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Abstract 
Since road surface roughness is an important factor for road safety, periodic monitoring of the road surface roughness is 
a necessity. Compared to the widely used costly, time-consuming and labour-intensive road surface roughness estimation 
using measurement vehicles all over the country, the potential of airborne polarimetric SAR to remotely estimate the road 
surface roughness is investigated in this study. The analysis of the airborne X-band polarimetric SAR datasets acquired 
by DLR’s F-SAR system over the Kaufbeuren and Braunschweig test sites revealed that the X-band airborne SAR datasets 
are sensitive to the road surface roughness. The road surface roughness results estimated using different models are dis-
cussed in this paper. 
 

1 Introduction 
The road surface roughness is one of the significant factors 
which affects road safety [1]. The road surface roughness 
has a direct influence on the friction between the road sur-
face and the tyres which affect the skid resistance of the 
vehicle [2]. The undulated vertical profile of the road sur-
face is responsible for providing friction between the road 
surface and the tyres [3]. The Root Mean Square (RMS) 
height (ℎ ) of this undulated vertical profile is consid-
ered as a measure of the road surface roughness as in (1) 
[4]. 

 

ℎ =  
∑ ℎ − ℎ

𝑛 − 1
 

 
(1) 

where ℎ  is the vertical height at location 𝑖 and ℎ represents 
the mean vertical height of the surface for 𝑛 samples. 
An optimal amount of skid resistance is required for per-
forming safe acceleration and braking. Because of these 
reasons, the road surface roughness needs to be periodi-
cally monitored to ensure that the road surface roughness 
values are in the optimal range to provide sufficient friction 
[5]. Currently, the road surface roughness is measured us-
ing measurement vehicles. But, this process is expensive, 
labour intensive, time-consuming and it is done only ap-
proximately every four years over German autobahns. 
Considering the importance of the road surface roughness 
parameter, it should be estimated more frequently, at least 
annually. This study focuses on estimating the road surface 
roughness using fully polarimetric airborne synthetic aper-
ture radar (SAR) datasets. The use of airborne SAR can 
help to estimate the road surface roughness on a wide scale 
and it is not labour intensive and time consuming compared 
to the conventional methods. 

2 Test sites and datasets 
Roads with different surface roughness values are required 
for this study. For this purpose, two different test sites were 
identified. The first test site is the Kaufbeuren airfield in 

Bavaria, Germany. It is a former military airfield that in-
cludes the runway, taxiways and parking areas composed 
of different materials like asphalt, concrete, etc. The 
Google Earth image of the Kaufbeuren test site is shown in 
Figure 1 (a). The zoomed view on the top left side of the 
image shows the concrete and asphalt sections on the run-
way. The zoomed view on the bottom right side of the im-
age shows the parking area with cracks and potholes. The 
repair works done on the runway are also visible in the 
zoomed view. 

(a) 

(b) 
Figure 1 Google Earth images of the test sites used for 
this study. (a) Kaufbeuren test site, Bavaria. (b) Wolfs-
burg motorway intersection, Braunschweig. 



The second test site is the Wolfsburg motorway intersec-
tion at Braunschweig, Germany. This test site is selected 
because of the long motorway without any disturbance 
from trees, buildings, etc. Figure 1 (b) shows the Google 
Earth image of this test site. Uniform surface roughness is 
expected at this test site. Towards the top right end of the 
image, it can be seen that there is a sudden change in the 
colour shade of the motorway. This may be due to repair 
work done at that region and a change in surface roughness 
can be expected there. 
Fully polarimetric X-band airborne SAR datasets acquired 
over the Kaufbeuren and Braunschweig test sites with 
DLR’s F-SAR system were used for this study. The details 
about the F-SAR datasets are given in Table 1.  
 
Table 1 Characteristics of the F-SAR datasets 

The datasets were acquired over the Braunschweig test site 
on 31st August 2020, and over the Kaufbeuren test site on 
4th September 2020. At each test site, several datasets were 
acquired from different directions (i.e., with different as-
pect angles) and also with different incidence angles. 
 
Table 2 Ground truth surface roughness values 

𝐺𝑇 
spot 

Surface undula-
tion (mm) 

𝐺𝑇 ℎ  
(mm) 

Remarks 

Min Max 
1 -7.09 2.73 2.36 Repeated direc-

tional grooves 
2 -3.00 2.27 0.99 Concrete, 

smooth 
3 -2.53 1.70 0.66 Asphalt, smooth 
4 -4.34 1.66 0.88 Maintenance 

work, smooth 
5 -2.45 2.26 0.68 Asphalt, smooth 
6 -4.14 2.01 0.98 Concrete, 

smooth 
7 -3.03 2.62 1.09 Concrete, 

smooth 
8 -2.38 1.91 0.61 Concrete, very 

smooth 
A ground truth (𝐺𝑇) data collection activity was performed 
at the Kaufbeuren test site on 3rd September 2020 to meas-
ure the 𝐺𝑇 surface roughness values (𝐺𝑇 ℎ ). The 𝐺𝑇 
data collection activity was performed just 1 day before the 
airborne SAR data acquisition to avoid any unexpected 
changes between the airborne SAR datasets and the 𝐺𝑇 
data. The 𝐺𝑇 data were also acquired on a dry sunny day 
to prevent any measurement errors caused due to water fill-
ing the voids in concrete and asphalt surfaces. Eight 𝐺𝑇 
spots with each of 1m2 area were identified at the Kauf-
beuren test site for the ground truth data collection. The 𝐺𝑇 
spots were distributed over the runway, taxiway, and park-
ing areas covering both smooth and rough regions made of 

concrete and asphalt. The 𝐺𝑇 ℎ  values were measured 
by laser scanning using a handheld laser scanner. The 
handheld laser scanner used for this purpose measured the 

vertical surface undulations of the road surface with a 
measurement resolution of 0.025 mm and also with an ac-
curacy of 0.025 mm. Table 1 shows the minimum-maxi-
mum surface undulations and the ground truth surface 
roughness values (𝐺𝑇 ℎ ) estimated at each of the 
ground truth spots. These 𝐺𝑇 ℎ  values can be used to 
validate the surface roughness values estimated using the 
airborne SAR datasets. 

3 Methodology 
From the SAR data, the remotely sensed parameter (𝑘𝑠) 
can be estimated which represents the effective vertical 
surface roughness. 𝑘𝑠 is a unitless parameter and the sur-
face roughness (ℎ ) can be estimated from the 𝑘𝑠 as fol-
lows [4]: 

 
ℎ =  

𝑘𝑠

(2𝜋/𝜆 )
 

 

 
(2) 
 where 𝜆  is the centre frequency of the SAR system. 

 

The block diagram to generate the surface roughness image 
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Figure 2 Block diagram of the processing scheme for 
road surface roughness estimation. 



from the PolSAR dataset is shown in Figure 2. The air-
borne PolSAR dataset were first speckle filtered using a 
3x3 Refined-Lee speckle filter [6]. After that, the speckle 
filtered PolSAR data was used to generate the 4x4 coher-
ency matrix (𝑇 ) [4]. The 𝑇  was estimated to carry out the 
additive noise estimation and minimization procedure. For 
this purpose, 𝑇  was diagonalized and the four eigenvalues 
were computed. The 4th eigenvalue (𝜆 ) represents the ad-
ditive noise (𝑁) present in the PolSAR data (𝑁 =  𝜆 ). So, 
the additive noise can be minimized by subtracting the 𝜆  
from the first three eigenvalues of the 𝑇  matrix or by sub-
tracting 𝜆  from the diagonal elements of the 3x3 coher-
ency matrix (𝑇   ) [7]. After performing the ad-
ditive noise estimation and minimization procedure, the ra-
diometrically calibrated sigma nought (𝜎 ) images were 
generated for the co-polarization channels [8]. These 𝜎  
images were used as the inputs for the road surface rough-
ness estimation models. 

3.1 Surface roughness estimation models 
SAR backscatter-based and machine learning-based mod-
els were implemented in this study to investigate the capa-
bility of these models for road surface roughness estima-
tion. The models implemented are listed in Table 3. 
The SAR backscatter-based semi-empirical models utilize 
SAR backscatter values (𝜎 ) for the 𝑘𝑠 estimation. 
 
Table 3 Surface roughness estimation models 

SAR backscatter-based 
semi-empirical models 

Machine learning-based 
models 

Dubois model 
 

New semi-empirical 
model 

Artificial Neural Network 
(ANN) regression 

 
Support vector regression 

 
Random Forest regression 

The new semi-empirical model was developed based on the 
Dubois model [9]. According to the assumptions from the 
Dubois model, a radar signal in 𝑝𝑞 polarization can be writ-
ten as a function of incidence angle, surface roughness, and 
surface moisture [10]. But, for a dry asphalt or concrete 
surface, the contribution from the surface moisture compo-
nent to the radar signal is negligible. So, for the new model 
formulation, the radar signal can be written as a function of 
incidence angle and surface roughness after neglecting the 
surface moisture component. The relationship can be writ-
ten as follows [11]: 

In the above equation, 𝜎  is the sigma nought backscatter 
value for the 𝑝 transmitted and 𝑞 received polarization. The 
term 𝛿(cos (𝜃))  denotes the relationship between 𝜎  and 
the local incidence angle (𝜃). From this relationship, it can 
be understood that the 𝜎  decreases as the incidence angle 
(𝜃) increases and this decrease in 𝜎  is higher at low inci-
dence angles and lower at high incidence angles. The sec-
ond term (𝑘𝑠) ( ) indicates the relationship between 𝜎  
and the effective surface roughness (𝑘𝑠). 𝜎  and 𝑘𝑠 have 
a power-law relationship and the sensitivity of 𝜎  to 𝑘𝑠 is 

higher at high incidence angles than at low incidence an-
gles. The sin(𝜃) term is added to the relationship to mini-
mize this incidence angle dependency. Equation (3) can be 
inverted to estimate 𝑘𝑠 as a function of 𝜎  and incidence 
angle (𝜃) as follows: 

 

𝑘𝑠 =  10

  (  ( ))

 ( )
. 

(4) 

In (4),  𝛿, 𝛽, and 𝜀 are the unknown coefficients that need 
to be estimated to solve the equation. The coefficients can 
be estimated using the 𝐺𝑇 ℎ  values, 𝜎  values and in-
cidence angle values (𝜃) at the ground truth spots using the 
method of least square-based curve fitting. 
The machine learning-based regression models used in this 
study also use the SAR backscatter values (𝜎 ) to estimate 
the road surface roughness values. The Artificial Neural 
Network (ANN) regression, support vector regression and 
random forest regression models were trained using the 
SAR training datasets and 𝐺𝑇 ℎ  values from the Kauf-
beuren test site [12]. The trained models were then tested 
on the testing datasets from Kaufbeuren and Braunschweig 
test sites.  

3.2 Sigma nought and SNR masking 
High sigma nought values not corresponding to the road 
surface can cause errors in the road surface roughness esti-
mation. The strong reflection from the lane dividers present 
in between the roads and also the strong reflection from the 
flyover walls cause invalid high surface roughness values 
which need to be eliminated. So, all the pixels with 𝜎  
greater than -10.96 dB were masked out from the final sur-
face roughness image. This threshold is determined from 
the datasets. 
Similar to the high sigma nought values not corresponding 
to the road surface, the very low signal-to-noise ratio 
(SNR) pixels can also result in unreliable surface rough-
ness estimation. The surface roughness values of the re-
gions where the SNR is less than the pre-determined mini-
mum thresholds for each model are invalid and can be ne-
glected to minimize the measurement biases/errors. 

3.3 Geocoding and Google Earth visualiza-
tion 

To visualize the surface roughness images in Google Earth, 
the surface roughness images generated were geocoded 
from the slant-range coordinate system to a geographic co-
ordinate system with a grid spacing of 0.25 m. The roads 
were then extracted from the surface roughness images 
with the help of the Open Street Map (OSM) road layer 
[13]. The OSMnx python package was used to download 
the road layers and all the surface roughness values outside 
the road layer were masked out from the final surface 
roughness image. Google Earth KML files were then gen-
erated which show the surface roughness results and the 
road boundaries. In this method, KML files representing 
surface roughness values of specific roads of interest can 
be generated by filtering using the type and names of the 
roads of interest. E.g., the filtering key “Motorway-A4” 
generates the surface roughness KML file for the motor-
way with the name A4. 

 𝜎 = 𝛿(cos(𝜃))  (𝑘𝑠) ( ) (3) 
 



4 Experimental results 
The road surface roughness results obtained by processing 
the F-SAR datasets are discussed here.  
Figure 3 (a) shows the surface roughness image of the 
Kaufbeuren test site estimated using the Dubois model. 
The surface roughness image is visualized in Google Earth 
after geocoding and masking out the regions outside the 
runway, taxiway, and parking areas. The near range and far 
range are marked in the image. Both ends of the runway 
are made of concrete and the middle region is made of as-
phalt. But in Figure 3 (a), it can be observed that at the 
near range the Dubois model is unable to differentiate be-
tween concrete and asphalt. Both concrete and asphalt ap-
pear in blue indicating similar surface roughness. But, at 
the far range, the Dubois model can clearly distinguish be-
tween asphalt and concrete. The asphalt regions are appear-
ing mainly in blue colour and the concrete regions are ap-
pearing in yellow and red colour. Also, a gradient increase 
in the surface roughness can be observed from near range 
to far range at the asphalt regions. All these observations 
point out that the surface roughness values estimated by the 
Dubois model are influenced by the incidence angle and 
the model sensitivity to surface roughness is less at the near 
range. 

The new model is developed based on the Dubois model 
assumptions, with the aim to minimize this incidence angle 
dependency problem and also to improve the overall accu-
racy of the road surface roughness estimation. Figure 3 (b) 

shows the surface roughness image generated for the Kauf-
beuren test site using the new model. By comparing Figure 
3 (b) with the surface roughness image generated using the 
Dubois model shown in Figure 3 (a), it can be seen that in 
the surface image generated from the new model, the con-
crete regions at both ends of the runway are showing a high 
value of surface roughness indicated by the yellow colour 
and the asphalt regions are showing a low value of surface 
roughness indicated by the blue colour. From this result, it 
can be clearly understood that the new model can distin-
guish between concrete and asphalt at both near range and 
far range which may also have different surface roughness. 
Also, if we look at the asphalt regions from near range to 
far range, it can be observed that the influence of incidence 
angle on surface roughness variations has reduced consid-
erably. 

Figure 4 (a) shows the surface roughness image generated 
using the new model for the Wolfsburg motorway intersec-
tion at Braunschweig, Germany, without performing sigma 
nought and SNR masking. The zoomed view in the figure 
shows a portion of the motorway where a change in surface 
roughness can be observed.  This sudden change in surface 
roughness at the motorway may be due to maintenance 
work done in that region (cf. Figure 1 (b)). In the zoomed 
view, it can be seen that two red stripes are present across 
the road indicating high surface roughness values. These 
red stripes are caused due to the strong backscatter signal 

(a) 

(b) 
Figure 3 Surface roughness images of the Kaufbeuren 
test site. (a) Dubois model. (b) new model. 

 
(a) 

 
(b) 

Figure 4 Surface roughness images of the Wolfsburg 
motorway intersection at Braunschweig. (a) without 
sigma nought and SNR masking. (b) with sigma nought 
and SNR masking. 



from the overhead signboard present there and do not cor-
respond to the actual surface roughness of that location. 
Also, the green colour present in between the two lanes of 
the motorway is caused due to the strong reflection from 
the lane dividers separating the two roads.  
Figure 4 (b) shows the surface roughness image generated 
after performing both upper sigma nought threshold mask-
ing and lower SNR threshold masking. If we compare the 
zoomed view shown in Figure 4 (b) with the zoomed view 
shown in Figure 4 (a), it can be observed that the two red 
stripes present in Figure 4 (a) due to the strong reflection 
from the signboards are not visible in Figure 4 (b) after 
upper sigma nought threshold masking. Also, it can be seen 
that the green colour present in between the lanes due to 
the reflection from the lane dividers is also removed. All 
the pixels with SNR less than 5.98 dB were masked out 
from the surface roughness image. By comparing Figure 4 
(b) with Figure 4 (a), it can be seen that some of the pixels 
corresponding to the blue colour got removed in Figure 4 
(b). These pixels were having an SNR of less than 5.98 dB. 
Both upper sigma nought threshold masking and low SNR 
threshold masking can be applied together to minimize the 
unreliable values from the surface roughness images. 

The surface roughness images generated from a single da-
taset can contain unreliable surface roughness values 
caused due to shadow areas, speckle, low SNR regions, and 
incidence angle. To minimize these errors, the surface 
roughness images generated from multiple datasets having 
different acquisition geometries can be combined together 
using a multi-dataset averaging method to generate a single 
surface roughness image. In this method, a single surface 
roughness image is generated by performing pixel-wise av-
eraging of the surface roughness results generated from 
multi-aspect angle datasets. The multi-dataset averaging is 
performed after upper sigma nought threshold masking and 
lower SNR threshold masking. Figure 5 (a) shows the sur-
face roughness image generated using the new model and 
Figure 5 (b) shows the single surface roughness image 
generated from multiple datasets using the multi-dataset 
averaging method. By comparing both images, it can be 
seen that the multi-dataset averaging image looks much 
smoother compared to the other image. All the local varia-
bilities present in Figure 5 (a) were smoothed out due to 
this multi-dataset averaging. From the zoomed view shown 
in Figure 5 (b), it can be found that the result looks much 
better than the results shown in Figure 5 (a). The repair 
works done on the runway can be seen in yellow colour and 
the surrounding regions are appearing in blue colour with-
out many variations. 

Figure 6 (a-c) are the surface roughness images of the 
Kaufbeuren test site generated using the support vector re-
gression, ANN regression and random forest regression, 
respectively.  By comparing the above three images with 

(a) 

(b) 
Figure 5 Surface roughness images of the Kaufbeuren 
test site. (a) surface roughness image generated using 
the new model. (b) single surface roughness image gen-
erated from multiple datasets using the multi-dataset av-
eraging method. 

(a) 

(b) 

(c) 

(d) 
Figure 6 Surface roughness images of the Kaufbeuren 
test site. (a) support vector regression. (b) ANN regres-
sion. (c) random forest regression. (d) new model. 



the surface roughness image generated using the new 
model (Figure 6 (d)), it can be understood that the surface 
roughness images generated by the machine learning-
based regression models are matching with the surface 
roughness image generated by the new semi-empirical 
model.  
 
Table 4 Comparison of the overall RMSE obtained by dif-
ferent models at the ground truth spots 
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0.65 0.37 0.29 0.41 0.41 0.43 

 
The RMSE values shown in Table 4 are calculated be-
tween the model estimated ℎ  and 𝐺𝑇 ℎ . From Table 
4, it can be understood that the RMSE obtained by the new 
model is much lower (0.37 mm) compared to the Dubois 
model (0.65 mm). The RMSE can be further improved by 
performing the multi-dataset averaging technique (0.29 
mm). The RMSE obtained by the machine learning-based 
models are almost the same (0.41 to 0.43 mm) and are only 
slightly higher compared to the new model RMSE (0.37 
mm). 

5 Conclusion 
This study proposes the use of high-resolution airborne po-
larimetric SAR datasets for road surface roughness estima-
tion. The X-band F-SAR datasets used in this study show 
very good sensitivity to the changes on the road surface and 
have the potential to remotely estimate the road surface 
roughness on a wide scale. The results obtained from the 
Dubois model shows that the model is biased due to its de-
pendency on incidence angle variations and also due to its 
lower sensitivity at near range. A new semi-empirical 
model is proposed in this study for the HH and VV polari-
zations based on the assumptions from the Dubois model. 
The road surface roughness results obtained from the new 
model show a very good correlation with ground truth sur-
face roughness data. Upper sigma nought threshold mask-
ing and lower SNR threshold masking were implemented 
to eliminate unreliable surface roughness values. Finally, 
the surface roughness images were generated only for the 
road surfaces and visualized in Google Earth with the help 
of the road layers from the Open Street Map (OSM). Multi-
dataset averaging technique can be used to generate surface 
roughness images with fewer local variations. The initial 
surface roughness results obtained using the machine 
learning-based models are matching with the new model 
results and show good potential for further research. In the 
next phase of this study, further experiments are planned 
using an airborne polarimetric Ka-band SAR which, due to 
the smaller wavelength, will be more sensitive to the sur-
face roughness differences. It is also planned to test the ap-

plicability of the new model on spaceborne SAR data, es-
pecially on high-resolution starring spotlight data acquired 
with TerraSAR-X and/or TanDEM-X.  
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