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Abstract: Current satellite remote sensing methods struggle to detect and map forest degradation,
which is a critical issue as it is likely a major and growing source of carbon emissions and biodiveristy
loss. TanDEM-X InSAR phase height (hφ) is a promising variable for measuring forest disturbances, as
it is closely related to the mean canopy height, and thus should decrease if canopy trees are removed.
However, previous research has focused on relatively flat terrains, despite the fact that much of the
world’s remaining tropical forests are found in hilly areas, and this inevitably introduces artifacts
in sideways imaging systems. In this paper, we find a relationship between hφ and aboveground
biomass change in four selectively logged plots in a hilly region of central Gabon. We show that min-
imising multilooking prior to the calculation of hφ strengthens this relationship, and that degradation
estimates across steep slopes in the surrounding region are improved by selecting data from the most
appropriate pass directions on a pixel-by-pixel basis. This shows that TanDEM-X InSAR can measure
the magnitude of degradation, and that topographic effects can be mitigated if data from multiple
SAR viewing geometries are available.

Keywords: InSAR; TanDEM-X; forest degradation; biomass change; synthetic aperture radar; SAR;
carbon cycle; satellite data; earth observation; DLR; X-band

1. Introduction

Tropical forests play a significant role in the global carbon cycle, storing approximately
one-quarter of the carbon in the terrestrial biosphere [1] and performing one-third of
terrestrial photosynthesis [2]. Taking into account deforestation, forest degradation, and en-
vironmental stress due to climate change, these regions are becoming a net source of carbon,
which is predicted to increase in magnitude [3–6]. Monitoring the biomass dynamics of
tropical forests at fine spatial scales (<1 ha) is important if we are to estimate the magnitude
of this source and predict its impact on global climate [7]. Forest degradation, in par-
ticular, is a substantial but difficult-to-quantify driver of greenhouse gas emissions [8,9].
Degradation is broadly defined as a human-driven loss of forest biomass that does not
result in conversion to a non-forest state. It has been estimated that carbon emissions
from degradation exceed those from deforestation in the Amazon [10], and the flux from
tropical Africa could be expected to be higher still given its higher population density [5].
However, the lack of data on degradation means its spatial and temporal patterns are very
poorly known. Degradation encompasses a range of disturbance types, including livestock
grazing, wildfire and fuelwood extraction, but around half of tropical degradation is driven

Remote Sens. 2022, 14, 452. https://doi.org/10.3390/rs14030452 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14030452
https://doi.org/10.3390/rs14030452
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-1214-9414
https://orcid.org/0000-0002-5690-4055
https://orcid.org/0000-0003-3073-5668
https://orcid.org/0000-0002-1754-9302
https://orcid.org/0000-0002-4209-8101
https://orcid.org/0000-0002-4420-0384
https://orcid.org/0000-0002-1758-049X
https://orcid.org/0000-0003-3464-2186
https://orcid.org/0000-0002-2407-4026
https://doi.org/10.3390/rs14030452
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14030452?type=check_update&version=3


Remote Sens. 2022, 14, 452 2 of 24

by selective logging [11]. This form of degradation affected approximately 20% of humid
tropical forests between 2000 and 2005 [12], and has likely impacted larger areas since
then, with the global area of timber producing forests estimated to have increased by 14%
between 2005 and 2010 [13].

Disparate reporting practices, commercial sensitivities, and the fact that extracted
timber makes up a varying fraction of biomass depletion [8] all make a bottom-up approach
difficult to verify. Remote sensing is therefore well-placed to map and quantify logging
consistently at a country to pantropical scale. However, remote sensing of tropical logging
is also challenging due to the ‘selective’ nature of timber extraction, whereby only the
most valuable trees are removed. Outside SE Asia, this often means removing fewer than
one tree per ha (where each hectare contains many hundreds of trees larger than 10 cm
diameter). Although additional damage is caused by site access and timber extraction,
low-intensity logging still leaves the majority of forest components relatively unchanged.
This necessitates high spatial resolution and high sensitivity to detect it, or harder still the
difference between sustainable (e.g., following reduced impact logging protocols or FSC
practices) and unsustainable or illegal logging practices [14,15]. While there are an increas-
ing number of high-resolution optical sensors available, forest regrowth or the presence of
green sub-canopy trees and vegetation can make degraded areas optically indistinguishable
from intact forest within days-months of degradation events [16], and high cloud cover in
the tropics reduces the probability of obtaining any useful images in this period [17].

Spaceborne synthetic aperture radar (SAR) systems are advantageous in their abil-
ity to image the Earth through cloud cover, allowing monthly to weekly sequences of
high-resolution images [18]. This has led to an increased focus on SAR for forest change
detection through various mechanisms including backscatter statistics [19] and shadowing
effects [20]. An additional advantage of SAR is that the phase of the scattered signal can be
measured—this is of particular interest in high-biomass tropical forests where relationships
between aboveground biomass (AGB) and backscattered intensity saturate [21,22]. With
SAR interferometry (InSAR) it is possible to relate the phase difference between two images
to the relative vertical height of the scatterers within each resolution cell: this is termed
the interferometric phase height (hφ). Changes in hφ should, in theory, relate strongly to
the magnitude of a disturbance event within a resolution cell. However, this technique
is possible only if the phase contribution from the scattering components is stable across
the temporal baseline separating the two images. In a tropical forest, wind and rain can
cause canopy scatterers to decorrelate within minutes [23], so the temporal baseline must
be close to zero for successful extraction of hφ. The TanDEM-X SAR interferometer (TDX)
achieves this using two twin satellites orbiting in a helix formation [24], meaning images
from different angles are captured simultaneously.

Previous work has shown that TDX hφ is a promising metric for measuring changes in
forest structure. It has been shown that the temporal variability of hφ in an undisturbed
tropical forest is modest (standard deviation 0.5 m) and uncorrelated with weather condi-
tions [25]. In another study, hφ decreased by several meters in 0.25 ha areas of tropical forest
cleared for agriculture [26]. The same study found increases in hφ for undisturbed plots
over a 3.2 year period, with secondary forest plots increasing by an average of 0.8 m yr−1,
suggesting a sensitivity to biomass increases as well as decreases. Selective logging in the
same area (Tapajos, Brazil) has been quantified using a disturbance index (DI), defined by
the fraction of projected crown area removed from a 0.25 ha plot [27]. The authors used a
modeling approach to show that the DI is approximately proportional to ∆hφ/h0, where h0
is the mean canopy height relative to the topography. The lack of bare earth digital terrain
models (DTMs) for most forested tropical areas makes it a challenge to extract h0 from
TDX data, although a method has been presented to do so using the distribution of hφ in
few-look interferograms [28].

While these previous studies were conducted in areas with relatively flat terrain [25,27],
it is known that steep slopes have a strong effect on InSAR data [29]. This is potentially a
major issue, as much of the world’s forests are in steep terrain. We estimate that close to
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one-third (29%) of the world’s primary humid tropical forests are located on slopes steeper
than 10◦. We estimated this by comparing the slope of 1 arc-second resolution Shuttle Radar
Topography Mission (SRTM) data [30] to a 2001 map of primary humid tropical forest
cover [31], adjusted to account for forest losses between then and 2020 [32]. This estimate is
likely to be conservative, considering that the true topography in these regions is masked
by tree cover in the SRTM dataset. Therefore, if we aim to quantify forest degradation
across the tropics, it is vital to develop methods that are reliable in hilly areas.

The aim of this work was to predict AGB loss in an area of complex terrain, such that
artifacts due to strong slopes were minimised without compromising the ability to detect
low levels of degradation. To this end, we posed the following two hypotheses:

• Firstly, that there would exist an optimal method of spatial averaging (multilooking)
at which TDX hφ would have the highest sensitivity to degradation;

• Secondly, that selecting only data from a single orbital pass direction on a pixel-by-
pixel basis would mitigate topographic effects on predictions of AGB loss.

Our hypotheses were tested using TDX data from before and after a controlled selective
logging experiment in Gabon. A description of the study area and the TDX data are given
in Sections 2.1 and 2.2, respectively. This is followed in Section 2.3 by details on the manual
field surveys, terrestrial laser scanning (TLS) and aerial laser scanning we conducted to
provide benchmark measurements of AGB change. Section 2.5 describes the processing
chain used to calculate hφ from co-registered TDX image pairs, while our method for
aggregating changes in hφ to 1 ha scale is given in Section 2.6. The methods section finishes
with a theoretical description of how selecting a single-pass direction for each pixel is
advantageous, alongside the algorithm we used to implement this. Our results (Section 3)
show that the smallest number of multi-looks tested (3 × 3) gave the best sensitivity
to degradation, and that pass selection dramatically reduces errors due to topography.
Finally, in Section 4 we discuss the implications of our results for wide scale mapping
of degradation and contrast our findings to recently published forest disturbance alerts
derived from Sentinel-1 (S-1) C-band SAR [19] before we conclude in Section 5.

2. Methods and Materials
2.1. Study Site

The study site is located around a disused airstrip (0.148◦S, 12.264◦E) close to the
confluence of the Ivindo and Ogooué rivers in the Ogooué-Ivindo department of Gabon
(Figure 1). The nearest settlement, Ivindo village, is also an operational base for logging
company Rougier Gabon which holds concessions to extract timber from the surrounding
forest, the primary species of commercial value being Okoumé (Aucoumea klaineana). The
logging concession is certified by the Forest Stewardship Council (FSC-C144419).

Figure 1. Location of the study site at Ivindo, Gabon. Inset shows grid coordinates in decimal degrees,
and indicates the location of the four selectively logged plots in relation to Ivindo village, which is
also a base for logging operations in the region. (left, Earthstar Geographics, SIO, © 2021 TomTom;
right, © 2021 Landsat/Copernicus, Maxar Technologies).
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Mature forest is the dominant landcover in the region, the only exceptions being rivers
and some small areas cleared for habitation, agriculture, transport and logging activities.
The forest has a stem density in the range of 200 to 300 ha−1, and the tallest trees generally
reach heights of 40 to 50 m. Regionally, the forest has a high biomass density and relatively
low stem turnover (e.g., compared to many Amazonian areas) with annual mortality of
trees > 10 cm diameter estimated to be about 1% [33].

Central Gabon is one of the cloudiest regions in the world [34], and its climate is
characterised by a long dry season June–August, during which precipitation is below
1 mm/day, but extensive low cloud cover suppresses temperatures and maintains high
humidity [35]. A second dry season occurs December–February. According to TRMM
monthly precipitation estimates [36], annual precipitation at the study site is less than
2000 mm per year, and has been declining in recent years towards 1500 mm per year or
less—a trend also confirmed by nearby ground data [37].

2.2. TanDEM-X Acquisitions

The TDX mission consists of twin X-band SAR satellites that orbit in close proximity to
each other (<1 km, quantified to the nearest mm) following a helix trajectory [24]. For each
bistatic data acquisition by TDX, one satellite (the primary) acts as a transmitter-receiver
while the other (the secondary) receives the signal only. The result is therefore a pair of
images, representing the signals received by the two satellites. For this study, eight such
pairs of images were obtained from the German Aerospace Center (DLR) in coregistered
single look slant range complex (CoSSC) format. The CoSSC products were captured using
stripmap mode, used horizontal polarisation both in transmission and reception (HH),
and had an azimuth resolution of approximately 3 m [38]. The range resolution, meanwhile,
varies according to the bandwidth of the transmitted signal: those acquisitions for which a
bandwidth of 150 MHz was possible have a slant range resolution of 1.3 m, while other
acquisitions were limited to 100 MHz and have a slant range resolution of 1.9 m [38].
Table 1 shows the dates, pass directions and bandwidths of the eight CoSSC products
in chronological order, indicating also the dates of selective logging in our field plots.
The effective perpendicular baseline between the satellites and the corresponding height
of ambiguity (HoA; the vertical displacement equivalent to a 2π shift in interferometric
phase) are also shown [18].

Table 1. TanDEM-X (TDX) acquisition dates and imaging parameters. The baselines given here are
the effective perpendicular baselines. Pass directions are given as D (descending) or A (ascending).
Incidence angles are relative to vertical at the centre of each scene. HoA = Height of Ambiguity.

Date Baseline (m) Pass Direction HoA (m) Bandwidth (MHz) Incidence Angle (◦)

30 November 2019 125.4 D 53.9 100 41
22 December 2019 105.6 D 64.1 100 41

11 January 2020 71.3 A 72.3 150 33
22 January 2020 64.5 A 80.1 150 33

24 January 2020 Logging in experimental plots begins
28 January 2020 Logging in experimental plots ends

2 February 2020 56.7 A 91.3 150 33
4 February 2020 78.9 D 86.1 100 41

13 February 2020 51.6 A 100.7 150 33
15 February 2020 73.0 D 93.3 100 41
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For each pass direction, there are two acquisitions before logging and two acquisitions
after logging. It should be noted that the descending images were all limited to 100 MHz
bandwidth, meaning they have a slightly lower range resolution than the ascending images.

In general, if the HoA is less than or equal to the height of a tree, the interferometric
phase contributions from the top and bottom of the tree would differ by over 2π [26]. As the
tree height in the study area rarely exceeded 50 m (our data showed the top canopy height
to be less than 50 m for 98% of forested area), and all acquisitions have a HoA greater than
this, it is unlikely that such ambiguities will affect our results. We note, however, that HoA
magnitudes are smaller and thus ambiguities more likely in the pre-logging acquisitions
than the post logging acquisitions, and in the descending passes than the ascending passes.

2.3. Field Data

Forest inventories in four 1 ha plots were conducted in August 2019 and February
2020, to estimate biomass change from controlled selective logging in January 2020. To
improve the accuracy of our biomass change estimates, TLS was used to create structural
models of all logged trees (prior to felling). Unoccupied aerial vehicle (UAV) laser scanning
(LiDAR) data were also obtained immediately before the logging began, and then again one
year later, following the removal of logs from the inventory plots and additional logging
in the surrounding area. This allowed the creation of eleven control plots of 1 ha each,
in which the UAV data showed no significant changes in Top Canopy Height.

2.3.1. Forest Inventories

Four permanent plots were established such that they were easily accessible by UAV
from the disused airstrip and contained commercially viable trees. Each plot was rectan-
gular with one side orientated within 10 ◦of North, and an area within 10% of 1 ha. The
locations of the plot corners were measured by the integrated GNSS receiver of a Riegl
VZ-400 terrestrial laser scanner.

For the pre-logging census, conducted in August 2019, every living tree stem with
diameter at breast height (DBH) greater than 10 cm was tagged and given rough coordinates
(≈±2 m) relative to the southwest corner of the plot. At a height of 1.3 m along the stem
from the ground a tape measure was used to determine DBH according to the RAINFOR
field protocol [39]. Tree species were determined by local botanists, from which wood
density was estimated using a global database [40]. In addition, each stem was inspected
for structural damage, and categorised according to the approximate reduction in wood
volume compared to an undamaged stem of the same size (0, 10, 25, 50 or 75%). It was
noted if stems were leaning, fallen or showing obvious signs of disease or parasitic damage.

In collaboration with Rougier Gabon, trees were selected for logging such that the
plots would span a range of AGB change values, while also providing useful timber. The
logging took place between the 24 and 28 January 2020, under special permission from
Gabon’s Ministry for the Protection of the Environment and Natural Resources, Forests
and the Seas, removing 18 trees in total. The selected trees were felled in the direction
which would cause the least damage to other trees, according to standard low-impact
logging practice (the concession is certified by the Forest Stewardship Council, license
FSC-C144419).

A second census was carried out at the beginning of February 2020, in which all
remaining tagged trees were remeasured and reassessed for damage. At this stage, the logs
remained in the plots, meaning that later damage is very likely to have occurred upon the
extraction of the logs. However, the timing is appropriate for this study as it matches the
acquisition of post-logging TDX images.

Wood density for each tree was estimated at the species level from a global database [41]
where possible. Genus averages and local averages were used for trees where an exact
species match in the database could not be found. An allometric equation based on destruc-
tive harvests across the tropics [42] was used to convert DBH (D) and wood density (ρ)
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values to AGB according to an environmental stress factor (E) that averaged −0.096 across
the plots. The form of the equation is as follows:

AGB = exp
[
− 1.803− 0.976(E− ln (ρ)) + 2.673 ln (D)− 0.0299× [ln (D)]2

]
(1)

The AGB was adjusted to account for structural damage where this was recorded
in the census, and fallen stems were assigned an AGB of zero. The application of this
allometry constitutes the main source of error in field based estimates of AGB, as tree-level
values have a relative error of around 50% [42]. Furthermore, it has been found that large
trees (DBH > 70 cm) are poorly characterised by this allometry [43], in part due to the lack
of destructive harvest data from large trees, and also due to the large variation in AGB of
such trees [44,45]. This could have had a strong effect on our biomass change estimates,
as only 2–7 trees were removed from each plot, and these had a median DBH of over 100 cm.
To avoid this, we used TLS to estimate the AGB of these trees with higher accuracy and
less bias [46].

2.3.2. Terrestrial Laser Scanning

TLS surveys of all four selective logging plots were conducted in August 2019 using
a Riegl VZ-400 scanner. For each plot, two scans were obtained at every point on a
square 10 m grid aligned with the plot edges—one with the scanner orientated vertically
and another with the scanner tilted horizontally to allow for complete (and oversampled)
coverage of the hemisphere above each scan location. Highly reflective targets were used for
approximate coregistration of the point clouds from successive scan positions, which was
fine tuned using a plane-fitting algorithm implemented in Riegl’s RiSCAN PRO software.
The TLS acquisition followed the protocol of [47].

The point clouds of the logged trees were extracted from the coregistered data using
an open-source software package called treeseg [48]. These were then used to create
quantitative structural models (QSMs) according to the methods detailed in [49,50]. From
the QSMs, the AGB of each tree was estimated by multiplying the model volume by wood
density. The relative error in TLS derived AGB compared to destructive harvest values
can be as low as 3% [46], although older studies obtained 28% [43], 23% [51], and 16% [50].
From this evidence, even in a worst case scenario TLS provides a considerable accuracy
improvement compared to DBH-based allometry. Our final estimate of absolute AGB loss
for each plot was given by the sum of the TLS-derived AGB of the logged trees plus the net
change in AGB of the other trees as measured in the field survey.

2.3.3. UAV Control Plots

A canopy height change map covering 328 ha of forest around the selective logging
plots was derived from UAV LiDAR data collected in January 2020 and January 2021. A
RIEGL miniVUX-1DL discrete-return lidar was mounted to a DELAIR DT26X fixed-wing
UAV, which was flown at a height of about 140 m above the ground and at an average speed
of 17 m/s. A GNSS base station was used for post-processing kinematic (PPK) corrections to
the flight paths, which, in combination with ground control points, resulted in point clouds
with a geometric accuracy of 1.8 cm. The average point density was 240 pts m−2 [52].

Canopy height maps (CHMs) were derived at a pixel scale of 25 cm by taking the
difference between the lowest and highest returns (after noise filtering) in each cell. The
difference between the CHMs in 2020 and 2021 was taken to produce a ∆CHM raster,
and resampled to 2 m pixels. In 1 ha regions where fewer than 2% of ∆CHM pixels were
less than −5 m, we randomly selected eleven control plots, as shown in Figure 2. The
control plots are all square and orientated parallel to north. One control plot is situated on
bare ground, while the rest are all in forested areas.
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Figure 2. Top canopy height change from January 2020 to January 2021 measured using UAV LiDAR
(background image), showing decreases in three logged plots (yellow rectangles) and no major
changes inside our control plots (black squares). Note that most of the disturbances in the area
occurred after the post-logging TDX acquisitions in February 2020.

2.4. Topography of Field Site

The region covered by TDX acquisitions has elevation varying from about 300 to
700 m, while the area covered by UAV data ranges from 400 to 550 m. These values are
according to 1 arc-second SRTM data, which was also used to analyse slope steepness. As
shown in Figure 3, a significant proportion of the area covered by the TDX acquisitions
has slope > 10◦, and the distribution of slopes in the region covered by UAV lidar is
representative of this wider region.

Figure 3. Elevation and slope statistics of the study site, according to 1 arc-second SRTM data.
(Left) Elevation over the area covered by ascending and descending TDX acquisitions (dashed black
rectangles). (Upper Right) Elevation over the area covered by UAV laser scanning (red dashed line)
and containing our 1 ha plots (black and yellow rectanges). (Lower Right) Histograms of slope
steepness for the TDX footprints, UAV Lidar coverage and field plots.
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The selective logging plots include a reasonable proportion of slopes between 5 and
10◦, but are generally flatter than the surrounding topography (Figure 3). The control plots,
meanwhile, contain steeper slopes typical of the region but no completely flat areas. This
allowed us to build an empirical model relating TDX hφ to ∆AGB in flatter regions (where
logging is more likely to occur anyway), while evaluating its stability in steeper regions
using the control plots.

2.5. InSAR Data Processing

The Sentinels Application Platform (SNAP) software was used in conjunction with
custom Python scripts to process the CoSSC images. All Python scripts written in conjunc-
tion with this paper can be accessed on Github at https://github.com/harrycrstrs/tandex,
accessed on 3 November 2021. The first step was to generate interferograms by multiplying
the complex pixel values of the primary image by the corresponding conjugate values in
the secondary image. This product has an argument equal to the phase difference between
the images (the interferometric phase), which—ignoring decorrelation—is a function of the
range difference from the target to the two satellites.

Two components of the interferometric phase were estimated and subtracted from
the interferograms. The first of these was the theoretical phase that would be obtained
from a featureless surface at zero elevation, known as the ‘flat earth’ phase. Secondly,
the additional phase due to surface elevation was estimated using the 1 arc-second SRTM
DEM [30]. By subtracting the SRTM phase, we obtained a residual component representing
only the difference between SRTM and TDX hφ. This was beneficial because it reduced
the range of phase values to less than 2π, as SRTM and TDX hφ should not differ by more
than the HoA [28]. As a result, the process of unwrapping to solve for absolute phase was
considerably simplified. In summary, we calculated the phase difference between complex
signals A1eφ1 and A2eφ2 and then subtracted the flat earth phase φFE and topographic phase
φSRTM as follows:

φ = arg
(

A1 A2ei(φ1−φ2)
)
− φFE − φSRTM (2)

Noise is present in φ over vegetated areas due to volume decorrelation [53], making
it necessary to perform a multilooking step. In this study, we investigated the effect of
multilooking on TDX sensitivity to forest disturbance by processing each interferogram with
different numbers of looks, achieved by fixing the number of range looks between 3 and 32
and requiring an approximately square pixel in ground coordinates. This corresponded to
pixel spacings ranging from 5.3 m (6.0 m ) to 53.4 m (66.5 m) for the ascending (descending)
passes. We will refer to results by the number of range looks LR as this was the fixed
quantity in our processing chain.

Goldstein Phase Filtering [54] was applied to further reduce phase noise without
reducing resolution. The adaptive filter exponent, which controls the strength of the
filtering [55], was set to 0.2 (from a range of 0 to 1). This was kept low because we expected
our interferograms to contain high phase gradients—for example around canopy gaps—
which may have been smoothed over by strong filtering.

A basic unwrapping algorithm was then applied, under the assumption that no two
‘true’ phase values differed by more than 2π. This consisted of applying a constant offset δ
according to Equation (3), where i and j refer to range and slant coordinates.

φunw
ij =

{
φij + δ, if φ < 2π − δ

φij + δ− 2π, otherwise
(3)

The optimal value for δ was estimated by numerically minimising the number of
adjacent pixels that differed by more than five radians. This value is equivalent to a height
difference of 43 m for the TDX acquisition with the smallest HoA, meaning anything
beyond this could reasonably be assumed to be unphysical, considering the UAV data
showed trees higher than this to be uncommon.

https://github.com/harrycrstrs/tandex
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At this stage, most images contained a systematic phase component dependant on
range and azimuth coordinates. This ‘ramp’ is likely due to small errors in orbit informa-
tion [26], but can be corrected using standard methods. A random sample of 10,000 points
was taken from each image and fitted by least squares to a plane. The plane was then sub-
tracted from the unwrapped phases to give deramped phases according to the Equation (4),
where α, β and γ are the parameters of the plane.

φ
deramped
ij = φunw

ij − αi− βj− γ (4)

The unwrapped, deramped phase values were converted to hφ by dividing them by
the interferometric wavenumber k. This was calculated on a pixel-by-pixel basis from slant
range Rij and incidence angle Θij, according to Equation (5), where Be f f is the effective
perpendicular baseline [56].

kij =
4πBe f f

Rijλ sin(Θij)
(5)

Finally, the SNAP tool for range-doppler terrain correction was applied using the
SRTM 1 arc-second DEM, thus transforming the images into geographic coordinates.

2.6. Multilooking

A quantitative analysis in [26] shows that TDX hφ is typically located within 1 m of
the mean height of the X-band radar scattering profile. In the case of a tropical forest, we
can relate this to the spatial distribution and sizes of leaves and branches—the higher these
scattering surfaces are, the higher hφ will be. Under the assumption of stable topography,
we can therefore relate changes in successive measurements ∆hφ to changes in vegetation
structure. Specifically, we hypothesised that plots with the highest intensity logging and
greatest losses of AGB would show the largest reductions in hφ.

However, changes at the pixel level will occur for a number of reasons, including
variations in sensor geometry and movement of scatterers in the canopy. For this reason,
it seems desirable to use a large number of multilooks in order to average out these
variations. Previous studies examined phase changes at a scale of 50 m [26,27]. On the
other hand, it is important to recognise that variations in hφ are related to the vertical
structure of tropical forest, rather than being simply ‘noise’, meaning that spatial averaging
risks the loss of useful information [57]. The X-band signal is able to penetrate through
small gaps, resulting in a few-look hφ distribution that correlates strongly with forest
height [28]. Our first analysis, therefore, was to compare relationships between ∆hφ and
∆AGB from selective logging at different levels of multilooking, to determine the optimal
level for quantification of biomass change. It should be noted here that by multilooking,
we specifically refer to spatial averaging of the complex radar signal, as opposed to spatial
averaging of hφ, which was performed in all cases.

We estimated hφ changes in the logged plots according to Equation (6), where hpre
φ and

hpost
φ indicate the mean of pre- and post-logging images, respectively. The sum was taken

over all pixels intersecting with a 10 m buffer around the plots, to allow for the fact that
some logged trees fell outside of the plot boundaries.

∆hplot
φ = ∑

plot

(
hpost

φ − hpre
φ

)
(6)

To ensure spatial averaging was performed over the same area at each level of multi-
looking, all images were resampled using the nearest neighbour method to the coordinates
of the first 3 × 3 look ascending image. Although each hφ layer contained an arbitrary
constant, no calibration was required because our analysis was concerned only with the
spatial variation in ∆hφ. Instead, the resulting constant term in ∆hφ was approximated by
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assuming the average change over the image was zero. For this part of the analysis, all
acquisitions from both pass directions were used.

2.7. Combining Pass Directions

In hilly terrain, it is inevitable that some slopes will face towards the SAR sensor,
resulting in small local incidence angles θi. This degrades the range resolution on the
ground and leads to poor coherence [58–60], as reflections from across such slopes are
compressed in the slant range direction, as illustrated in Figure 4a,b.

Figure 4. Effect of steep slopes on InSAR signal. (a) Where slopes face towards the sensor, the local
incidence angle θi becomes small. (b) Considering the range resolution of the sensor RS, each
resolution cell contains an excessive volume of vegetation and an extended area of ground, leading
to poor angular coherence in the scattered signal. The opposite case is shown in (c) where the slope
faces away from the sensor, leading to large θi. (d) For the same RS, fewer scattering components are
present in each resolution cell.

In contrast, slopes facing away from the SAR sensor with large values of θi lead to
smaller areas of ground and less vegetation in each range bin, as shown in Figure 4c,d.
Small values of θi can be suppressed by fusing data from multiple pass directions: a
technique previously shown to improve DEM creation and water body detection using
TDX data [61]. To quantify this, we consider how θi relates to viewing geometry and
topography. Specifically, it may be expressed in terms of terrain slope from horizontal S,
slope aspect from north a, sensor azimuth angle from north z and radar incidence angle to
the vertical θ0.

θi = θ0 + S cos(a− z) (7)

An illustration of θi(a) for fixed S is shown in Figure 5a. By the nature of a sun-
synchronous orbit (such as the one used by TDX) the azimuth angles for ascending (zA)
and descending (zD) passes are fixed for a given scene. Slope aspect, on the other hand,
may be anything between 0 and 360◦. Therefore, for a given S, we can write the lower
bound of θi for each pass.

argmin
[
θi(a)

]
=

{
θA

0 − S, when a = −zA for ascending passes
θD

0 − S, when a = −zD for descending passes
(8)
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If we allow the possibility of flexibly choosing either pass for a given slope and aspect,
then the minimum value of θi can be increased if the ascending and descending curves
cross, that is, if there is a value of a which satisfies:

θA
0 + S cos(a− zA) = θD

0 + S cos(a− zD) (9)

This equation has a solution when the following condition is met:

S ≥
|θD

0 − θA
0 |

2
(10)

In other words, selecting from multiple pass directions mitigates small θi for slopes
greater than a critical angle, equal to half the difference between the ascending and de-
scending nominal incidence angles. Below this threshold, one pass always has higher θi
than the other. Intuitively, the magnitude by which θi is enhanced will be greatest when
zA − zD = 180◦, that is, when the cosine terms in Equation (7) for the two passes are per-
fectly out of phase. In this situation, slopes that face towards the sensor during one pass face
away from it during the opposite pass. As sun-synchronous orbits are nearly polar, the re-
ality is not too far away from this ideal condition—for our TDX scenes zA − zD = 157.4◦.
While Equation (9) has no analytical solution, a numerical result is shown in Figure 5b,
confirming that θi enhancement is strongest for the steepest slopes.

Figure 5. Analysis of local incidence angle θi as a function of pass direction, slope (S) and aspect,
as given by Equation (7). For our TDX scene, zA = 79.4◦ and zD = 282.0◦. (a) For a given steepness
of slope, θi varies with the cosine of aspect. As zA − zD is close to 180◦, the curves for the two pass
directions are highly out of phase. (b) The minimum possible θi is shown as a function of terrain slope
for each pass, and for the case where pass is chosen flexibly. The dots highlight the corresponding
points between the two graphs, which share the same y-axis.

To test if pass selection provides more stable results in practice, we estimated degra-
dation across the AOI using four different methods. The first two methods used one
acquisition of each pass direction from before and after the selective logging event. For the
naive averaging method, the change in hφ for each pixel was calculated using data from both
pass directions according to:

∆hφ = 0.5× ∑
A,D

(
hpost

φ − hpre
φ

)
(11)

where the sum is over ascending and descending passes. In contrast, the pass selection
method used the estimated projected local incidence angle (based on SRTM data) θi and
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median coherence values for each pass γ to determine which pass direction to use for each
pixel, according to the algorithm shown in Equation (12).

∆hφ =


[hpost

φ − hpre
φ ]A, if θA

i > 20◦ + θD
i

or (|θD
i − θA

i | ≤ 20 and γA > γD)

[hpost
φ − hpre

φ ]D, otherwise

(12)

The coherence was used for flatter areas as topographic features < 30 m in size may not
be well represented in the SRTM data, and because other factors (such as range bandwidth)
also have an effect on image quality. Areas that had low coherence in both pass directions
(γ < 0.4) were masked. In addition, an ascending only estimate was obtained using all
four ascending acquisitions, and a descending only estimate was obtained using all four
descending acquisitions. For these estimates, pixels for which γ < 0.4 were masked,

and ∆hφ was simply taken as hpost
φ − hpre

φ .
For each method, ∆hφ was averaged to a pixel size of 1 ha. Then, a linear model—

the parameters of which were determined by comparison to our field data—was used to
produce estimates of ∆AGB.

3. Results
3.1. Field Measured Biomass Change

Of all measured stems in the four selectively logged plots, wood density was estimated
at the species level for 42% and at the genus level for 27%. The remaining 31% were
assigned the average wood density of the other stems within that plot. For the logged trees,
TLS modeling and allometry gave broadly similar estimates of AGB. The mean absolute
difference between the two methods at the tree level was 2.4 Mg, and overall allometry
estimated 6% less AGB in all 18 trees compared to TLS.

The initial AGB in the four selectively logged plots varied from 400 to 570 Mg ha−1.
The losses incurred due to logging ranged from 28 to 131 Mg, representing percentage
losses of 7% to 23%, as shown in Table 2. The lower end of this scale (plots 2 and 3) was
proportionate to losses that might be expected from naturally occurring tree mortality.
Meanwhile, the higher intensity logging that occurred in plots 1 and 4 was representative
of a significant disturbance such as targeted logging and timber extraction.

Table 2. Aboveground biomass (AGB) and AGB loss of four 1 ha selectively logged plots, measured
by field inventory and terrestrial laser scanning (TLS).

Plot Pre-Logging AGB (Mg ha−1) Trees logged ∆AGB (Mg) ∆AGB (%)

1 570 ± 40 7 131 ± 13 23 ± 3
2 400 ± 30 2 28 ± 5 7.1 ± 1.3
3 440 ± 30 4 55 ± 7 12.6 ± 1.8
4 470 ± 40 5 109 ± 10 23 ± 3

3.2. Effect of Multilooking Parameters on Biomass Change Estimation

Our analysis found that minimising the level of multilooking (LR = 3) provided
the strongest relationship between ∆hφ and ∆AGB. We determined this by fitting linear
models to the plot averaged ∆hφ and the AGB losses reported in Table 2. The sensitivity
to ∆AGB was then defined simply as the linear coefficient in the model, that is, the drop
in hφ expected per Mg of AGB loss. As shown in Figure 6, this value was 2.3 cm per
Mg when using LR = 3, and generally decreased with increasing LR. The correlation
coefficient for the LR = 3 linear model was 0.996—greater than the value for any other level
of multilooking, thus we are confident that our result is the product of a robust trend and
not chance.
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In addition, variability in the control plots where no logging took place was minimised
by the same level of multilooking. Figure 6 shows that the control plot standard deviation
of ∆hφ was 0.66 for LR = 3 and steadily increased with increasing LR. This shows that
in addition to being more sensitive to AGB losses, fewer-look interferograms were more
stable at the 1 ha level for regions where no changes occurred.

Figure 6. (black, left hand y-axis) Modeled drop in phase height (hφ) in cm per Mg of AGB loss,
calculated for various levels of multilooking. (green, right hand y-axis) Standard deviation of ∆hφ for
the 11 control plots, plotted against multilooking level.

It should be noted that we do not attempt here to justify the use of a linear model
over more complex forms through any theoretical means. All four plots were located in
the same region and had fairly similar structures and canopy heights, meaning that it
would not have been meaningful to attempt a model including other forest variables in
this case. With this in mind, our results do show a strong linear trend. We demonstrate
this for the case of LR = 3 in Figure 7a, which shows the line of best fit and uncertainties
associated with ∆AGB and ∆hφ (we estimated uncertainties in ∆hφ using the coherence
and the Cramer–Rao bound [18]). For comparison, Figure 7b shows the case of LR = 32,
for which the linear trend is still plausible, but significantly weaker.

Figure 7. Relative hφ change between pre-logging and post-logging TDX acquisitions for the four 1 ha
logging plots, plotted against field measured ∆AGB. Multilooking was set to 3× 3 (a) and 32× 32 (b).
Linear fits are shown in grey.

3.3. Effect of Terrain on Coherence

Terrain aspect, slope, and bandwidth were found to be strong drivers of interferometric
coherence. We assessed this using SRTM data at 30 m resolution and TDX interferograms
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of opposite pass directions multi-looked to a pixel size of 30 m. In agreement with the
theory presented in Section 2.7, the results showed that where slopes faced away from the
sensor, coherence was generally good, even for steep slopes (up to around 25◦). On the
other hand, coherence rapidly deteriorated with slope steepness for aspects facing towards
the sensor. However, as the azimuth angles of ascending and descending passes differed by
157◦, almost all terrain had good coherence for one of the pass directions. This is illustrated
in Figure 8, which also shows that ascending pass had higher coherence overall, likely due
to its larger radar bandwidth and despite the smaller nominal incidence angle.

Figure 8. Heat map of average coherence for 30 m TDX pixels binned by SRTM slope steepness and
aspect for an ascending pass and a descending pass. Red lines indicate the azimuth direction for each
pass, which represents the aspect at which slopes face away from the sensor.

3.4. Importance of Multiple SAR Geometries for Noise Reduction

Overall we found the pass selection method to be highly successful in removing any
relationship between observed ∆hφ and local incidence angle. In the overlapping region
between the TDX passes, pass selection produced values of ∆hφ that were effectively not
biased by topography at all, with no change in ∆hφ (Figure 9a) or its standard deviation
(Figure 9b) as θA

i varies. This is in contrast to the case where both pass directions are
averaged; using this method, regions of strong slopes showed large decreases in hφ and
large variability.

Selecting pass direction on a pixel-by-pixel basis also led to improved stability of ∆hφ

in our control plots (see Table 3). The standard deviation of ∆hφ amongst those eleven plots
where no logging took place was smallest (0.46 m) when using the pass selection method
and largest (0.60 m for ascending and 0.83 m for descending) when using only a single-pass
direction. We stress here that we used the same number of TDX images for each method,
so this result cannot be attributed to simply an increase in data input.

At a scale of 1 ha, the pass selection method produces a more plausible map of
predicted biomass loss. A comparison of this potential degradation map to the naive
averaging method is given in Figure 10. It is clear that naive averaging results in a gross
over-estimate of biomass loss: 5% of the 1 ha pixels in this map report a reduction in AGB
of over 100 Mg. This magnitude of loss would indicate widespread tree felling across the
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entire study area, which is extremely unlikely given the short time span and the fact that
much of the region is outside of the logging concession and within a national park.

Figure 9. Statistics of ∆hφ at the (3× 3 multi-looked) TDX pixel level, binned by estimated local
incidence angle for the ascending pass, which is essentially a proxy for terrain slope. Results
obtained by averaging data from different pass directions (blue) is compared to results obtained by
selecting pass direction at the pixel level (black). (a) Pass selection mitigates bias in the mean, and
(b) reduces variance.

Figure 10. Maps of potential forest degradation based on TDX hφ change, ranging from grey (no
detectable AGB loss) to dark red (>130 Mg AGB loss per ha). (a) Averaging changes across both
pass directions led to a severe over-estimation of degradation. (b) Selecting pass at the pixel level
mitigated topographic artifacts: the method we recommend here.
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Table 3. Stability of ∆hφ in eleven control plots where no logging took place, by the four methods
described in Section 2.7.

Method Standard Deviation of ∆hφ (m)—Control Plots

Pass selection 0.46
Naive averaging of passes 0.52

Ascending passes only 0.60
Descending passes only 0.83

4. Discussion

We found that the selection of the optimal TDX pass direction for each pixel removes
the sensitivity of interferometric phase height change (∆hφ) to incidence angle (θi). In
our case, with images spanning about a month, this led to a plausible map of forest
degradation over a study area. The measured ∆hφ responded well to the magnitude of
change in our field plots, but whether this holds for areas of higher slopes remains currently
unvalidated with field data; however, it appears plausible. This suggests that, even in
hilly areas, X-band InSAR appears to be a useful method for quantitatively mapping the
presence and magnitude of biomass change, provided images are captured from ascending
and descending passes. With one pass only, errors on slopes facing the sensor are large,
and likely impossible to correct in post-processing.

Unlike the majority of current methods for large-scale degradation mapping, which
output binary results [62], our InSAR approach provides a measure of the magnitude of
biomass change (Figure 7). There is a need for measurements of this kind because countries
are required by the Intergovernmental Panel on Climate Change to report the biomass ex-
tracted during commercial felling as an immediate carbon emission [63], regardless of how
the timber is subsequently used. A binary indicator of degradation could mask differences
in emissions intensity spanning an entire order of magnitude, and such differences are not
random: they are driven by the type and intensity of degradation, for example the number
of logged trees and reduced impact logging practices. This means that spatial averaging
will not be sufficient to estimate carbon losses based on a binary map of degradation. Such
maps would therefore force policy makers to assume that regions undergoing the most
degradation by area are the most at risk, despite the fact that these regions could be experi-
encing lower levels of biomass depletion than other regions with localised but more intense
degradation. While lidar surveys by UAV or plane can provide more accurate quantitative
measures of forest structural change, it is not feasible to make regular surveys spanning the
whole of the tropics with these platforms. Spaceborne InSAR, therefore, appears to be a
promising approach to fully quantifying carbon emissions from forest degradation.

An additional advantage to our approach is that it can detect changes in humid tropical
forests throughout wet and cloudy seasons, during which cloud-free optical imagery is
rare. Especially in central Africa and SE Asia, where cloud cover is high all year round,
this is vital to producing accurate degradation maps. Relying on optical data could—at
best—lead to lag times of a year or more before degradation is detected, and at worst, could
result in degradation in cloudy regions being missed entirely.

Our study highlights the uniquely rich data of TDX. It is important, however, to note
some limitations of this sensor. The main objective of the TDX mission is to create a
worldwide DEM, and as such, its acquisition program is not optimised for tropical forest
monitoring. Acquisitions for science applications cannot be requested for particular dates,
as they must be taken in the gaps between the systematic DEM acquisitions, meaning that
regular repeat times are not guaranteed [64]. While TDX has already surpassed its design
lifetime, it is predicted to continue performing well for several more years [64], potentially
providing more opportunities during the 2020s for experimental acquisitions. A number of
new X-band SAR constellations are now being developed commercially (such as Umbra,
ICEEYE and Capella Space), but we are not aware of any that will attempt to replicate the
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bistatic formation of TDX required for coherent interferometry of forests. It may be crucial,
then, to make use of this novel imaging mode for scientific purposes while it is available.

4.1. Importance of Multiple Geometries in SAR Acquisition

Our results show that collecting SAR imagery from both ascending and descending
passes leads to a transformational improvement in the quality of interferometric data over
tropical forests, even in areas of moderate topography. This improvement comes about
directly from the multiple viewing geometries (because slopes greater than 10◦ lead to
poor coherence when facing away from the sensor) and is not related to the overall volume
of data. If anything, our results suggest that fewer acquisitions with multiple geometries
would be far more useful for this application than a dense time series where every image is
from the same pass direction.

This finding adds to the list of applications where multiple geometries are known
to be beneficial. This includes the use of S-1 SAR shadows to detect patches of tropical
deforestation [20]. Furthermore, Du et al. showed that multiple geometries also leads to
improved accuracy in detecting waterbodies with TDX data, as well as creating DEMs
in complex terrain, including urban environments [61]. Multiple passes are also impor-
tant when using InSAR to precisely track targets in 3D, such as ice flows [65], artificial
reflectors [66], or geological faults [67].

Despite this, multiple geometries are not always prioritised by spaceborne SAR acqui-
sition plans. In the case of TDX, a second global DEM is currently being produced, but this
relies on a single acquisition for “considerable areas”, meaning that many changes in these
regions could be masked by topography [68]. Furthermore, the S-1 mission only ever
collects one pass direction for vast swathes of the Brazilian Amazon and central Africa [69].
Although bistatic interferometry is not possible with S-1, this still raises the concern that
change detection in tropical forests could be adversely affected. To ensure total coverage,
future SAR missions should aim to pass over all areas of interest in both directions.

4.2. Importance of Few-Look Interferograms

A strong relationship between TDX hφ and AGB change was obtained by using few-
look interferograms. It should be stressed that we still averaged values of ∆hφ to a 1 ha
pixel size to generate maps of degradation: our finding is that performing this averaging on
the real valued hφ pixels was more effective than averaging the complex valued SAR signal.
This suggests that the distribution of single look phases contains valuable information
relating to the distribution of scatterers in dense vegetation, and should not be thought of
as “noise” to be smoothed out.

The minimum number of looks we tested was 3× 3, and this gave us the best sensitivity
of ∆hφ to ∆AGB. It may be possible to attempt an analysis using even fewer looks or no
multilooking at all, but the computational requirements may become disproportionately
large. On the other hand, it may be that different levels of multilooking can provide
complementary information. Future work could investigate this by using multiple layers
to take into account changes across different scales.

Our finding is in agreement with a previous study that used few-look TDX interfer-
ograms to estimate forest height [28]. This was achieved by approximating the ground
phase as µ − 2σ, where µ was the mean and σ the standard deviation of phase values
over an area of 1 ha. Our results show that few-look interferograms are useful not just for
estimating the ground elevation, but also for detecting structural changes throughout the
vegetation profile.

4.3. Evaluation of Predicted Biomass Loss Maps

In addition to demonstrating the importance of multiple pass directions and few-look
interferograms, we also extrapolated our method to the area of 115,370 ha over which
the ascending and descending TDX passes overlapped. A cluster of severe biomass loss
is discernible in the predicted map (Figure 10b) around (12.4, −0.1). We are aware that



Remote Sens. 2022, 14, 452 18 of 24

logging operations were happening outside of the controlled plots at the time of the TDX
acquisitions, in a limited geographical area to their north and east. While the cluster of
loss may correspond to those logging operations, no data on their precise location has been
published yet. Outside of this cluster, the map mostly indicates a random distribution of
small disturbances which could realistically occur naturally as larger trees die, as well as a
concentration of degradation in close proximity to the section of railway line leading to
Ivindo village, where additional human disturbances might be expected due to accessibility.

Some topographic effects do still persist when using the pass selection method, al-
though they are less pronounced than when using the naive method (Figure 10a). These
residual effects are illustrated in Figure 11, where spatial patterns of biomass loss match
regions of steep topography. Additional artifacts are present where changing water levels
may have exposed islands in the wide rocky rivers, but it is possible to mitigate these using
a forest/non-forest mask.

Figure 11. Example of topographic artifacts in TDX predicted degradation. (a) SRTM elevation;
(b) potential degradation using naive averaging method; (c) potential degradation using pass selec-
tion method.

4.4. Comparison to Other Forest Disturbance Products

Here we make a brief comparison of our results to the RAdar for Detecting Defor-
estation (RADD) disturbance alerts [19]. This product maps and estimates the date of
disturbances greater than 0.2 ha in size by detecting changes in S-1 backscatter [19]. Al-
though S-1 has a lower resolution than TDX at around 20 m [70], it provides the advantage
of regular repeat passes (every 12 days over our study area) which allow long time series
to be analysed. S-1 data is also publicly available and has global coverage, giving it huge
potential for large-scale forest monitoring.

We compared RADD disturbance alerts from January 2020 onwards to our TDX
derived estimates of degradation, using 3× 3 looks and the pass selection method. In the
cluster of degradation visible around the centre of our TDX scene which may be associated
with logging activity, we found disturbances that were a spatial match across both data sets
(see, for example, Figure 12).

Overall, 11.6% of RADD alerts in the first half of 2020 coincided with areas where
TDX ∆hφ was less than −1.5 m, compared to a baseline of 1.5% across the study area,
further suggesting some crossover in the events being detected by the two approaches. We
included a time period extending beyond our final TDX acquisition to account for the fact
that the statistical method used to generate RADD alerts may lead to late detections [19]. On
the other hand, the remaining 88.4% of TDX degraded area was not captured in the RADD
alerts. This is likely to be due in part to the ability of TDX to pick up disturbances smaller
than the 0.2 ha minimum mapping unit in the RADD product, which was comparatively
insensitive to low level degradation. We found the RADD product was most sensitive
to degradation events that caused TDX hφ to decrease by around 2 m or more, as shown
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in Figure 13. Although ∆hφ exceeded this 2 m threshold for two of our measured plots,
the RADD alerts did not detect those events, suggesting that selective logging events of this
kind are not spatially continuous enough to present as a disturbance greater than 0.2 ha,
despite the fact that more than five large trees were removed from each hectare of forest.

Figure 12. (a) Predicted biomass loss from TDX data using the pass selection method (same as
Figure 11c). (b) Radar for detecting deforestation (RADD) forest disturbance alerts from January and
February 2020 over the same area.

Figure 13. RADD forest disturbance alert rate (area of alerts in the first half of 2020 divided by total
area) is shown as black dots, binned by magnitude of TDX hφ change. The total area in each bin is
indicated by the bar chart. Alert levels increase with the magnitude of degradation predicted by TDX.

In addition, our biomass loss map is likely to contain commission errors due to phase
noise and topographic effects. Unfortunately, quantifying the rate of commission error
would only be possible given a high-resolution degradation dataset of known accuracy,
which does not yet exist for our study area. We can show, however, that TDX predicts a
wider area of forest disturbance than the RADD alerts. This is demonstrated in Table 4,
where for comparison we also include the University of Maryland (UMD) forest loss
product [32] generated using optical data from the Landsat missions.

As expected, the UMD product detects much less disturbance than the radar products,
as it is cloud limited and operates at too coarse a pixel size (30 m) to quantify selective
logging. Our method using TDX appears to detect much more widespread forest distur-
bance than the RADD alerts, and this ratio is dependent on the temporal accuracy of the
RADD alert dates (which is unknown) and the phase height decrease that is defined in this
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scenario as a disturbance. This comparison is somewhat limited by the fact that the TDX
data use the statistics of a region to estimate a continuous variable (biomass loss), while
the UMD and RADD systems work by classifying individual pixels as either disturbed or
undisturbed. Nevertheless, it is clear that TDX phase height could have the potential to
reveal lower intensities of forest degradation than these products if the false alarm rate is
properly quantified.

Table 4. Total estimated area of disturbance in our study area according to TDX phase height, Radar
for Detecting Deforestation (RADD) alerts generating using S-1 data, and University of Maryland
(UMD) forest loss for the year 2020. TDX and RADD are analysed at different cutoffs for phase height
decrease and date of detection, respectively.

Product Predicted Area of Disturbance (ha)

TDX ∆hφ < −1 m 1013
TDX ∆hφ < −1.5 m 252
TDX ∆hφ < −2 m 68

RADD (01/01/20 to 29/02/20) 7
RADD (01/01/20 to 31/04/20) 13
RADD (01/01/20 to 31/12/20) 80

UMD (2020) 13

4.5. Limitations

While our method has been shown to reduce topographic artifacts in TDX hφ, it is yet
to be shown whether it provides accurate estimates of ∆AGB in areas where degradation
and steep slopes coincide. The local angle of incidence should affect the penetration of
X-band radar into canopy gaps, with steeper θi leading to deeper penetration [28]. It would
therefore be expected that the relationship between ∆hφ and ∆AGB is in turn parameterised
by θi. For this to be tested, temporally matching ground change data over steep slopes
and satellite data would be required. Although our UAV lidar coverage includes steep
terrain, no TDX acquisitions from the time of the second field campaign (January 2021)
were available for comparison.

A further limitation of our ∆AGB estimates is that they are restricted to a small range
of values (losses between 40 and 130 Mg ha−1). This is again due to the nature of our
field data, which consisted of plots which lost up to 130 Mg of AGB. To obtain accurate
estimates of landscape scale biomass change, an important step will be to include reference
measurements spanning the full range from deforestation to forest regrowth. Furthermore,
a larger number of ground based measurements are required to improve the statistical
significance of the relationship we found. To do so, follow-up studies at this site should
utilise the multi-temporal UAV lidar as a stepping stone between field measurements and
satellite imagery.

In order for our method to be applicable in other regions, two other points must be
considered. Firstly, in our plots, small numbers of large, merchantable trees were felled,
which reflects one type of degradation seen in tropical forests, but does not match the
structural changes typical of, for example, understorey clearing, fire, fuel-wood harvesting
or road construction. As these changes remove different components of the forest at
different heights, they will be likely to have a different effect on TDX hφ. Therefore,
to develop a general degradation model, reference measurements should include alternative
forms of degradation. Secondly, we have not considered in this study the importance of
initial forest height and structure. Modelling suggests the magnitude of ∆AGB for a given
∆hφ is heavily dependent on forest height [28]. Studies across different tropical forest types
will therefore be necessary to develop a generalisable model of ∆AGB, and methods of
estimating forest height from satellite products, such as using GEDI-TDX fusion [71], will
also need to be refined.
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5. Conclusions

TDX hφ is a remote sensing variable capable of measuring the relative magnitude of
selective logging events in a dense tropical forest. We found a linear relationship (r > 0.99)
between ∆hφ and biomass change in four plots where ∆AGB varied from −28 Mg ha−1

to −131 Mg ha−1. The variation in ∆hφ amongst eleven control plots suggested that the
minimum detectable change was approximately −40 Mg ha−1.

Fewer looks of the radar signal (before calculating hφ) leads to the best sensitivity
to forest degradation. We found the strongest relationship between ∆hφ and ∆AGB was
obtained for the smallest number of looks that was tested (3× 3). In this case, we found a
sensitivity of 2.3 cm hφ decrease per Mg of AGB lost, which was greater than for any larger
number of looks. The standard deviation of ∆hφ amongst the control plots was 66 cm,
which was more stable than for any larger number of looks.

If only a single-pass direction is available, steep terrain leads to large magnitude arti-
facts due to decorrelation on the slopes facing towards the SAR sensor. Neither ascending
only or descending only passes showed more stability over our control plots than any
method using both passes, even when the total number of images used was fixed. This can
be attributed to a rapid loss of coherence with slope steepness for aspects differing from
the azimuth angle by more than 90◦.

Where multiple pass directions are available, they can be most effectively utilised
through a pixel-by-pixel pass selection algorithm. The issue of decorrelation on sensor-
facing slopes can be mitigated because these regions will face away from the sensor when
it is passing in the opposite direction. We designed an algorithm that chose to estimate
hφ either from ascending or descending acquisitions, based on estimated projected local
incidence angle and coherence. Our pass selection algorithm performed significantly better
than a simple averaging of pass directions, producing a map of degradation that was less
biased by topography, more stable at the pixel level, and more plausible considering our
knowledge of the study area. The accuracy of our predicted map of ∆AGB could not be
quantified due to a lack of suitable validation data, either ground or remote sensing based,
but we compared it to the S-1 based RADD forest disturbance alerts and found that it
suggested a higher level of degradation.

Finally, our results demonstrate that few-look TDX interferograms contain valuable
information about forest structure, and highlight the vital importance of multiple SAR
viewing geometries for InSAR mapping of degradation across the hilly regions of the
world’s tropical forests.
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