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Abstract: Soil moisture is one of the vital environmental variables in the land–atmosphere cycle.
A study of the sensitivity analysis of bistatic scattering coefficients from bare soil at the Ku-band
is presented, with the aim of deepening our understanding of the bistatic scattering features and
exploring its potential in soil moisture retrieval. First, a well-established advanced integral method
was adopted for simulating the bistatic scattering response of bare soil. Secondly, a sensitivity index
and a normalized weight quality index were proposed to evaluate the effect of soil moisture on the
bistatic scattering coefficient in terms of polarization and angular diversity, and the combinations
thereof. The results of single-polarized VV data show that the regions with the maximum sensitivity
and high quality index, simultaneously, to soil moisture are in the forward off-specular direction.
However, due to the effect of surface roughness and surface autocorrelation function (ACF), the
single-polarized data have some limitations for soil moisture inversion. By contrast, the results of
two different polarization combinations, as well as a dual-angular simulation of one transmitter
and two receivers, show significant estimation benefits. It can be seen that they all provide better
ACF suppression capabilities, larger high-sensitivity area, and higher quality indices compared to
single-polarized estimation. In addition, dual polarization or dual angular combined measurement
provides the possibility of retrieving soil moisture in backward regions. These results are expected to
contribute to the design of future bistatic observation systems.

Keywords: bistatic scattering coefficient; sensitivity analysis; soil moisture retrieval

1. Introduction

Soil moisture is a determining variable in earth climate dynamics [1] and plays a
necessary essential role in maintaining soil–atmosphere surface energy balance [2], crop
yields forecasting [3], hydrology, floods and droughts monitoring [4], and other agricultural
and hydrological applications [5,6]. As one of the most important tools for retrieving soil
moisture, microwave remote sensing is able to measure the electromagnetic properties of
bare soil over large areas under long-term all-weather conditions. Up to now, bistatic radar
measurements in soil moisture estimation have mainly been performed in the specular
region using the global navigation satellite system (GNSS-R) [7]. For bistatic off-specular
regions, the studies mainly oriented on the simulations at the L- or C- band based on
different scattering models [8,9]. Zeng [9] illustrated a preliminary understanding of the
radar response of bistatic scattering to soil moisture at the L band. However, the sensitivity
index used may need further improvement, as it does not consider the effect of small soil
moisture and roughness variation. On the other hand, when the changes in absolute values
of the scattering coefficients, caused by changes in soil moisture and surface roughness, are
extremely small, a sensitivity analysis is not needed. Recently studies show a strong interest
to use higher frequencies for surface parameter estimation for example, several microwave
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emissions have significant soil moisture sensitivity at the C-band, X band, and higher
frequencies such as the Advanced Microwave Scanning Radiometer, launched in 2002 [10],
and the WindSat radiometer, operating since 2006 [11]. Some researchers proved that the
backscattering coefficient at the Ku-band is also effective in soil moisture retrieval. Sano [12]
showed that the correlation of backscattering coefficients with volumetric soil moisture is as
high as 0.81 at an incidence angle of 35◦ in the Ku-band (14.85 GHz) (r2 = 0.81, slope = 0.24).
Oveisgharan [13] proposed a backscattering format and retrieved soil moisture using HH
and VV QuikSCAT (13.4 GHz) backscattered power. The results show that there is almost no
correlation between retrieved soil moisture for forested areas because of the big attenuation
of the vegetation cover and the less direct backscattering of the ground in the Ku-band.
However, as the bare surface fraction increases, the correlation between soil moisture
QuikSCAT and WindSat significantly increases and the correlation is up to 0.62 when the
bare surface fraction is in the range of 80–90%. According to Ku-band (13.58 GHz) ENVISAT
RA-2 data, soil moisture changes from 0.02 to 0.4, resulting in an increase of 5 dB in the
backscattering coefficient [14]. Although both simulations and measurements have shown
the potential of soil moisture detection at Ku-band monostatic cases, Moran [15] pointed
out that the Ku-band backscattering power is more sensitive to ground roughness than
soil moisture, which may make it difficult to estimate soil moisture. Thus, more attention
should be paid to the bistatic radar simulations and measurements to fully understand the
possibility of soil moisture inversion at the Ku-band.

Ku-band (17.2 GHz) KAPRI ground-based radar [16] was originally proposed for op-
eration in differential radar interferometry; however, in addition, it is possible to measure
the bistatic scattering response of bare soil. The main objective of this study is to investigate
the potential of the bistatic Ku-band ground-based radar for soil moisture retrieval. It
should be pointed out that the chosen high frequency of the Ku-band leads to a shallow
penetration depth, so the main research focus of this paper is the bare soil surface with low
vegetation coverage. The bistatic radar responses of soil moisture in the whole scattering
zone were simulated using the advanced integral equation model (AIEM), combined with
the local sensitivity analysis, to find the most promising bistatic configurations for soil
moisture retrieval. This study is expected to provide a theoretical basis for the subse-
quent configuration selection of the optimal design of a Ku-band ground-based bistatic
instrument.

2. Simulation of Bistatic Scattering Using AIEM

Figure 1 shows the bistatic scattering geometry. An incident plane wave from the
incident angle θi and azimuth angle ϕi impinges upon a rough dielectric surface. The
upper-medium is assumed to be a free space and the lower medium represents the bare
soil with a complex dielectric permittivity ε. The scattered wave is received at a scattering
angle θs and azimuth angle ϕs. We set ϕi = 0◦ in this paper so the incidence plane is the
x-z plane with ϕs = 0◦ or ϕs = 180◦ and the cross-plane is the y-z plane with ϕs = −90◦ or
ϕs = 90◦. k̂i and k̂s are wave vectors of transmitting (incident component) and receiving
(scattering component), respectively.

Bistatic angle β is the angle between two wave vectors derived from the geometric
relationship:

β = cos−1
(

k̂i·k̂s

)
= cos−1(cosθicosθs − sinθisinθscosϕs) (1)

The validation and effectiveness of AIEM [17] to simulate the scattering coefficient of
the bare soil surface were studied in many previous papers. The surface single-normalized
scattering coefficient has three components, namely the Kirchhoff term (k), the cross-term
(kc), and the complementary term (c). It can be written as follows:

σ0
qp = σk

qp + σkc
qp + σc

qp =
k
2

e[−s2(k2
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where q and p denote the transmitting and receiving polarization, respectively. k = 2π/λ
is the wavenumber, kx, ky, kz are the components of the wave vector along the x, y, and
z axes, respectively, in which the subscripts i and s represent the incident and scattering,
respectively. In

qp is related to soil dielectric permittivity; W(n) is the Fourier transform
of the nth power of the normalized surface correlation function of root-mean-square
height s and correlation length l. Three commonly used autocorrelation functions are
Gaussian, exponential, and 1.5 power. Besides, a semiempirical and theoretical dielectric
mixing model for 1.4 to 18 GHz was adopted in this paper to link the permittivity to soil
moisture [18]. It should be mentioned, except for the region near the null, that for most
(θs, ϕs) combinations, the differences of normalized radar cross sections (NRCS) values
between the second-order small-slope approximation and the single-scattering AIEM
are within ±1 dB [19]. In addition, the good agreement of emissivity between AIEM and
numerical Maxwell model of 3-D NMM3D for co-polarization in [20] also verified the model
performance with the whole hemisphere. In cross-polarization scattering, the multiple
scattering is dominant and the single scattering disappears in the incident plane. Thus, the
higher-order solution mainly affects the cross-polarization of the incident surface. In this
paper, we just analyze the sensitivity of bistatic co-polarized scattering to soil moisture.

Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 14 
 

 

Transmitter Receiver

Medium (2)
Medium (1)Incidence plane

 
Figure 1. Bistatic scattering geometry. 

Bistatic angle β is the angle between two wave vectors derived from the geometric 
relationship:  𝛽 = 𝑐𝑜𝑠ିଵ൫𝑘෠௜ ∙ 𝑘෠௦൯ = 𝑐𝑜𝑠ିଵ(𝑐𝑜𝑠𝜃௜𝑐𝑜𝑠𝜃௦ − 𝑠𝑖𝑛𝜃௜𝑠𝑖𝑛𝜃௦𝑐𝑜𝑠𝜑௦) (1)

The validation and effectiveness of AIEM [17] to simulate the scattering coefficient of 
the bare soil surface were studied in many previous papers. The surface single-normalized 
scattering coefficient has three components, namely the Kirchhoff term (k), the cross-term 
(kc), and the complementary term (c). It can be written as follows: 𝜎௤௣଴ = 𝜎௤௣௞ + 𝜎௤௣௞௖ + 𝜎௤௣௖ = ௞ଶ 𝑒ൣି௦మ൫௞೔೥మ ା௞ೞ೥మ ൯൧ × ∑ ௦మ೙௡!ஶ௡ୀଵ ห𝐼௤௣௡ หଶ𝑊௡൫𝑘௦௫ − 𝑘௜௫, 𝑘௦௬ − 𝑘௜௬൯   (2)

where q and p denote the transmitting and receiving polarization, respectively. 𝑘 = 2π/λ 
is the wavenumber, 𝑘௫, 𝑘௬, 𝑘௭ are the components of the wave vector along the 𝑥, 𝑦, and 𝑧 axes, respectively, in which the subscripts 𝑖 and 𝑠 represent the incident and scatter-
ing, respectively. 𝐼௤௣௡  is related to soil dielectric permittivity; W(n) is the Fourier trans-
form of the nth power of the normalized surface correlation function of root-mean-square 
height 𝑠 and correlation length 𝑙. Three commonly used autocorrelation functions are 
Gaussian, exponential, and 1.5 power. Besides, a semiempirical and theoretical dielectric 
mixing model for 1.4 to 18 GHz was adopted in this paper to link the permittivity to soil 
moisture [18]. It should be mentioned, except for the region near the null, that for most (𝜃௦, 𝜑௦) combinations, the differences of normalized radar cross sections (NRCS) values be-
tween the second-order small-slope approximation and the single-scattering AIEM are 
within ±1 dB [19]. In addition, the good agreement of emissivity between AIEM and nu-
merical Maxwell model of 3-D NMM3D for co-polarization in [20] also verified the model 
performance with the whole hemisphere. In cross-polarization scattering, the multiple 
scattering is dominant and the single scattering disappears in the incident plane. Thus, 
the higher-order solution mainly affects the cross-polarization of the incident surface. In 
this paper, we just analyze the sensitivity of bistatic co-polarized scattering to soil mois-
ture. 

3. Analysis Methodology 
3.1. Sensitivity Index 

The indices ∆𝑆(𝑠𝑚)  and ∆𝑆(𝑟𝑜𝑢𝑔)  describe the sensitivity of soil moisture and 
roughness to the scattering coefficients, respectively: ∆𝑆(𝑠𝑚) = ∆𝜎௦௠଴∆𝑠𝑚  (3)

∆𝑆(𝑟𝑜𝑢𝑔) = ∆𝜎௥௢௨௚଴∆𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 (4)

Figure 1. Bistatic scattering geometry.

3. Analysis Methodology
3.1. Sensitivity Index

The indices ∆S(sm) and ∆S(roug) describe the sensitivity of soil moisture and rough-
ness to the scattering coefficients, respectively:

∆S(sm) =
∆σ0

sm
∆sm

(3)

∆S(roug) =
∆σ0

roug

∆roughness
(4)

where ∆σ0
sm and ∆σ0

roug are scattering coefficient changes due to the moisture change ∆sm
and the roughness change ∆roughness, respectively. The higher the values, the stronger
the sensitivity, and the more beneficial to high-precision inversion to soil moisture and
roughness, respectively. Conversely, it is susceptible to interference from noise background.

3.2. Quality Index

The scattering coefficient of bare soil is mostly affected by two coupling factors at
the same time: Moisture and roughness. To invert for soil moisture, eliminating the effect
of roughness as much as possible from the scattering coefficient is necessary. The index
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I(sm) given in (5) describes the weight of the effect on the soil moisture-derived scattering
coefficient.

I(sm) =
∆Sn(sm)

∆Sn(sm) + ∆Sn(roug)
(5)

The higher the value, the stronger the dependency. ∆Sn(sm) and ∆Sn(roug) are
normalized and are dimensionless. When the index is maximum, soil moisture is the most
contributing input variable to the scattering coefficient, and surface roughness (s) can be
considered a noninfluential input. If the surface roughness has a major effect on the output,
this value is close to zero. Therefore, for soil moisture retrieval, the optimal estimation is
obtained when the sensitivity ∆S(sm) and the quality index I(sm) are high.

4. Results and Discussion

In the following results of the unit circle, the x-axis is set to sin θscosϕs and the
y-axis is set to sin θssinϕs. Thus, the slant angle of each point in the plot is tan−1 y

x ,
that is the azimuth angle ϕs, and the distance from each point to the origin point is√

x2 + y2, that is sin θs. The left and right semicircles correspond to the backward and
the forward scattering space, respectively. The horizontal axis and vertical axis represent
the plane of incidence and cross (ϕs = ±90◦), respectively. The incident angle is θi = 55◦.
The specular direction is located on the right side of the horizontal axis, shown as a
black solid point, while backscattering is located on the left side and is marked as a
white solid point. Let us first review some of the bistatic scattering polarization features.
Figures 2 and 3 are bistatic scattering coefficients obtained by changing the soil moisture
(5%, 25%, and 45%) for relatively smooth (s = λ/10) and rougher surface (s = λ/3)
conditions, respectively. From the results, it is clearly seen that as soil moisture or roughness
increases, the scattering coefficient increases in both the backward and forward directions.
The broadening of the lobe under HH polarization is mainly concentrated in the backward
direction, while for VV polarization, the broadening of the lobe is mainly concentrated
in the forward direction. In addition, the dip moves forward for HH polarization but
moves backward for VV polarization, and both become shallower as the soil moisture
increases [21]. Then, we conducted a sensitivity analysis with ∆sm = 30% when sm = 40%
and sm = 10% (ε = 17.5632 − i9.7983 and ε = 5.8807 − i0.6132, respectively) on a smooth
surface (ks = 0.628) and ∆roughness = 1.465 (ks varies from 0.63 to 2.09) for the dry soil
(mv = 10%). We also performed simulations of smaller differences with ∆sm = 5% and
∆roughness = 0.628. For correlation length l, we conducted two sets of the results at
different values of correlation length l = λ and l = λ/2. From our results, also from [22],
l has a weaker effect on scattering responses than the s; thus, we fixed it (l = λ) and can
simplify the analysis. The qualitative conclusions are similar to those shown here; thus,
they are not presented in this paper.
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4.1. Single-Polarized Simulation and Choice of Polarization

Figure 4 shows the single-co-polarized (HH or VV) sensitivity to soil moisture obtained
at the Ku-band. The sensitivity is strongly dependent on polarizations and bistatic geometry.
For HH polarization, the sensitive regions to soil moisture are almost concentrated in the
backward direction. For VV polarization, the maximum sensitivity to soil moisture is
∆SVV(sm) = 0.70 dB/% in the forward off-specular direction, which is higher than that for
HH polarization, i.e., ∆SHH(sm) = 0.36 dB/%. The above results can be explained by the
polarization features [23]. Taking the example of VV-polarization, the VV returns vanish
along the arc in the forward zone. As soil moisture increases, the pattern gets wider and
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stronger and the location of VV minima shifts toward the off-specular direction. When
observing near the minimum location for dry soil with sm = 10%, the scattering coefficient
increases significantly as the soil becomes wetter (sm = 40%) and the minimum region
moves. Therefore, we can observe the two off-specular regions with higher sensitivity in
the forward zone for the patterns in VV polarization.
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The feasibility of performing sensitivity analysis on the arcs with the lower power
needs to be studied. Figure 5 shows the relationships of bistatic scattering coefficients and
(a) soil moisture variations and (b) surface roughness variations, respectively. The geometry
is at θs = 37◦ and ϕs = 50◦, which is near the minimum region for dry soil sm = 10%. To
make the results more robust, the average of the bistatic scattering coefficients σ0

qp(sm, ks)
was calculated based on 100 randomly generated values for surface roughness (ks ~ [0.5, 3])
at a given soil moisture, as seen in Figure 5a, and for soil moisture (sm ~ [0.1, 0.6]) at a given
surface roughness, as seen in Figure 5b. From the results, the sensitivity of the HH polarized
scattering coefficient to soil moisture is extremely low, and the scattering coefficient is
greatly affected by roughness, which is not conducive to the inversion of soil moisture.
For VV polarization in Figure 5a, as the soil moisture increases, the scattering coefficients
increase. In the case of extremely low signals, and high sensitivity, it is important to be
cautions of whether the soil is facing a strong drought. When we detect a strong echo signal
and the sensitivity is relatively saturated, we need to be alert to whether the soil is facing the
risk of flooding. Except for the above two extreme cases, the change rates of the scattering
coefficients corresponding to the medium soil moisture changes are high. In addition, due
to the null region changing with the change in soil moisture, as shown in Figure 3, the echo
signal from the surface with medium soil moisture also avoids the null regions obtained by
sm = 10%, which means configurations in these arcs, as shown in Figure 4, are beneficial
to the inversion of soil moisture. From Figure 5b, as the surface roughness increases, the
VV-polarized scattering coefficient increases first and then decreases for the exponential
autocorrelation function (ACF) or becomes stable for Gaussian and 1.5 power ACFs. This
means the effect of roughness is lower than that of soil moisture. Thus, the conclusions of
the sensitivity study on the conditions of extremely dry or extremely smooth are versatile,
because in most soil conditions, the soil moisture and roughness are at a medium level.
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Figure 6 shows the patterns of the single-co-polarized quality index to soil moisture.
It can be seen that the high values of the quality index for soil moisture are in the forward
zone for both polarizations for Gaussian and 1.5-power ACF, while for exponential ACF,
the maximum regions IVV(sm) are observed in both the backward and forward scattering
zone. For the surface roughness, the quality index is opposite to the distribution of soil
moisture, where the regions show the minimum IVV(sm). In this paper, we only describe
the situation of soil moisture.
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Ku band, θi = 55◦ and kl = 6.3.

Combining the sensitivity and quality indices, VV polarization is superior to HH
polarization in retrieving soil moisture. Therefore, only the results of VV polarization are
shown below. For a more intuitive display of the promising configuration, the quality
index versus the bistatic angle is shown in Figure 7. The polar axis indicates the quality
index and the angle axis represents the bistatic angle. The sensitivity and scattering space
of each point are distinguished by different color points. We can see the obvious difference
in the distributions under the three ACFs. Before real data are obtained, it is difficult to
determine which ACF is closer to the actual surface correlation function. Therefore, the
dependence of the results on ACFs should be suppressed as much as possible to reduce
errors caused by ACF selection. According to the results in [8], the configurations with the
highest sensitivity is chosen using the following parameter set ∆SVV(sm) > 0.4 dB/%, high
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quality index IVV(sm) > 0.9, and θs < 70◦ for all three different ACFs. There are 10 results
with θs : 54◦ ∼ 61◦ and β : 102◦ ∼ 110◦ that meet the requirements in the single-polarized
case. It can be concluded that single-polarized data are seriously affected by ACF effects,
and the number of potential observations obtained is limited.
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4.2. Combination of Dual-Polarized Simulation

In the following, the study with dual polarization is conducted, opening up the
observation space to potentially improve the sensitivity to soil moisture estimation.

4.2.1. Dual Polarization Combination Simulation Case 1

Figure 8 shows the dual-polarized σ0
HH/σ0

VV sensitivity and quality index. Similar to
the results in Figure 6, the maximum sensitivity to soil moisture is obtained in the forward
direction. However, we noted a different bistatic responding pattern; the effect of the ACF
on the results is effectively suppressed by the combination of dual polarization. It can also
be seen that the region with the highest sensitivity and quality at the same time lies in
forward off-specular regions. This suggests that these two half-arc regions are beneficial to
soil moisture inversion. Besides, compared to the results in the single-polarized case, both
indices of sensitivity and quality exhibit increases in the backward region, indicating an
improved inversion ability of soil moisture in this area.

Figure 9 shows the distributions of the quality index corresponding to the bistatic
angle under the dual-polarized σ0

HH/σ0
VV case with Gaussian, exponential, and 1.5-power

ACFs from left to right. Compared to the results in Figure 5, the differences between the
distributions under three ACFs are greatly suppressed. There are 90 result points with
θs : 41◦ ∼ 62◦ and β : 88◦ ∼ 111◦ that meet the requirements mentioned in the single-
polarized case. Thus, this opens up a range of possible design solutions, and the available
angular distribution is more beneficial to the construction of the actual measurement scene
than in the single-polarized case.
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the quality index I (second line).
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4.2.2. Dual Polarization Combination Simulation Case 2

To further investigate more favorable combinations of dual-polarized measurements
for soil moisture estimation, a sensitivity analysis of

(
σ0

HH − σ0
VV
)
/
(
σ0

HH + σ0
VV
)

was con-
ducted. Figure 10 is identical to Figure 8 except for

(
σ0

HH − σ0
VV
)
/
(
σ0

HH + σ0
VV
)
. From

the pattern ∆S HH−VV
HH+VV

(sm) in Figure 10, the suppression of the ACF effect on the bistatic
scattering behavior is further enhanced in the forward region. Compared with case 1, the
sensitive region of soil moisture shifts toward the specular area in the forward zone, so its
signal level is stronger than that in off-specular regions. Most of the sensitive zones and
high-quality zones of soil moisture are overlapped in the forward specular area, which
is more conducive to parameter inversion. Again, it is noted that some highly sensitive
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regions for soil moisture are also observed in the backward direction, which probably en-
hances the application of the backward configuration in retrieving soil moisture. This can
also be confirmed in Figure 11; compared to the results in Figure 9, the regions with high
sensitivity and medium quality (0.4 < I HH−VV

HH+VV
(sm) < 0.8) can be found in the backward

direction shown as the blue circle points, which provides the possibility for soil moisture
inversion in the backward regions. Therefore,

(
σ0

HH − σ0
VV
)
/
(
σ0

HH + σ0
VV
)

seems to be a
beneficial complement to σ0

HH/σ0
VV because of larger sensitive areas, higher ACF effect

suppression, and stronger signal level.
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There are 692 result points with θs : 34◦ ∼ 69◦ and β : 89◦ ∼ 112◦ that meet the
requirements mentioned in the single-polarized case. The angular range and the number
of options are significantly increased, but it should also be noted that the sensitivity index
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of most options is at a medium level, i.e., around 0.5 dB/%. Therefore, this combination is
more suitable for soil moisture inversion under the requirement of medium sensitivity.

4.3. Combination of Dual-Angular Simulation

Figure 12 shows the dual-angular sensitivity and quality index. The dual-angular
configuration consists of a transmitter with θi = 55◦ and two receivers. Based on the
results in the single-polarized case, set the position of one receiver to θs1 = 55◦ and
ϕs1 = 20◦, and then find the optimal position of another receiver through simulation.
The plots confirm a weak ACF effect on the dual-angle measurement, especially in the
forward region, which is consistent with the results of the dual-polarization combination.
In addition, the regions with high sensitivity along two off-specular arcs are observed in
the forward region. Moreover, medium or even higher quality indices can also be found in
the backward zone.
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Figure 12. Patterns of sensitivity σ0
VV(θs1)/σ0

VV(θs2) to soil moisture between 40% and
10% (first line), and the quality index (second line).

In Figure 13, a large number of red circles lie in the radius range of 0.8–1, which
reveals the great advantages of the dual-angle-combined forward scattering coefficient in
both, obtaining high sensitivity and high quality index. The distributions of red points are
very similar under three ACFs, which suggest a powerful ACF effect suppression ability.
Although the sensitivity in the backward zone is medium (around 0.4), the dependence
of the combined scattering coefficients on soil moisture is mostly higher than 0.6, which
indicates the soil moisture is the main factor affecting combined scattering coefficients.
There are 120 satisfying options with θs2 : 55◦ ∼ 69◦ and β2 : 93◦ ∼ 112◦.
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5. Conclusions

Generally, the L- or C- band is more beneficial to soil moisture retrieval. However,
L-band bistatic systems have not existed up to now, which brings difficulties to the ver-
ification of the theory. Although the Ku-band has a short wavelength and is not ideal
for soil moisture retrieval, the moisture content of shallow bare soil can be estimated.
In addition, the sensitivity of the soil moisture to the Ku-band can be increased by ad-
justing the bistatic observation configuration, providing a good theoretical basis for our
later ground campaigns. This paper analyzed the sensitivity of the Ku-band scattering
coefficient to soil moisture under single-polarized, dual-polarized, and dual-angular com-
binations. The results show that Ku-band single-polarized data have certain limitations
for the retrieval of soil moisture. The influence of ACFs cannot be ignored when using a
single-polarized scattering coefficient, but its effects can be suppressed by a combination
of dual-polarized or dual-angular measurements. Among the combinations investigated,
under medium-sensitivity requirements,

(
σ0

HH − σ0
VV
)
/
(
σ0

HH + σ0
VV
)

is the best choice due
to higher ACF effect suppression, stronger signal level, and more options. Dual-angular
σ0

VV(θs1)/σ0
VV(θs2) measurements provide the strongest ACF suppression effect in the

forward region. The combinations of σ0
HH/σ0

VV or σ0
VV(θs1)/σ0

VV(θs2) can better meet the
requirements of high sensitivity. All three combinations offer the possibility of inversion of
soil moisture in the backward direction. Besides, we give a reference range of the receiver
angles that can be selected in different combinations when θi = 55◦ and ϕi = 0◦. With
only VV polarization, θs : 54◦ ∼ 61◦ and β : 102◦ ∼ 110 are suggested. In the case of
full polarization, θs : 34◦ ∼ 69◦ and β : 89◦ ∼ 112◦ are suggested, and in the case of two
receivers, θs2 : 55◦ ∼ 69◦ and β2 : 93◦ ∼ 112 are suggested when θs1 = 55◦ and ϕs1 = 20◦.
Although we obtain preliminary analysis results to validate the potential bistatic Ku-band
KAPRI ground-based radar in bare soil parameter retrieval, the local sensitivity analysis is
to identify the soil moisture and roughness for a given set of values. It always ignores the
interaction of parameters. Therefore, the global sensitivity analysis should be applied to
further explore the promising configuration by varying parameters in a multi-parametric
space. In addition, the rough surface we consider is isotropic, and Comite [24] described
that the presence of a larger-scale component that produces a backscattering coefficient
enhancement greater than 15 dB for the observation direction of tilled rows around 0◦

and 180◦ in the case of anisotropic surface. Therefore, the sensitivity analysis of bistatic
scattering for soil moisture retrieval under the anisotropic soil condition should be done in
the future.
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