama Islands (Landfall, 2021). Red boxes represent the location of the insets of Figure 19.
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4.3 Seagrass Classification

The following classification results cover both the unsupervised and supervised classification, as

well as the data preparation and accuracy assessment.

4.3.1 Unsupervised Classification

The unsupervised classification (Figure 14) illustrates an overlap of Seagrass ground truth data

with pixel clusters one, two, and three. Non-Seagrass overlaps each of the five identified clusters.

Due to this, no clear allocation of the existing habitat classes to produced pixel clusters is possible,

necessitating a supervised classification.

Figure 14: Unsupervised marine habitat classification for The Bahamas using five clusters, overlaid with

Seagrass and Non-Seagrass ground truth data of the Allen Coral Atlas (Allen Coral Atlas, 2020).
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4.3.2 Input-Data Preparation

Figure 15 displays the boxplots of rrs spectral ranges for the ground truth and ACA classified

data before (Original Range) and after (Spectral Range 1 and 2) the harmonisation procedure was

applied (Chapter 3.4.2). Throughout all plots and bands, the Seagrass class shows lower spectral

ranges than the Non-Seagrass class. The averaged median for all Seagrass bands is 0.02 sr-1 and

0.04 sr-1 for Non-Seagrass. Moreover, the ranges for Seagrass bands cover less spectral values

than the Non-Seagrass ranges.

The ACA classified data shows greater original spectral ranges than the ground truth data, espe-

cially for Band 5. Spectral Range 1 covers the same minimums and maximums for both data sets,

while the ranges for classified data are reduced compared to the original. Spectral Range 2 shows

the same ranges for the Non-Seagrass class, but reduced ranges for the Seagrass class.

Bands B1 to B4 of the ground truth data represent non-overlapping interquartile ranges of the

Seagrass and Non-Seagrass classes and show the strongest difference within Spectral Range 2.

Within the ACA classified data, all bands show at least partly overlapping interquartile ranges,

while those of Seagrass lie fully within the ranges of Non-Seagrass pixels for B2 and B3 of the

Original and Spectral Range 1. For Spectral Range 2, the interquartile ranges do not entirely

overlap and the 25th percentile of Seagrass and the 75th of Non-Seagrass show values of a smaller

difference than those of the other spectral ranges.
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Figure 15: Spectral ranges of the ground truth and ACA classified data for the first five Sentinel-2 below-

surface reflectance (rrs) bands, divided into Seagrass and Non-Seagrass classes. Original Range shows

non-processed ranges, Spectral Range 1 shows the ACA classified data harmonised with the minimum and

maximum of the ground truth data, Spectral Range 2 shows the same Non-Seagrass ranges as Spectral

Range 1 and the Seagrass ranges harmonised with the 80th percentile of the Seagrass ground truth data.

ACA denotes Allen Coral Atlas.

4.3.3 Training and Validation Data

The TD of the supervised classification model ClassBased shows a stronger overlap of the in-

terquartile ranges of Seagrass and Non-Seagrass within Spectral Range 1 than within Spectral

Range 2 (Figure 16). VD shows non-overlapping interquartile ranges for both spectral range ver-
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sions, and represent the strongest difference within Spectral Range 2.

GeoSplit 1, which is based on ground truth data, also shows non-overlapping interquartile ranges

for VD of both ranges, with stronger differences within Spectral Range 2. TD of Spectral Range 1

shows overlapping interquartile ranges, but Spectral Range 2 does not.

GeoSplit 2 shows GeoSplit 1’s inverted TD and VD boxplots for both spectral ranges.

Figure 16: Spectral ranges of the training (TD) and validation data (VD) for the first five Sentinel-2 below-

surface reflectance (rrs) bands, divided into Seagrass and Non-Seagrass classes for the six supervised clas-

sification frameworks described in Chapter 3.4.3.
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4.3.4 Accuracy Assessment

Figure 17 shows the OAs and F1-scores of Seagrass and Non-Seagrass for the six supervised clas-

sification frameworks. OAs of all frameworks, except GeoSplit 2 Spectral Range 1, drop towards

higher seagrass probabilities until a 50% score is reached. The averaged OA has its minimum

at 60.53% for GeoSplit 2 Spectral Range 1, and its maximum at 77.79% for ClassBased Spec-

tral Range 2. Moreover, each model yields a higher maximum and averaged OA using Spectral

Range 2.

F1-scores for Seagrass follow a similar pattern to OAs, but drop until a score of 0% is reached.

Scores for Spectral Range 1 show more abrupt drops at lower probabilities (between 5 and 25%)

than Spectral Range 2 (between 25 and 60%). F1-scores for Non-Seagrass show an inverted pattern

to the ones of Seagrass, with scores starting at 0% and rising towards higher probabilities.

For both spectral ranges, F1-scores intersect at probability thresholds lower than 50%. Both F1-

scores of Spectral Range 2 show similar values with lower probabilities, while scores of Spectral

Range 1 do not follow this pattern.

The probability threshold for which the F1-score of the Seagrass class drops nearest to 100% prob-

ability is 60% and therefore determines the threshold over which a pixel is assigned Seagrass. At

this threshold, the two highest F1-scores are 75.38% (GeoSplit 2 Spectral Range 2) and 64.99%

(ClassBased Spectral Range 2). Therefore, these two classification frameworks define the mini-

mum and maximum seagrass area extent. These frameworks reach OAs of 77.60% and 72.20%,

PAs of 68.60% and 51.60%, and UAs of 83.65% and 87.75%, respectively. F1-scores for Non-

Seagrass are at 86.60% and 76.95%, PAs at 86.60% and 92.80%, and UAs at 73.39% and 65.72%,

respectively. For both classification models, Seagrass achieves lower PAs, but higher UAs than

Non-Seagrass.
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Figure 17: Overall Accuracy, F1-score for Seagrass, and F1-score for Non-Seagrass for the six applied

classification frameworks.
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4.3.5 Seagrass Area Estimation

Based on the 60% probability threshold of the soft classification, the minimum seagrass extent

for The Bahamas is 11,779.44 km2 and the maximum 27,629.32 km2 (Figure 18). The minimum

extent is based on the classification framework GeoSplit 2 Spectral Range 2, and the maximum is

based on ClassBased Spectral Range 2. Bahamian seagrass covers between 1.90 and 4.46% of the

country’s EEZ, and 10.33 and 24.22% of its shallow area. About 6 to 11% of its extent lies within

MPAs. The mapped seagrass extent equals 25.29 to 59.31% of the area mapped by the ACA.

GeoSplit 2 Spectral Range 2 (Figure 18 1A) shows large areas of low and medium probability

(white to medium green; 0 to 66% probability), and a comparatively small area of high probability

(dark green; >66% probability), while ClassBased Spectral Range 2 (Figure 18 2A) shows large

areas of low and high probability (white and dark green respectively), and small areas of medium

probability (medium green). The classified maximum extent of seagrass (Figure 18 2B) identifies

vaster meadows in the south and east of The Bahamas than the minimum extent (Figure 18 1B).

Figure 19 illustrates a detailed comparison of the minimum and maximum mapped seagrass extent,

and the ACA classification results.

Boxplots for the classified seagrass extents of all six classification frameworks are illustrated in

Figure 20. The interquartile ranges of ClassBased Spectral Range 2 show less overlap than within

Spectral Range 1, in which those of Seagrass fall entirely within those of Non-Seagrass. For

GeoSplit 1 the least overlap is identified within Spectral Range 1, while the interquartile ranges of

Seagrass of Spectral Range 2 fall within those of Non-Seagrass. GeoSplit 2 shows only small in-

terquartile range overlaps with Spectral Range 1, and small or no overlaps within Spectral Range 2.
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Figure 18: Soft probability for seagrass using the classification model GeoSplit 2 Spectral Range 2 (1A) and

ClassBased Spectral Range 2 (2A); Below surface-reflectance Sentinel-2 (rrs S2) composite overlaid with

the minimum (1B) and maximum (2B) classified seagrass extent based on 60% soft probability threshold

of 1A/2A) and Marine Protected Areas (UNEP-WCMC, 2021); rrs S2 composite overlaid with the seagrass

extent by the ACA (3) (Allen Coral Atlas, 2020).
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Figure 19: True colour below surface-reflectance Sentinel-2 composite of The Bahamas overlaid with the

minimum (A1, B1), maximum (A2, B2), and ACA (A3, B3) seagrass extent (Allen Coral Atlas, 2020).

Location of A and B is represented in Figure 13.
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Figure 20: Spectral ranges of classified seagrass and non-seagrass area for the first five Sentinel-2 below-

surface reflectance (rrs) bands of the six applied classification frameworks.
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4.4 Carbon Stocks and Sequestration Potential

Based on the globally averaged estimates of the Tier 1 assessment, Bahamian seagrass stores be-

tween 10,719,288.91 and 2,290,470,292.26 Mg carbon (Table 6). The country-specific Tier 2

assessment shows carbon stock values between 181,610,083.57 and 455,509,862.63 Mg. Tier 2

ranges fall within the global averaged estimates, with a minimum of 170,890,794.66 Mg greater,

and a maximum of 1,834,960,429.63 Mg lower than the Tier 1 ranges.

Table 6: Tier 1 and 2 carbon stock minimums and maximums in Megagram for Bahamian seagrass.

Bahamian seagrass yields the potential to sequester between 31.02 and 72.75 Mt CO2 per year,

which equals about 17 to 40 times the amount of carbon which was emitted by The Bahamas in

2018 (Friedlingstein et al., 2020).
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5 Discussion

The following chapter will critically discuss the applied methods (Chapter 3) and results (Chapter

4) in order to evaluate if the set objectives (Chapter 1.2) were met. It will also put forward ideas

for improvement.

5.1 Image Pre-Processing

This chapter examines the achieved environmental noise values and the pre-processed Sentinel-2

composite.

5.1.1 Environmental Noise

The environmental noise of optically deep water can be used to assess the effectiveness of image

pre-processing steps like the cloud and sunglint removal (Chapter 3.3.2) (Sagar et al., 2014). More-

over, it functions as an indicator for the degree of accuracy and precision that can be achieved with

marine habitat classifications (Brando and Dekker, 2003). Table 5 shows that the environmental

noise of Polygon 1 falls within acceptable limits, indicating an effective pre-processing procedure

and making tile-centered areas appropriate for further analysis and classifications. The noise lev-

els of Polygon 2, on the other hand, exceed the acceptable limits, indicating problems within the

pre-processing at tile edges, which can influence habitat mapping.

An optical assessment of the multi-temporal composite supports the assumption of an overall ef-

fective environmental noise filtering since no clouds or sunglint effects are apparent and habitats

are clearly visible. This is also due to the fact that a multi-temporal approach minimised the effects

of visible waves. However, some areas (Figure 21) show artifacts of cloud shadows, which could

cause misclassification of seagrass due to their dark colours. The effects of unsatisfactory noise

levels at tile edges can be identified in the southern part of the Great Bahama Banks (Figure 22),

where lines of overlapping tiles are visible. These lines also have an effect on the classification

results which will be discussed in Chapter 5.2.3.

Cloud shadow artifacts are likely caused by the utilisation of the 20th percentile composition ap-

proach (Chapter 3.4.2) since it allocates the darkest pixels to the composite. The observed north

to south running striping patterns are likely caused by Sentinel-2’s staggered positioning of de-

tectors, leading to different viewing angles for odd and even view detectors. This parallax effect
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Figure 21: Sentinel-2 true colour composite of The Bahamas shallow water area with cloud shadow artifacts

(dark patches).

is strongest over sunglint polluted areas and increased at scene borders (ESA, 2021). Therefore,

enhanced sunglint removal is necessary to create seamless high-quality mosaics. This could be

achieved through metadata-based filtering of single images, which combines sensor viewing and

sun angles to minimise the possibility of sunglint (Kay et al., 2009). Another proxy for sunglint can

be the high reflectance in near-infrared wavelengths over optically deep water, which can be used

in regression models to adjust pixel values of shorter wavelengths (Hedley et al., 2016). More-

over, areas of stacked overlapping tile edges are created using more pixels than the surrounding

areas, possibly causing the visible difference between tiles. This can be the reason for additional

horizontally running lines within the composite. Enhanced sunglint filtering yields the potential

to minimise this problem by decreasing the amount of pixels used for the composite. Using the

geometric features of tiles to exclude overlapping areas could further improve the composite.

Environmental noise performs as a good first quantitative indicator for the quality of the pre-

processed Bahamas composite, but lacks significance considering the large extent of the study
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Figure 22: Sentinel-2 true colour composite of The Bahamas shallow water area with stretched red-band

values for stronger tile edge visualisation.

area. There is a possibility for strong spatial variability of noise caused by The Bahamas spanning

over multiple Sentinel-2 tiles. This is supported by the appearance of striping in only one part of

the image. The implementation of multiple environmental noise polygons could help with a more

solid assessment of the quality, but would still not cover each tile since some do not cover deep

water areas. Furthermore, the environmental noise does not provide information about artifacts

like cloud shadows.

5.1.2 Masking Efforts

Based on a visual assessment of the land and deep water masked image (Figure 13 A), and sup-

ported by a nautical chart (Figure 13 B), most areas which could lead to missclassification were

masked successfully. The complexity of the Bahamian coastline demonstrates a challenging en-

vironment for the applied land masking method, since its very shallow water areas, sand- and

mud-banks do not represent clear water-land edges (Figure 23). The use of the 20th percentile

reducer (Chapter 3.3.3) amplifies this complication through the utilisation of darker pixels which

are more likely to be taken from low-tide satellite images and which feature value close to the

land masking threshold (Traganos et al., 2021). This does not only demonstrate a challenge for the
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algorithm, but also for the algorithm user who validates the land mask. There is a strong need for

site specific information on near shore substrates. For this, it would be a cost-benefit advantage to

include local authorities, scientists or volunteers to provide regional knowledge. The complexity

of the Bahamian coastline with its countless small land patches (Figure 23) supports the use of a

pixel-based masking approach over the use of country shapefiles, which cannot provide the needed

precision. These shapefiles are nonetheless necessary for land water masking, but require manual

adjustment in order to not cover coastal areas.

Figure 23: Sentinel-2 true colour composite of The Bahamas coastal area. Gray indicates land area.

The end result of the optically deep water masking is satisfactory and does not show unwanted

deep water areas with which seagrass could be confused. A comparison of the nautical chart with

the masked image shows the difference between deep water and optically deep water identified by

the masking approach, since a small area of 2 to 22 m depths at 22°N, 76.5°W was masked. A

visual assessment of the unmasked image shows this area in brighter colours than the surround-
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ing water, suggesting that masking fails to identify this area as optically shallow. Analysing both

applied indices separately reveals that the Shallow Water Index caused the masking of the afore-

mentioned area, suggesting that the MNDWI is more suitable for identifying areas of more than

10 m depth, which are still visible to humans. Nevertheless, the combination of both indices is nec-

essary in order to mask a sufficient deep water area and to minimise the manual masking efforts.

The histograms of both applied optically deep water masks showed strong bi-modal distributions

indicating a clear separability between optically deep and shallow waters (Figure 12). This high

degree of separability was reached through the integration of user-defined bounding boxes which

allowed for a specification of input pixels. The applied approach shows insufficient masking of

deep waters close to the tile edges described in Chapter 5.1.1, making manual adjustments nec-

essary. Therefore, an improved environmental noise filtering will also lead to an improved deep

water masking. The introduction of additional indices could tackle further this problem. Feyisa

et al. (2014) introduced the Automated Water Extraction Index for surface water mapping, which

yields the potential to be adjustable for shallow water. Using a bathymetry dataset like ETOPO1

to mask depth-based deep water is useful but has to be handled with caution, since its 1 km spa-

tial resolution is too coarse and shows inaccurate values in very shallow areas. Some near-shore

areas which show depths of 1 to 2 m in the nautical chart are mapped with depth of up to 250 m.

Therefore, it can only be used for waters of more than 1 km depth. The problem of unsatisfactory

resolutions and accuracies within shallow waters is prevalent in most global bathymetry datasets,

highlighting the need for country-specific bathymetry data (Thomas et al., 2021).

The assessment of the pre-processing procedure shows that an efficient algorithm was designed

and that objective 1 of this thesis was achieved. However, there is still room for improvement.
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5.2 Supervised Classification

The analysis of the supervised classification applies to the two classification models chosen for the

minimum and maximum extent (Chapter 4.3.4).

5.2.1 Input-Data Preparation

In order to utilise class data from the ACA to map habitats using Sentinel-2, the finer resolution

ACA data had to be matched with Sentinel-2’s coarser resolution. This was achieved using a

majority reducer on the ACA classified data, which was necessary since the ACA classified map

still consisted of all five ACA classes. This reducer ensures that the created coarser pixel is assigned

to the habitat which contributes most to its spectral profile. However, this approach leads to the

creation of mixed pixels. Preventing this could be possible through the integration of a function

which calculates the proportion of each class contributing to a pixel and discards it if none of

the class proportions are above a set threshold. Figure 15 shows that the use of ground truth

data’s minimums and maximums to filter ACA classified data helps discard outliers, and therefore

demonstrates a first harmonisation with true class values.

The seagrass ground truth data includes two classes: Dense and Sparse Seagrass. The latter class

was discarded in order to not create mixed pixels caused by the coarser resolution of Sentinel-2.

Similar to the ACA classified data, mixed pixels were also created when the resolution of the

ground truth data was reduced. This mostly affects edges of seagrass meadows where one Sentinel-

2 pixel covers both seagrass and the adjacent substrate. Ground truth data with brighter values was

filtered out in order to reduce the number of mixed seagrass ground truth, and therefore also ACA

classified, pixels. The boxplots of Spectral Range 2 (Figure 15) show the effectiveness of this

method, reducing the overlap of interquartile-ranges between both classes and therefore creating

a suitable data-input for training the classifier. However, this approach does not capture the com-

plexity of the mixed pixel creation. Without a laborious analysis of the data, it is nearly impossible

to estimate the amount of pixels affected by this, and how much they are affected. Therefore, it is

difficult to estimate the correct percentile for filtering. An option to further decrease the number

of mixed pixels could be the filtering of ground truth data before the resolution reduction. For

this, single pixels and small clusters should be discarded since these lack the potential to cover

enough spatial area to create a pure pixel. Moreover, Traganos and Reinartz (2018a) recommend

the employment of a linear unmixing model for spatial resolutions higher than 5 m. These models
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use defined classes and their spectra to decompose mixed pixels into class proportions (Keshava,

2003).

5.2.2 Classification Setup

Each model was assigned the same number of training and validation points per class to allow for

a transparent comparison. The allocation of an equal amount of training points for both classes

(5,000 for training and 500 for validation for a shallow water area of 114,059 km2) also minimised

the possibility of a biased classification, since machine learning algorithms often over-represent

classes with larger training sample proportions (Millard and Richardson, 2015). Traganos et al.

(2021) allocated a similar amount of Seagrass training data points (5,461) for a seascape area of

similar size (128,741 km2), but almost double the amount for Non-Seagrass (9,651). This indicates

a stronger underestimation pattern of seagrass compared to the one of The Bahamas, which is

supported by the recorded UA and PA (Traganos et al., 2021).

Millard and Richardson (2015) state that classification quality can be increased through the use of

larger training samples sizes. Therefore, and based on the fact that the ACA classified data covers

a wider spatial range than the ground truth data, an increase in training points for the ClassBased

model could achieve enhanced classification results. The reason for this is that an increased num-

ber of points would cover more of the classes spatial variability. This approach would not change

the classification results of the other models since the ground truth data is limited to a few ho-

mogeneous clusters without strong spatial variability. Amani et al. (2019) notes that even though

an increase of training points is correlated to better classification results, it can cause efficiency

reduction within GEE, and the use of under one million points is recommended.

Previous studies have shown that different levels of spatial separability for TD and VD have

achieved different accuracies. Juel et al. (2015) observed an OA of 91.80% using spatially cor-

related data, while the use of spatially separated observations within sites achieved 81.90%. The

OA achieved with data spatially separated between different sites was only 54.20%. Even though

OAs are higher when data is more correlated, a minimisation of spatial proximity between TD and

VD through buffering and geographical splits creates more reliable accuracies due to the reduction

of collinearity (Juel et al., 2015; Millard and Richardson, 2015; Traganos et al., 2021).

Due to its ability to handle both normally and non-normally distributed data, and its robustness

to outliers and noise, the Random Forest classifier has been implemented successfully in multi-
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ple seagrass mapping approaches (Millard and Richardson, 2015; Breiman, 2001; Lyons et al.,

2020; Traganos et al., 2021; Traganos and Reinartz, 2018c). These characteristics qualify it as a

suitable classifier for mapping Bahamian seagrass considering the existing noisy TD. Classifier

variables were set following the ACA classification procedure to simulate similar conditions for

the ClassBased models compared to the ACA classified data on which it is based. However, both

procedures use a different number of classes which could make a different approach necessary.

For the classification of two classes within a similar sized area, Traganos et al. (2021) used viewer

trees (ten) and seeds (zero). Moreover, the number of variables per split was set to two, while the

square root of the number of used classes was chosen for the Bahamas. It would be beneficial to

test settings used by other authors and also iterate through a variety of variables. Even though GEE

provides many different settings for the Random Forest classifier, it still lacks the flexibility pro-

vided by other software like R (Hird et al., 2017). Furthermore, Shelestov et al. (2017) states that

GEE classifiers are currently outperformed by neural network based approaches in terms of clas-

sification accuracy, indicating that these GEE functions require further improvement. Millard and

Richardson (2015) suggest running iterative classifications based on the same variables to assess

the stability of classified categories.

The Random Forest classifier was trained on Sentinel-2’s first five bands with central wavelengths

between 443 and 705 nm (ESA, 2015). This selection accounts for the fact that shorter wavelengths

can penetrate deeper into the water column. Even though red light is completely absorbed at depths

of more than 3 m, it is still useful for very shallow water seagrass and increases the complexity

of the classifier (Åhlén et al., 2003). In order to define a class as precise as possible, it would be

useful to integrate further feature bands. Additional bands could be generated by calculating the

HSV parameters hue (H), saturation (S) and value (V) of the red-green-blue-image. Hue describes

the pixel’s colour, while saturation and value represent its illumination content (Hassanein et al.,

2018). Another input feature could be the bottom-reflectance derived from rrs, which has already

been used to classify seagrass (Lee et al., 1998; Traganos and Reinartz, 2018a). Based on this,

bottom-reflectance HSV parameters could be calculated. Including the mentioned features into the

training model of the classifier yields the potential to make classes more distinguishable. Moreover,

the integration of an object-based image analysis approach into the classification framework has

been proven to be effective for seagrass mapping (Roelfsema et al., 2014).

52



Chapter 5 DISCUSSION

5.2.3 Seagrass Extent

As shown in Figure 19 A1, the classification model GeoSplit 2 Spectral Range 2 (minimum extent)

manages to map seagrass between complex ripples well, but fails to identify the clearly visible

meadow in the north-west. The shallow water seagrass of Figure 19 B1 shows a similar extent to

the one mapped by ClassBased Spectral Range 2 (Figure 19 B2) and underestimates areas around

26°N, 78°W. However, it classifies most of the dark area in the north as seagrass as well, which is

likely to not be seagrass (Allen Coral Atlas, 2020; The Nature Conservancy, 2019). The Bahamas

wide minimum seagrass extent (Figure 18) seems to underestimate large areas with depth of more

than 3 m in the south and east. This underestimation is likely caused by the classification model’s

setup. The used geographical split causes the classifier to be trained on narrowly distributed data

in the south, therefore, lacking the spatial variability needed for a complex and vast study area

like the Bahamas. Moreover, ground truth data is mostly taken from near-shore areas, feeding

into the problem of lacking spatial variability and causing the classifier to manly detect shallow

water seagrass. This is supported by the probability map of GeoSplit 2 Spectral Range 2 (Figure

18 1A), which indicates that the classifier identified weak spectral ranges of seagrass within the

aforementioned areas. The aforementioned misclassification of seagrass with other bottom features

is likely caused by the lack of spatial variability in the Non-Seagrass ground TD, causing the

classifier to not have enough data to distinguish between the present bottom classes.

The extent mapped using ClassBased Spectral Range 2 (maximum extent) shows a precise identi-

fication of the seagrass meadow in the north-west of Figure 19 A2, which was not detected with

GeoSplit 2 Spectral Range 2. It also classified the meadows between and close to the ripples

correctly, without underestimating them. Figure 19 B2 shows the same underestimation as the

minimum extent in the north-east but no strong overestimation in the north. The reason for the

overall larger seagrass extent classified with ClassBased Spectral Range 2 is the strong spatial

variability of the TD, since it covers both shallow and deeper water seagrass distributed over the

whole Bahamian carbonate platforms.

Both estimates show unnatural seagrass meadow borders in the south (Figure 18), which can be

traced back to the aforementioned pre-processing challenges around tile edges (Chapter 5.1.1).

The visual assessment of the minimum and maximum extent shows a higher probability for the

maximum extent to represent the true extent of the Bahamian seagrasses.

The mapped seagrass extent shows an underestimation of dense, and especially sparse seagrass,
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which is supported by the accuracy assessment in Chapter 5.2.4 (C. Roelfsema, personal commu-

nication; 29.07.2021). A reason for the underestimation of sparse seagrass is that it causes mixed

pixels of seagrass and sand at the 10 m resolution of Sentinel-2, and that the classifier was trained

on dense seagrass data only. In order to detect small patches of seagrass, imagery with a spatial

resolution smaller than the 10 m would be necessary. A possible way to work around the sparse

seagrass challenge could be a division approach and therefore the creation of different threshold

probability ranges for seagrass. This would account for different cover types since the probability

of a pixel refers to the pureness of its seagrass spectral content. Roelfsema et al. (2009) clas-

sified four different seagrass cover levels (1-25%, 25-50%, 50-75% and 75-100%), while Lyons

et al. (2013) identified three (1-40%, 40-70% and 70-100%). Within the Wider Caribbean region,

Webnitz 2008 classified three cover levels (<30%, 30-70% and 70-100%). The introduction of a

division approach would also benefit the accuracy of estimated carbon stocks and will be discussed

further in Chapter 5.3.1.

Figure 20 shows boxplots for the classified Seagrass and Non-Seagrass classes, with minimal over-

laps of interquartile ranges for both frameworks of the minimum and maximum extent (ClassBased

Spectral Range 2 and GeoSplit Spectral Range 2). This implies a strong separability between both

classes, supporting the effectivity of the used frameworks and TD (Figure 16).

A visual comparison of the maximum mapped area with the ACA classified area (Figure 18, Fig-

ure 19) shows that both approaches identify seagrass in similar areas, but with different extents.

As shown in Figure 19 A3, the ACA seagrass extent covers most of the meadows between the

ripples and the one in the north-west but its borders do not follow the meadow borders. A reason

for this could be the used Planet imagery, which shows low signal-to-noise ratios over nearshore

waters causing a decline of image quality (Traganos et al., 2017). This underlines the suitability of

Sentinel-2 for seagrass mapping, despite its coarser resolution.

As mentioned in Chapter 2.1, seagrass can be easily confused with algae due to their similar

appearance (Seagrasswatch, 2021). However, a visual assessment of the mapped extents does not

show a noticeable misclassification. A reason for this could be the minimisation of algae-dense im-

ages through pre-processing, even though the 20th percentile approach selects darker pixels which

could represent algae. Moreover, the classification seems to have been strictly trained on seagrass.

The seasonal nature of growth and disappearance of algae blooms combined with a multi-temporal

approach causes them to have less clear borders than seagrass meadows, which makes them easier

to be distinguished visually (D’Silva et al., 2012). In order to utilise this effect within the classi-
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fication framework, an object-based approach should be implemented. The aforementioned cloud

shadow artifacts only caused minimal misclassifcations.

5.2.4 Accuracy Assessment

Even though both generated maps achieved acceptable OAs (77.60 and 72.20%), this does not

reflect the accuracy of the single classes (Finegold and Ortmann, 2016). The high UA scores of

83.65 and 87.75% indicate that most of the classified seagrass area matches the VD and therefore

the ground truth data. The lower PA scores of 68.60 and 51.60% indicate that a large area was

missed by the classification (Sari et al., 2021). This suggests a general underestimation pattern

by both classification models, which is supported by the findings of Chapter 5.2.3. The model

GeoSplit 2 Spectral Range 2 shows a higher F1-score than the ClassBased Spectral Range 2 (75.3

and 64.99%, respectively), indicating a statistically better seagrass classification when based on

ground truth data. A reason for this could be the stronger separability of classes within the TD

(Figure 16). As suggested in Chapter 5.2.2, the spatial variability of the ACA classified data

could require an increased number of TD points to cover as much of the seagrass spectral range

as possible. However, both classification frameworks show a similar inter-class separability within

the classified product (Figure 20).

A comparison between accuracies of this work and the ACA classification could not be performed

since the ACA has not published Bahama-specific accuracies. Using Landsat sensors of coarser

resolution than Sentinel-2, Wabnitz et al. (2008) achieved OAs of 71.80 and 63.30% for Lee Stock-

ing Island and East Andros, respectively. This, combined with UA and PA values of under 50% for

both regions suggest a better suitability of Sentinel-2 for seagrass mapping. However, these values

only represent segments of The Bahamas, and do not merely depend on the used sensor but also

on the classification framework.

5.2.5 Seagrass Area Literature Comparison

The seagrass extent mapped in this thesis equals about 3.4 to 7.9% of the global area identified by

Green and Short (2003). Compared to already existing seagrass extent maps for Bahamian waters,

this thesis classified the smallest area. It covers between 18 to 42.22% of the area of Wabnitz et al.

(2008), 20.70 to 48.53% of the area mapped by the Nature Conservancy, and 25.29 to 59.31% of

the area identified by the ACA (The Nature Conservancy, 2019; Allen Coral Atlas, 2020). The
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reason for these differences could be a combination of the missed sparse seagrass area (Chapter

5.2.3) and an overestimation by the other mapping efforts due to the use of different imagery and

mapping procedures.

Wabnitz et al. (2008) used Landsat imagery with a spatial resolution of 30 m as a base for the

classification, which increases the probability for mixed pixels and, therefore, misclassification.

The Nature Conservancy and ACA ran classifications on Planet Dove imagery, which shows low

signal-to-noise ratios and could be susceptible to misclassification (The Nature Conservancy, 2019;

Allen Coral Atlas, 2020; Traganos et al., 2017).

The high probability of missing sparse seagrass area creates a challenge when comparing different

seagrass area extents. Even though the ACA project used sparse and dense seagrass ground truth

data for the classification, both classes were merged to one Seagrass class for the classified map

(Allen Coral Atlas, 2020; Lyons et al., 2020). Wabnitz et al. (2008) differentiated between cover

levels within the classification procedure, but states seagrass area based on a merged class. There-

fore, the two aforementioned classified extents are not suitable for area comparisons. The Nature

Conservancy, on the other hand, states areas for sparse and dense seagrass. With a dense seagrass

area of 14,900.20 km2, the Nature Conservancy classified about 26.50% more than the minimum

area and about half of the maximum extent mapped in this work (The Nature Conservancy, 2019).

A visual comparison of the mapped maximum of this thesis with the map generated by the Nature

Conservancy shows that most of the maximum seagrass extent is classified as sparse by the Nature

Conservancy. This could be caused by the used probability threshold of 60% in this thesis while

most other authors used probabilities over 70% to map dense seagrass (Roelfsema et al., 2009;

Lyons et al., 2013; Wabnitz et al., 2008). Therefore, the use of a different threshold could make

dense seagrass maps more comparable.

The generation of minimum and maximum seagrass extent maps with satisfying accuracies demon-

strates the realisation of objective 2. Nonetheless, the input-data preparation and the differentiation

between seagrass cover types have to be improved.
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5.3 Carbon

The following chapters will analyse the Bahamian seagrass carbon stock and sequestration poten-

tial regarding data uncertainties and climate change implications.

5.3.1 Carbon Stocks

The base for Tier 1 carbon stock ranges (Chapter 4.1.1) are global averages which cause low

accuracies when used for country-specific calculations. The error estimated for the AGB range is

+/-50% and +/-90% for soil carbon pools (The Blue Carbon Initiative, 2014). This is supported by

the minimum carbon stock of Tier 1 being 17 times smaller, and the maximum stock being 5 times

larger than the Tier 2 stocks. Therefore, it is necessary to create region-specific ranges.

The uncertainties of Tier 2 estimations can be divided into two categories: calculation-based and

biological-based. A calculation-based uncertainty lies within Equation 3, which is a simplification

of the AGB:BGB-ratio variability of different species (Duarte and Chiscano, 1999). However,

species-specific ratios are not always available and its inclusion into calculations would not be cost

beneficial. Basing biomass carbon stock ranges on the proportions of species in relation to seagrass

area is favourable if the total seagrass extent was mapped. However, since the mapped Bahamian

seagrass extent is likely to only cover dense species, it would be sensible to adjust the calculations

accordingly. The division of cover classes based on probabilities, as described in Chapter 5.2.3,

could be combined with more species-specific in-situ data to create more accurate carbon stock

ranges. The use of bio-regional soil carbon was necessary due to the lack of country-specific data,

but introduces another source of uncertainty. This uncertainty has the highest influence on carbon

stock ranges since soil carbon represents the largest part of the total stock (Fourqurean et al., 2012).

Biological-based uncertainties include inter-annual productivity variations, causing most in-situ

data samples to not reflect averaged values (van Tussenbroek et al., 2014). Moreover, sampling

sites can vary in depth, influencing seagrass carbon storage capacity due to reduced photosynthe-

sis (Duarte, 1991; Serrano et al., 2014). Therefore, depth-dependent seagrass area classifications

could help to create more precise carbon stock estimations. Another factor of uncertainty is al-

lochthonous carbon, which influences the sediment carbon of samples taken from seagrass areas

within close proximity to other marine ecosystems (Kennedy et al., 2010; Santos et al., 2021).

This causes these samples to not be representative for the seagrass ecosystem. However, few pa-
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pers state neighbouring ecosystems and the possibility for allochtonous carbon.

Based on the Tier 2 assessment, Bahamian seagrass could store between 4.32 and 10.85% of the

minimum, and 2.16 to 5.42% of maximum global carbon stock estimate (Fourqurean et al., 2012).

Lovelock et al. (2017) estimates that about 50% of seagrass carbon is released within the first 10

years following meadow disturbance. If all Bahamian seagrass would be lost at once, it would

therefore cause a release of 33,3254,503.35 to 835,860,597.92 Mg of CO2 within one decade.

This equals 0.92 to 2.29% of the global emissions of 2018, and 175 to 439 times the Bahamian

emissions of the same year, underling the importance of conserving this ecosystem (Friedlingstein

et al., 2020).

5.3.2 Carbon Sequestration Potential

As with carbon stock estimation (Chapter 5.3.1), the carbon sequestration potential of seagrass

shows similar reasons for uncertainties. Sequestration rates are species and depth dependent and

show inter-annual variability (Buchan, 2000; Serrano et al., 2014). The potentials of same species

also depend on location. The dense species Thalassia testudium sequesters four times as much

CO2 per year when growing in Bahamian waters compared to Colombian waters (Dierssen et al.,

2010; Serrano et al., 2021).

According to the carbon sequestration potentials of Chapter 4.4, Bahamian seagrass could account

for 30.85 to 72.35% of the ecosystems yearly global sequestration rate (Fourqurean et al., 2012).

Its ability to sequester 17 to 40 times the amount of carbon which was emitted by The Bahamas

in 2018 suggests a carbon-positive state for The Bahamas (Friedlingstein et al., 2020). The loss

of each square kilometre of seagrass equals a sequestration potential loss of 2,600 tonnes CO2 per

year.

The successful estimation of carbon stock ranges and sequestration potentials for the Bahamian

seagrass ecosystem demonstrates the achievement of objective 3. However, it also underlines the

need for country-specific soil carbon in-situ data.
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5.4 Algorithm Scalability

Even though the use of Sentinel-2 has been proven suitable for seagrass mapping in The Bahamas,

its coverage can cause complications when used in other countries. Sentinel-2 does not cover

islands smaller than 100 km2 outside of the Mediterranean, which represents problems for many

Small Island Developing States like Mauritius. Its northern most islands, South Agalega Islands,

feature coastal seagrass meadows, which cannot be mapped by the approach in this work due to

the lack of Sentinel-2 imagery (Allen Coral Atlas, 2020). A possible solution for this could be the

integration of additional satellite missions, which cover the aforementioned spatial gaps.

The pre-processing procedure for cloud reduction worked well, but needs improvement for tropical

countries with higher cloud coverage. Even though the multi-temporal approach increases the

probability to find cloud free images for the composite, the cloud coverage of some countries is

too dense to create a useful image. Within the used years of 2017 to 2021, Sentinel-2 did not

record cloud-free images for two thirds of Kiribati. The integration of additional satellite missions

could also minimise this problem by increasing the revisiting frequency and therefore the chance

of cloud-free imagery.

The scalability of the pre-processing procedure is limited when applied to study areas with strong

turbidity, since the use of the 20th percentile increases its visibility by only using darker pixels.

Turbid waters are challenging for seagrass mapping (Chapter 2.4), creating the necessity to include

a turbidity filter before the composite is built.

The used masking methods are designed to work in different regions of the world and the land

masking accounts for two kinds of land surface. However, the correct identification of the sur-

face type is necessary, and more complex ones might make the use of other sigma and sensitivity

threshold values necessary (Chapter 3.3.4). The complexity of the Bahamian coastline already

demonstrated a challenge for this masking method, and testing it on a variety of land surfaces and

coastlines is necessary to evaluate the true scalability of the landmasking method. Both masking

methods depend strongly on the manual placement of bounding boxes, which creates the opportu-

nity to achieve strong separability between classes, but the correct placement of bounding boxes is

also time intensive.

The scalability of the supervised classification depends strongly on the available country-specific

data. If both ground truth and classified data are available, the GeoSplit and ClassBased classifica-

tion models can be adjusted accordingly. The availability of only classified data would require the
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introduction of a new classification framework, since the VD would have to be chosen differently,

ideally from a dataset of higher accuracy than the TD.

The implementation of the pre-processing and classification workflow in GEE is essential for the

scalability and replicability of this thesis. It is easily adjustable to different study areas, while

allowing for effortless code sharing. Even though GEE can handle large amounts of data and

performed well at pre-processing four years of Sentinel-2 imagery for the Bahamas, larger study

areas like Mexico might require the segmentation of the Sentinel-2 pre-processing into smaller

regions to not exceed GEEs computational power. However, this represents only a small downside

compared to the benefits brought by the use of this cloud computing platform.

The aforementioned aspects demonstrate a generally good scalability of the used algorithms but

underline the complications which can be brought about by more complex study regions and the

lack of data.
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5.5 Nationally Determined Contributions

The large amount of carbon stored in Bahamian seagrass meadows combined with their high CO2

sequestration potential underlines the importance of this ecosystem and its relevance for Bahamian

NDCs. With the potential to sequester 17 to 40 times the amount of CO2 emitted by The Bahamas

in 2018, seagrass contributes strongly to climate change mitigation actions.

Moreover, its large extent has a strong positive effect on climate change adaptation actions, since it

purifies water, acts as a nursing ground for fish, and reduces the impacts of sea level rise, flooding

and land erosion (Waycott et al., 2011; Green and Short, 2003; UNEP, 2020a; Twomey et al.,

2020).

Even though Bahamian seagrass is essential for the country’s climate change mitigation and adap-

tation actions, only 6 to 11 % of its area lies within MPAs. This shows that the focus of Bahamian

MPA design lied within other ecosystems. However, in order to preserve the country’s carbon

stock, sequestration rate, and other ecosystem services, seagrass needs to be higher prioritised in

terms of conservation.
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6 Conclusion

The aim of this thesis was to design scalable algorithms within the cloud computing platform

GEE to create country-specific multi-temporal Sentinel-2 composites, seagrass maps, and carbon

inventories for the ten countries which currently recognise seagrass within their NDCs. Due to the

limited availability of reference data, only Bahamian seagrass was classified, and its carbon stock

and sequestration potential estimated.

The developed pre-processing algorithms include environmental noise filtering and land and op-

tically deep water masking. Six classification models were designed based on ground truth and

classified data provided by the ACA. In-situ carbon data was acquired through an intensive litera-

ture review.

Based on the two classification models with the highest seagrass F1-score at 60% probability,

Bahamian seagrass covers an area of 11,779.44 km2 and the maximum 27,629.32 km2. The accu-

racy assessment analysis shows an underestimation of the mapped seagrass area, while the visual

map assessment indicates that only dense meadows were classified. Classification uncertainties lie

within the used composite and the original resolution of TD and VD. The composite shows insuf-

ficient data at tile edges, and the resolution reduction of the reference data caused mixed pixels,

which influences the classification. Compared to existing literature, the Bahamian seagrass extent

mapped in this thesis represents the smallest area.

The mapped seagrass extent can store between 181,610,083.57 and 455,509,862.63 Mg carbon,

and has the potential to sequester 31.02 to 72.75 Mt CO2 per year. This sequestration rate equals

17 to 40 times the Bahamian emissions of 2018, leading to a carbon-neutral state. Uncertainties

are brought about by the use of non-county-scale soil carbon data, calculation simplifications, and

the general variability of seagrass carbon data depending on several environmental factors.

The designed pre-processing algorithms show a good scalability for countries of similar complex-

ity to The Bahamas, but will reach limits when applied to larger study areas, regions with dense

cloud coverage, or countries with challenging land surfaces types. Depending on the kind of data

available for training and validation, the developed supervised classification models have to be

adjusted. Even though GEE has its limits when handling large amounts of data, it is an essen-

tial and powerful tool for the creation of scalable and replicable workflows which allow for easy

adaptability.
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The generated seagrass distribution maps, associated carbon stocks, and sequestration potentials

highlight the importance of Bahamian seagrass for climate change adaptation and mitigation ac-

tions, and therefore for the inclusion into the NDCs of the Paris Agreement. In order to preserve

seagrass ecosystem services, Bahamian authorities need to conserve and restore this habitat. More-

over, these data inventories yield the potential to support management efforts in terms of necessary

MPA development, as well as interdisciplinary scientific research in terms of biodiversity hotspot

identification.

The approaches developed in this thesis can contribute towards global seagrass carbon mapping,

while demonstrating the need for refined pre-processing techniques, and country-specific ground

truth and in-situ data.
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