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Abstract—Cooperative radio localization and navigation sys-
tems can be used in scenarios where the reception of global
navigation satellite system (GNSS) signals is not possible or
impaired. While the benefit of cooperation has been highlighted
by many papers, calibration is not widely considered, but equally
important in practice. Utilizing the signal propagation time
requires group delay or ranging bias calibration and estimat-
ing the direction-of-arrival (DoA) requires antenna response
calibration. Often, calibration parameters are determined only
once before operation. However, the calibration parameters are
influenced by e.g. changing temperatures of radio frequency
(RF) components or changing surroundings of antennas. To cope
with that, we derive a cooperative simultaneous localization and
calibration (SLAC) algorithm based on Bayesian filtering, which
estimates antenna responses and ranging biases simultaneously
with positions and orientations. By simulations, we show that the
calibration parameters can be estimated during operation with-
out additional sensors. We further proof practical applicability
of SLAC by evaluating measurement data from robotic rovers.
With SLAC, both ranging and DoA estimation performance is
improved, resulting in better position and orientation estimation
accuracy. SLAC is thus able to provide reliable calibration and
to mitigate model mismatch. Finally, we discuss open research
questions and possible extensions of SLAC.

Index Terms—Antenna arrays, antenna response, array signal
processing, direction-of-arrival, multi-mode antenna, ranging

I. INTRODUCTION

ANY applications require localization with defined

accuracy and reliability. Outdoors, global navigation
satellite systems (GNSSs) often fulfill the requirements. How-
ever, for indoor localization [1] and Internet of Things (IoT)
[2], [3], GNSS signal reception is impaired. Furthermore,
systems complementary to GNSS are considered for safety-
critical applications like smart vehicles and autonomous driv-
ing [4], [5]. Localization is also a key component of 5G and
6G cellular networks [6]-[9]. A scenario where neither GNSS
nor other infrastructure is available, is autonomous planetary
exploration by a robotic swarm or multi-agent system [10],
[11]. Navigation of a robotic multi-agent system is particularly
examined in this paper, however the presented method is
general.
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Looking at cooperative localization on an abstract level,
typically there are static nodes in the network with known
positions, which are called anchors. Besides, there are mobile
nodes with unknown position and orientation, which we call
agents. In many cases the orientations of the agents is also
important, e.g. to control a robot or to predict the motion
of a vehicle. Often position and orientation estimation are
considered jointly [8], [9], [12]. By the term localization,
we thus consider both, position and orientation estimation.
Joint position and orientation estimation with radio signals is
possible by exploiting distance information, e.g. using a two-
way ranging (TWR) protocol, and direction information using
multiport antennas, e.g. phased arrays, co-located antennas or
multi-mode antennas (MMASs) [13].

Radio localization methods can be categorized into non-
cooperative and cooperative. For non-cooperative localization,
only agents and anchors communicate, whereas for cooper-
ative localization, agents also exchange signals among each
other. Theoretical investigation of fundamental limits has
shown that cooperative is superior to non-cooperative local-
ization [14]—[17]. The theoretical results have been confirmed
by measurements [18]. Many algorithms for cooperative local-
ization have been proposed, see [19], [20] and the references
therein.

An aspect which we deem to be equally important as
cooperation for a practical system, but which has received
much less attention in the community so far, is calibration. An
improperly calibrated system suffers from biased estimation
and thus impaired performance. To highlight the importance
of calibration for cooperative localization, we take a look at
the architecture of GNSS for comparison. For GNSS, high-
grade hardware on the space segment and a dedicated control
segment allow the use of low-cost commercial off-the-shelf
(COTS) hardware on the user segment. For cooperative local-
ization, in contrary, an agent relies to a large extent on signals
transmitted by its neighbors. There may still be anchors, but
usually the infrastructure is sparse. Furthermore, for many
applications, the radio frequency (RF) hardware will consist
of low-cost COTS components. For a propagation time based
system, e.g. using the signal time-of-flight (ToF) or time-of-
arrival (ToA), group delays in the transmit and receive chains
and the antenna of the node transceivers need to be calibrated.
The calibration is often done in a once for all fashion before
operation, by connecting the node transceivers to a calibrated
reference to measure the group delays. However, transceiver
internal group delays can change over time, for instance
due to temperature variations, which results in a ranging
bias. Low-cost COTS hardware is especially prone to group
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delay variations. For direction-of-arrival (DoA) or direction-
of-departure (DoD) estimation, accurate knowledge of the an-
tenna response of the receiving multiport antenna is required.
As the surrounding structure of antenna influences its response,
the entire device needs to fit into a measurement chamber to
obtain the installed antenna response. Since this is difficult and
costly when the antenna is installed on a large vehicle, usually
the antenna alone is measured in a near-field measurement
chamber. However, the installed antenna response generally
deviates from the stand-alone antenna response, which leads
to a model mismatch and biased DoA estimates [21].

Even if the antenna is calibrated in its final installation
position, e.g. on a robot, calibrating the antenna response
and group delay only once before operation is conceptually
problematic for the case where the surrounding of the antenna
during operation changes. As an example consider a robot
with a manipulator arm, allowing it to grab and carry payload
boxes [22]. As the manipulator arm and a potential payload
box are in close vicinity to the antenna, they influence the
antenna response. Regarding planetary exploration and space
missions, there is the impact of launch and landing and
the harsh space environment, e.g. dust, radiation and large
temperature differences. Thus, there is a need to verify the
nominal condition of the system, and re-calibration must be
done in-situ during the mission.

In contrast to calibrating once for all, calibration parameters
can in general also be determined during operation. For simul-
taneous localization and mapping (SLAM), calibration is often
considered as integral part, see e.g. the conceptual papers [23],
[24]. Examples include SLAM with robot odometry calibration
[25] and a SLAM approach to microphone array calibration
[26]. In [27], SLAM is applied to electromagnetic localization
of instruments in patient’s body during surgery and calibration
of electromagnetic distortions. In [28], a method to calibrate
ranging biases in a sensor network is proposed, however there
is no cooperation between the sensors. In the recent paper
[29], SLAM is applied to calibrate a uniform linear array
(ULA) of an automotive radar, using targets of opportunity.
The approach is limited to amplitude and phase calibration
of the individual ports, other antenna response deviations
cannot be corrected. SLAM has recently gained attention
for radio localization in the context of emerging millimeter
wave (mmWave) communications for 5G and 6G cellular
networks. Due to the high temporal and spatial resolution of
mmWave systems, parameters of each propagation path can be
estimated, which even allows to utilize multipath propagation
for localization [9]. With the principle of SLAM, the position
and orientation of a node and a map of its environment are
determined simultaneously [30]-[32]. Thus, accurate position
and orientation estimation is possible even in pure non-line-of-
sight (NLoS) conditions. When the main focus is calibration
instead of mapping, often the term simultaneous localization
and calibration (SLAC) is used. Examples can be found in
[33], where radio-frequency identification (RFID) tags are
localized while RFID tag positions are calibrated, and [34],
where indoor localization with fingerprinting is performed,
while calibrating sensor and walking model.

However, SLAC has not been widely considered for radio
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localization in cooperative networks or as part of SLAM using
radio signals. Especially, there is no approach to estimate
the position and orientation and simultaneously calibrate the
antenna response of an arbitrary multiport antenna.

The aim of this paper is to introduce cooperative SLAC,
where key parameters required for cooperative localization,
namely antenna responses and ranging biases, are estimated
during operation. This constitutes a paradigm shift towards
practical considerations and model mismatch mitigation in the
algorithm design. The main contributions of this paper are as
follows:

e We present a novel method to simultaneously calibrate
an antenna and determine its position and orientation in
a cooperative network. In contrast to [29], the method can
be applied to arbitrary antenna types, e.g. phased arrays,
co-located antennas or MMAs, and allows a full calibra-
tion of the antenna, including gain-phase offsets, mutual
coupling and nonlinear antenna response deviations.

o We show how cooperative SLAC can be implemented as a
Bayesian filtering algorithm. For that, we define the signal
model and state space for the unknown position, orien-
tation, ranging bias and antenna response of the nodes.
The antenna response is represented in a parameterized
fashion by wavefield modeling and manifold separation.
We present suitable motion and measurement models and
consider prior knowledge of the calibration parameters.

o We perform extensive simulations for random scenarios
and antenna responses, where we show that ranging
biases and antenna responses can be estimated simul-
taneously to localization without additional sensors. For
realistic ranging biases and antenna response deviations,
cooperative SLAC outperforms cooperative localization
and shows considerably lower position and orientation
errors.

+ As SLAC is motivated by practical considerations, we
also evaluate the proposed algorithm with measurement
data from robotic rovers carrying software-defined radios
(SDRs). One of the rovers features a four-port MMA
to enable DoA estimation. By SLAC, both the ranging
performance and the DoA estimation performance are
improved, which indicates correct calibration. After all,
position and orientation estimation performance is im-
proved as well, demonstrating that SLAC performs well
in a practical scenario.

o Finally, we discuss open research questions regarding
cooperative SLAC, which are beyond the scope of this
paper. Parameter observability deserves a theoretical anal-
ysis and the performance in multipath conditions should
be investigated. The generic architecture of SLAC allows
the inclusion of other sensors in the calibration and the
implementation in a distributed fashion.

The paper is organized as follows. In Section II, we in-
troduce the signal model based on wavefield modeling and
manifold separation. The state space as well as the transition
and measurement models are defined in Section III. We then
derive the SLAC algorithm in Section IV as a Bayesian filter.
The algorithm is evaluated by extensive simulations presented
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Yi
Fig. 1. Network of four nodes: Two anchors and two agents % and j, the

distance df j in between the agents, the DoAs ¢S .

P = [z Y5 1T and orientation ¥? of agent 4.

and ¢; , and the position

in Section V. In Section VI we introduce the measurement
setup and further evaluate the algorithm with measurement
data. In Section VII we discuss parameter observability, mul-
tipath robustness, the inclusion of other sensors and distributed
implementation. Section VIII concludes the paper.

Notation: Vectors are written in bold lowercase letters and
matrices in bold capital letters. (-)7 and (-)¥ stand for vector
or matrix transpose and conjugate transpose, respectively. 1
and Oy are column vectors of ones and zeros of length NV,
Iy is an N x N identity matrix. ||a]| is the Euclidean norm.
Square brackets refer to an element in a vector [a], or a matrix
[Alp.c. [Alp,c denotes a sub-matrix of the entries indexed by
vectors b and c. A = diag{a} creates a diagonal matrix and
a = vec{A} vectorizes A by stacking its columns. Re{-},
Im{.} refer to real and imaginary part and |a| is the floor
function. |a| denotes the absolute value of the scalar a and |A|
the cardinality of the set A. arctan2(y, x) is the four-quadrant
inverse tangent.

II. SIGNAL MODEL

Fig. 1 shows an exemplary drawing of a network of four
nodes, consisting of two anchors and two agents. The distance
between the two nodes ¢ and j for snapshot s is given by

c(rs. — 75,

d;,; = lIp; = pill = % o7+, ()
with the position of node i, p; = [mf yf]T, the position of
node j defined analogously, and the speed of light c. Assuming
a TWR protocol, 77’ is the transmit time of the forward signal
and 7;°; is the ToA of the backward signal, both at node ¢, and
of and 5 2 are the ranging biases of nodes 7 and j, respectively.
We assume that the processing time between forward and
backward transmission at node j is already compensated and
very short, such that the impact of the relative frequency
offset of the two clocks can be neglected. Otherwise, the
clock behavior must be taken into account with an appropriate
clock model [35]. The ranging bias is caused by varying group
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delays in the transmitter and receiver chains, for instance due
to temperature variations of the RF components. The signal
DoA measured in the body frame of node : is defined as

0, = 08—} = arctan2 (yf — yf, @5 — 5) — U5, @)

where 17 is the orientation of node <.

A signal sent by node j, received by node ¢, sampled at
rate B and transformed to discrete frequency domain can be
written as

S S

rii(n) = ai(#; ;)s(n, 7 ;)i ; (), ()

where n € {1,..., N} is the discrete Fourier transform (DFT)
bin index, a;(¢; ;) is the antenna response of node 4,

2nS
i + w}
:

s(n,7) = s(n)e V2R )

is a delayed version of the transmitted signal s(n) in discrete
frequency domain and o7 ; and ¢ ; are amplitude and phase
of the signal. The signal model (3) does not consider multipath
propagation explicitly, see Section VII-B for a discussion.
We assume that the signal bandwidth is small relative to
the carrier frequency [36], and consider internal receiver
noise wi(n) ~ CN(0,02. 1y,) for M; antenna ports as
independent and identicall}; "distributed (i.i.d.) white circular
symmetric Gaussian noise with variance 0357. The vectors
L) 5)

ri;=[(r3;()" ,

s(rs;) = [s(L7s,) o s(N,m2)]" ©6)

are defined for later usage.

Two different antenna types are considered for the nodes.
The nodes with singleport antenna, M; = 1, are assumed to be
equipped with half-wavelength dipoles, such that their antenna
response

(s g

2. 15 dBi

ai(¢) =10 (7N

is independent of the DoA ¢. For the nodes with multiport
antenna, i.e. antenna ports m = {1,..., M;}, the gain pattern
gi,m(¢) and phase pattern ®; ,,(¢) are considered [36], such
that the antenna response for port m of node 7 is

Wi (D) = \/ Giom (¢) T (@), (8)

and the antenna response vector is:

a;(9) = [a1(9) an, (9)]" . )

While the gain pattern g; ,,(¢) and phase pattern @, ,,,(¢) of
an ideal antenna array can be described in closed-form [37],
finding a closed-form description of e.g. co-located antennas or
MMA:s is not straightforward. Furthermore, real-world antenna
arrays in general do not behave according to ideal models
[21]. We thus consider a generic antenna model by using
wavefield modeling and manifold separation [38], [39], which
allows to represent arbitrary antenna responses. Like that, it
is possible to apply the same signal model and state space
to phased arrays, co-located antennas, MMAs and any other
type of multiport antennas. The antenna response vector (9)
can be decomposed into a product of the sampling matrix
G, € CMixU_ which describes the antenna characteristics,
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and a predefined basis vector b(¢) € CY, which is a function
of the DoA:

a;i(¢) = Gib(¢).
The antenna response needs to be square integrable and the

basis functions must be orthonormal on the manifold ¢ €
[—7, ) [38], [39]. As basis we use the Fourier functions:

1 . U-1 U-1
Joue =|-——1,...,0, ..., | —
me ; Ugp \‘ 2 Ja s Uy eeey \‘ 2

(10)

b(¢) =

11)
The order U of the basis functions can be determined based
on the electrical size of the antenna [38]. It is possible to
apply wavefield modeling and manifold separation also to joint
estimation of azimuth and elevation using spherical harmonics
or 2D Fourier functions as basis [13], [38], [39]. However, the
scope of this paper is 2D position and orientation estimation,
therefore we only consider azimuth.

During the design process of antennas, usually electromag-
netic (EM) simulations are performed. Once an antenna is
manufactured, it is often measured in a near-field measurement
chamber to ensure it meets the specifications. Whether from
simulation or from a measurement, often spatial samples of
the antenna response are available. They can be seen as a
sampled version of (9) and are proportional to the electric field
strength. Omitting the node index 7 for notational convenience,
the spatial samples with index ¢ € {1, ..., @} for antenna ports
m € {1,..., M} obtained at DoAs ¢, can be written as

, (12a)
(12b)

g = leqn 1"

EO = [61

€q,M

eQ] .
The spatial sampling grid must be dense enough, such that the

spatial sample-rate criterion according to the Nyquist theorem
is fulfilled. A prior sampling matrix

G = E)BY(BB")!, (13)

can then be obtained by the least squares method, with B =
[b(¢1), ..., b(¢q)]. However, EM simulation does not account
for manufacturing imperfections. Measuring the antenna alone
in a near-field measurement chamber neglects the influence of
the surrounding structure on the antenna response. The prior
sampling matrix G’? from (13) will thus deviate from the true
sampling matrix G, causing a model mismatch and impaired
DoA estimation performance. The SLAC algorithm proposed
in this paper uses G’? as prior information on the antenna
response, see (40), which is gradually refined over time.

III. STATE SPACE
A. Variables and Measurements

The network consists of |D| nodes listed in the node set
D. There are two types of nodes: Anchors are static nodes
with known position and orientation and agents are mobile
nodes, which shall be localized. Agents are referred to by the
agent set A C . The node state vector of an agent ¢ € D
is composed of the node kinematic states x?,_ . and the node

i,loc
1 1 S .
calibration parameter states T} cal

o = [(@0)"  (@a)"] - (14)
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The node state vector of an anchor ¢ € D consists only of the
node calibration parameter states: x; = x; ;. Node kinematic
states are defined as

T
ajf,loc:[(pf)T U? 1/’? wf] )

with position pf, linear velocity v3, orientation ¢] and angular
velocity w?. Node calibration states are given by

T T

wical = [515 (gzs) ] ,

with the ranging bias ] and the sampling matrix entries
represented in vectorized form,

- ezl

which are only present for multiport nodes M; > 1. For
localization-only, ., is not part of the node state vector.
The state vector for the entire network is formed by stacking
the node states:

= [@)” . (@)

15)

(16)

a7

()]

The vectors ¢, i loc, Lical contain the indices of the entries

(18)

of xf, =}, .. ;. in the state vector x°, respectively. For
snapshot s, node ¢ receives signals 7 j» see (3) and (5), from

neighboring nodes j € IL7, which are listed in the neighbor set

L C D\ {i}. If e.g. a neighboring node is too far away from

node ¢ or the signal is blocked, it is not a member of L;. As

TWR requires bidirectional links, the corresponding reverse

signal 77, is always present. The received signals from all

nodes in the network are collected in the measurement vector:

, T

22 =[. ()" o ()T ] 19)

This corresponds to a centralized estimation approach, see the
discussion in Section VII-D.

B. State Transition

For the kinematic states (15) of node i, the state transition
from the previous snapshot s~ = s — 1 to the current snapshot
s is described by the motion model

wiloc = f(m?:loc) + w;i,loc (20)

with process noise wy . We use a constant turn model

with polar velocity, which has been suggested in [40], [41]
for aircraft tracking. Using trigonometric identities, it can be
shown that the transition equations are equivalent to the motion
model proposed in [42] for robotic rovers. For time interval
T between snapshots, the transition function is

_ sin(yf 4w T)

vy = sin(yy) +

i Y + J-cos(¢f ) — Ziscos(¢f +wi T)

(1)

w; w3
f(wf,loc) = ‘ s~ ‘
Ui
Vi +Tw;
Wi
and the process noise is Gaussian,
w;i,loc ~ N(05’ 2;i,loc)’ (22)
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with covariance matrix

00 0 0 0

00 0 0 0
s ...=10 0 To? 0 0 (23)
' 00 0 iT%2 1iT%0%

00 O §T20'721-) TUE-]

The process noise parameters o7 and o2 reflect changes in

linear velocity and angular velocity, respectively. The calibra-
tion parameters x; .,; are assumed to be constant over time
;

with zero process noise.

C. Measurement Model

Many cooperative localization algorithms operate on ex-
tracted distance and/or direction information, which is referred
to as two step approach. For cooperative SLAC, this is not
possible. In order to calibrate a multiport antenna, the antenna
response information must be visible to the algorithm. This
is not the case for the two step approach, where only DoA
and ToA estimates are available. For that reason, we directly
consider the log-likelihood functions of the received signals.
Compared to a two step approach, this one step approach is
also beneficial in the case of multipath propagation, which we
discuss in Section VII-B.

1) Singleport Antenna: For nodes with a singleport an-
tenna, M; = 1, the log-likelihood function of the received
signal (3) and (5) is given by:

~Nln(ra2, )

¥

Lé,j( ’j7 Z]7Lpl‘])

N
Plugging the minimum of (24) with respect to (w.r.t.) the
unknown signal amplitude and phase back into (24) and

neglecting the constant term, we obtain the concentrated log-
likelihood function:

. s
eJ‘Pi,j

(24)

S
p n77'”)ai’j

u.,)

s H 8‘2
2) T (25)
Gnllk

1 |s(r,

2
O'
IIS

Iy (rt,) =

For a receiver with calibrated power level, the average received
signal power is given by Fs = + 27]:[:1‘729,3‘ (n)|? such that

Pys <_Uz$ )
SNR(ri;) = —=2»—=% is the signal-to-noise ratio (SNR)

of the received sigﬁal. The noise variance o2. can thus
be determined from the receiver noise floor. A’fternatively,
a maximum likelihood (ML) estimator based on the known
transmitted signal [43] can be used to estimate the SNR and
scale the log-likelihood function (25) appropriately.

2) Multiport Antenna: For nodes with a multiport antenna,
M; > 1, the log-likelihood function of the received signals (3)

and (5) is given by:

Lé( zéj7Tzéja :Ja(pf]7g;):_N1n(7T03'f7)

—ZH vJ f,j)s(n,T”)af,jejV’f,j

i n=1

(26)
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Again, plugging the minimum of (26) w.r.t. the unknown
signal amplitude and phase back into (26) and neglecting
the constant term, see [44], we obtain the concentrated log-
likelihood function

2
1 e’ .(e‘? )H

2y 2,] s
9;)=— il o (27)
R [CRLERE

L3 (67 5745

)s (s

z,j)T}'

IV. SLAC ALGORITHM

We implement SLAC as a Bayesian filter. The principle
of Bayesian filtering is to calculate the posterior probability
density function (pdf) p (a:s\zl‘s) recursively by prediction
and update steps [42], [45]. Bayesian filtering for cooperative
SLAC poses two challenges. First, the measurement models
(25) and (27) are highly nonlinear, which excludes algorithms
based on linearization such as the extended Kalman filter
(EKF). Second, due to the inclusion of the sampling matrix
entries describing the antenna response, the state vector (18)
has high dimensionality. For example, for the measurement
scenario considered in Section VI, the state vector has 131
entries. This makes the application of particle filtering ap-
proaches, which would be well suited for high nonlinearity,
challenging. As a compromise, we use an algorithm similar
to an iterated extended Kalman filter (IEKF) [45]. By re-
linearization, the algorithm can cope with high nonlinearities
and can also handle a high dimensional state, at the price of
computational complexity.

with e7 ; = vec {a i

A. Prediction

For the prediction step, the pdf of the motion model
P (:cg\azg) is incorporated into the posterior pdf of the previ-
ous snapshot, p (a:s_|z1‘s_), to obtain:

» (ws‘zlzs-) _ /p <m|m) » (ms»|z1:s»> dws

Assuming (28) is approximately Gaussian distributed, we have
P ($S|Zl s’) ~ N(-’f)s, 28),

with the predicted mean Z* and covariance X°. Prediction for
the kinematic states of the agents listed in the agent set A is
done according to the motion model (21),

zloc_f( zloc)

and the calibration parameter states remain constant, see (14)
to (18). Applying linearization as in the EKF, the predicted
covariance is

(28)

(29)

Vi€ A, (30)

Se=Fs 3 (F°)T 433, (31)

with the estimated covariance matrix from the previous snap-

shot 3357 , the nonzero entries of the Jacobian matrix F's° given
by
: 8
|:Fs:| f( zloc) 7 (323)
Li,loc,ti,loc 8:[5 - as-

s s
i,loc ] 7 o

,loc
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- I, if M; >1
] = T G2
Li,calsli,cal ]., if Mrl =1

and the nonzero entries of the process noise covariance matrix
S 3 .
327 given by:

(33)

=) =3
[ TlLi )ocsli,loc Ti,loc”

B. Update

For the update step of the Bayesian filter, the measurement
likelihood p (z°|x*) is taken into account to obtain the poste-
rior pdf of the current snapshot s,

p(zs‘ws)p (ws|zl:s')

p[=T)

P (wslzl:s) —

where the denominator is constant. Again assuming that the
posterior is approximately Gaussian distributed, the posterior
pdf is

; (34)

p(ws\zl:s) ~ N (&°,3%) (35)

with mean &° and covariance 33°. Using a maximum a pos-
teriori (MAP) approach, the updated state estimate becomes

s‘zlzs)

iS

= arg maxp (a:
mS

= argmaxp (2°|x°)p <ms|z1:57>
oy

= arg max E Inp (2{|x®) + 1np (a:s|z1:si)
oy

i€D (36)

g(z*)

= arg n;a}xz > Ly () x5)

€D jeLs

+ %(ms —&)7(29) 7 (a° — &%),

where we assume independent process noise for the nodes
and independent measurement noise for the signals received
by the nodes. For the last equality, the predicted posterior pdf
(28) and (29) in logarithm domain is plugged in. By the sum
over L7, only signals which have actually been received for
snapshot s are considered, see also the definition of L; in
Section III-A. The measurement log-likelihood function for a
signal sent by node j and received by node i,

L (6%5..75. qg° it M; > 1
L (xf,25) = { J (945:75:95) PR

L ( 7]) it M; =1
is given by (25) and (27) for singleport and multiport antennas
on the receiving node, respectively. A solution to (36) is

obtained by the Broyden—Fletcher—Goldfarb—Shanno (BFGS)
algorithm, using the gradient

ZZ@L

i€eD jeL?

(37

S:B:B

s ~z%), (38)

J) (Z_]S)_l (z*

where % is derived in Appendix A. BFGS is a
quasi-Newton method with proven convergence for convex
functions [46]. As problem (36) is in general non-convex,
the SLAC algorithm must be initialized with an informative
prior p(x®), which is discussed in the next Section IV-C.

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Furthermore, the filter update rate must be chosen according
to the system dynamics: With sufficiently high update rate,
the position and orientation changes between two consecutive
snapshots are small. Thus, the estimated state after prediction
Z°, which is used to initialize BFGS, will be close to the
estimated state after the update step &°. The simulation results
in Section V show, that the filter can cope with uncertainty
in antenna responses and initializations. In Section VI-C and
Fig. 12, we demonstrate with measurement data that the SLAC
algorithm converges to approximately the same DoA estima-
tion performance, regardless whether it is initialized with a
prior antenna response from a near-field measurement chamber
or an EM simulation, although the antenna response from
EM simulation deviates considerably from the true antenna
response. The result underlines the robustness of the SLAC
algorithm regarding a vague antenna response prior.

Using the Laplace approximation [47], the updated covari-
ance matrix is given by the inverse of the Hessian matrix at
the solution,

-1
> )
xS =&*

SE _ 629(:85)
e G e

which is evaluated numerically.

(39)

C. Prior

The Bayesian filter is initialized with a snapshot estimate of
the agent positions p) = [i?,ﬂﬂT and orientations )9 with
variances 012)0 and O'io. One of the algorithms [48]-[50] can be
used to obtain such a snapshot estimate based on the estimated
distances and DoAs. We assume that initially, the agents are
not moving, such that %) = 0m/s and @Y = 0°/s. As the
ranging bias is expected to be small compared to the actual
distances, we initialize it with 5? = O0m. As mentioned in Sec-
tion II, prior knowledge regarding the antenna response(s) is
available in terms of the sampling matrix entries g{. This prior
knowledge could come for instance from EM simulations or
antenna measurements in a near-field measurement chamber.
Thus for every node i € D we have a Gaussian prior

p(a) = (27
with mean
2= [0 o0 0 a0 % (@)

and covariance matrix

)—% det(ﬁg)—ze—%(fv?—fﬁ?)Tf??(w?—i?) (40)

(41)

) =diag {[12000/2 0% 050 020 030 lomuog}.
(42)

D. Complexity

For a worst-case asymptotic complexity analysis we assume
a fully connected network, where all nodes are agents, thus
D = A. Each agent is equipped with a multiport antenna
with M ports, described by U basis functions, see (10)
and (11), which results in a state vector of dimension x® &€
RIPI6+2MU) - Complexity is dominated by the update step of
the Bayesian filter, where one iteration of BFGS, including
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Fig. 2. Example simulation scenario with anchors Al, A2, A3 and randomly
generated trajectories for robotic agents R1 (UCA), R2, R3, R4.

the calculation of the log-likelihoods (27) and gradient (38) is
O((|D|MU)? + |D|>M N). Calculation of the Hessian in (39)
is O((|D|MU)?) and the matrix inverse in (36) and (39) is
O((ID|MU)3) in practice.

V. SIMULATION RESULTS
A. Simulation Setup

First we evaluate the performance of the proposed SLAC
algorithm by simulation. For a fair comparison, we apply
the same algorithm derived in Section IV to both SLAC and
localization-only, where for localization-only, the calibration
states (16) are not part of the state vector. We assume a
network with seven nodes: three anchors Al, A2, A3 and four
moving agents R1, R2, R3, R4. The agent R1 is equipped
with a uniform circular array (UCA) with M; = 4 antenna
elements. The other agents and the anchors are assumed to
have singleport antennas. In order to demonstrate that SLAC
does not only work for a specific scenario, we have performed
a Monte Carlo simulation with 100 runs. For each run, random
trajectories are generated for all agents according to the motion
model (20), (21) and (23). For the process noise of the motion
model (23), we assume o, = 0.015m/s'> for the linear and
oy, = 0.3°/s*5 for the angular velocity, respectively, and an
update interval of 7' = 0.1 s. One realization of the trajectories
is shown in Fig. 2. The UCA sampling matrix with U = 9
basis functions is obtained by (13), where E? consists of the
UCA steering vector, see e.g. [37], evaluated at a fixed grid
¢ = [¢1, ..., 6¢]. To show that SLAC can cope with different
antenna responses, a random antenna response is generated
for each Monte Carlo run by distorting the UCA sampling
matrix, G; = Guca + Wg with Wg = [w;, ...,ng],
wg ~ CN(O,agﬂMi) and o4 = 0.2. The ranging biases are
generated as §; = N(0,02) with 05 = 0.2m. The trans-
mitted signals and the simulation parameters are according
to the measurement setup from Section VI-A: We assume
1.68 GHz carrier frequency, —15dBm transmit power, 2dBi
antenna gain, 290K receiver noise temperature, 8 dB noise
figure and free-space path loss. The standard deviations of the
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Fig. 3. Simulated position and orientation RMSE over 100 random trajectories
for agents R1, R2, R3, R4. Dashed lines refer to localization-only, solid lines
to SLAC.

Gaussian prior (40) are chosen as 0,0 = 2m, 08 = 0.01m/s,
oyo =17.5° 0,0 = 0.01%/s, 050 = 0.010;5 and 040 = 0.0104.
A low prior covariance is chosen for the ranging biases and the
sampling matrix entries, to ensure slow convergence and avoid
too fast convergence into local minima. For the simulation,
the position and orientation states of the agents as well as the
sampling matrix entries are initialized randomly by sampling
from the Gaussian prior (40). Ranging bias and velocity states
are initialized as described in Section I'V-C.

B. Position and Orientation Estimation

We start by comparing the position root-mean-square error
(RMSE) of localization-only and SLAC depicted in Fig. 3a.
Initially, the position RMSE is dictated by the prior. For
localization-only, the position RMSE quickly decreases with
the first snapshots and then stays relatively constant in the
order of 0.4m to 1.0m. With SLAC, the RMSE decreases
during the first 1000 snapshots to cm level, as the calibration
parameters are estimated. A small improvement is visible up
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to snapshot 2000, as calibration parameters are refined. After
that, the RMSE stays relatively constant. For localization-only
and in the first part also for SLAC, the position RMSE of the
multiport agent R1 with UCA is slightly worse compared to
agents R2, R3 and R4 with singleport antennas. Apparently, in
the case of a model mismatch of the antenna response, DoA
information could do more harm than good. In summary, for
the assumed ranging biases and antenna response deviations
motivated by practical experience, the position RMSE with
SLAC is more than one order of magnitude lower compared
to localization-only.

Next, we take a look at the simulated orientation RMSE
in Fig. 3b. For localization-only, the orientation RMSE of the
agents R2, R3 and R4 with singleport antennas is in the order
of 5° to 25° and appears noisy. In fact, agents R2, R3 and
R4 cannot observe their orientation directly. The orientation
information is only obtained over time via the motion model
(21) by movement of the agents and subsequent position
changes. Being only indirectly observable, the estimated ori-
entations are noisy. The orientation RMSE of agent R1 with is
lower, around 3°, as the orientation can be observed not only
through the motion but also by the four element UCA. With
SLAC, the orientation RMSE of R2, R3 and R4 decreases
to sub-degree level within the first 500 snapshots. As the
ranging biases are calibrated, ranging information becomes
more accurate, leading to better position accuracy and thus
also better orientation accuracy, which is estimated through
position differences. The orientation RMSE of R1 decreases
even further, as the UCA is calibrated. After 2000 snapshots,
the orientation RMSE of R1 (UCA) has reached values below
0.1° and stays constant as well. For the assumed ranging
biases and antenna response deviations, the orientation RMSE
improves by more than one order of magnitude with SLAC.
Although both show considerable improvements, the relative
improvement in the position domain is larger compared to the
orientation domain.

Usually, position and orientation errors are the figures of
interest for a localization system. However, they are influenced
by many aspects such as geometry, SNR, motion model and
the choice of parameters. For that reason, we have a closer
look on the antenna and ranging bias calibration.

C. Antenna Calibration

We evaluate the quality of antenna calibration by the DoA
estimation performance. For that, we simulate ML DoA es-
timation for a discrete set of DoAs ¢, with ¢ € {1,...,Q}
and ) = 360 spanning a regular grid with step size 1°
over the whole manifold. Fig. 4 shows the DoA estimation
RMSE over this grid and over the 100 different trajectories
and antenna responses, see Section V-A. The ML estimator
uses the prior antenna response, a?(¢) = G%(¢), and the
antenna response estimated by SLAC, a3(¢) = G3b(¢),
respectively. Using the prior antenna response, we obtain an
RMSE of approx. 11° due to the model mismatch. With
SLAC, the DoA RMSE initially increases slightly, while the
estimated antenna response is adjusted. Then it decreases and
from snapshot 2200 on, sub-degree accuracy is reached. The
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Fig. 5. Simulated ranging bias RMSEs over 100 random trajectories for

agents R1, R2, R3, R4 and anchors Al, A2, A3.

continuous improvement shows that the estimated antenna
response converges and model mismatch is reduced with
increasing number of snapshots. We conclude that the antenna
response can be calibrated by SLAC, thus improving the DoA
estimation performance.

D. Ranging Bias Calibration

Next we investigate the performance of the ranging bias
calibration by SLAC. Fig. 5 shows the ranging bias RMSE
over the 100 random trajectories. The ranging biases are in
the order of decimeters, see Section V-A. As the prior for the
ranging bias estimation is zero, see (40), the initial ranging
bias RMSE:s are in the order of the ranging biases. During the
first snapshots, the ranging bias RMSEs of all nodes decrease
quickly. Then the curves flatten and the ranging bias RMSEs
decrease more slowly, reaching sub-centimeter levels after
2100 snapshots. Interestingly, the curves are separated into
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USRP N310

RTK

(b) Agent Dias with MMA.

(a) Anchor node.

Fig. 6. Pictures of an anchor node and agent Dias, a robotic rover.

three distinct groups. The ranging bias RMSEs of the anchors
Al, A2, A3 reach the lowest values, which is explained by
their known position. For the agents with singleport antennas
R2, R3, R4, only the ranging bias needs to be estimated,
compared to the multiport antenna agent R1 (UCA), where
also the antenna response is estimated simultaneously. This
leads to lower ranging bias RMSE for R2, R3, R4, compared
to R1. In conclusion, the ranging biases can be calibrated by
SLAC for the simulated trajectories, which improves distance
information and contributes to enhanced position and orienta-
tion performance.

VI. MEASUREMENT RESULTS
A. Measurement Setup

As SLAC is motivated by practical considerations, an im-
portant contribution of this paper is a performance evaluation
with measurement data. The measurement setup consists of
three anchor nodes, see Fig. 6a, and four robotic rovers named
Dias, Drake, Magellan and Vespucci. The anchor nodes as well
as Drake, Magellan and Vespucci are equipped with a dipole
antenna. On Dias, an MMA with four ports is installed, see
Fig. 6b. The MMA, which has been developed in-house at
the German Aerospace Center (DLR), is a dielectric resonator
antenna with four independently excited modes [51]. DoA
estimation with this MMA has been shown in [52]. For
the manifold separation (10), U = 13 basis functions (11)
are chosen to represent the antenna response. A commercial
dual antenna real-time kinematic (RTK) system [53], which
internally also uses inertial sensors, is installed on all rovers
to provide ground-truth.

The physical layer signaling is based on our in-house
developed DLR Swarm Communication and Navigation sys-
tem [52], [54]. The system parameters are 1.68 GHz carrier
frequency, 31.25 MHz sampling rate, —15 dBm transmit power
and orthogonal frequency-division multiplexing (OFDM) with
fast Fourier transform (FFT) length 1024. The transmitted
baseband signals are Zadoff-Chu sequences of length N = 463
mapped onto 925 subcarriers, where every second subcarrier
is occupied, resulting in an occupied bandwidth of approx.
28.2 MHz. A unique sequence is assigned to each node, where
sequences with low cross-correlation are chosen. The system
is implemented as SDR, where Ettus Research Universal
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Fig. 7. Bird’s-eye view of the measurement scenario showing anchors Al,
A2, A3 and agents Dias (MMA), Drake, Magellan, Vespucci.
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Fig. 8. Anchor positions and trajectories of robotic rover agents. Ground truth
is plotted in blue, localization-only in orange and SLAC in green.

Software Radio Peripheral (USRP) B200mini devices are used
for the nodes with singleport antennas. On Dias, the USRP
N310 from Ettus Research with four transceiver channels is
installed. The local oscillator (LO) provided by an external
frequency synthesizer, which allows phase-coherent reception
on four channels. Phase and amplitude imbalances between
the channels have been calibrated before the experiment. The
receiver is thus prepared for DoA estimation with the MMAs,
where both magnitude and phase of the received signal provide
DoA information, see [13], [52] and Fig. 10.

The experiment was conducted on open grassland. The site
with the positions of the three anchor nodes and the initial
positions of the robotic rovers is shown in Fig. 7. The total
duration of the experiment was 12min 30s. First only Dias
(MMA) was driving. At about 6 min Os, Drake and Vespucci
started driving as well. Magellan remained static for the whole
time.

During the experiment, the received signals have been stored
and evaluated in post-processing with the proposed SLAC
algorithm and localization-only for comparison. The algorithm



This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3147671

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. X, MONTH 20XX 10

1 _ , —
. - - Z e ———— —
/ //(3
= 0.8} : .
: w
2 /
S 0.6} r @ b ]
g | /1 /
° :<5_1)(p /@
= oal 4 ¢ ;5/ Loc. SLAC )
% P — & — ——Dias (MMA)
§ gﬁ — & — —«—Drake
O 02p / Vespucci §
¢ — 6 — —»— Magellan
0 // / i i i
0 0.5 1 1.5 2
Abs. position error [m)]
(a) CDF of the absolute position error.
1

I
0

<
=)

<
"~

Loc. SLAC
— & — —»—Dias (MMA)

Cumulative probability

0.2 — & — —»— Drake i
Vespucci
0 1 i i
20 30 40 50

Abs. orientation error [deg]
(b) CDF of the absolute orientation error.

Fig. 9. Empirical CDFs of the absolute position error || —p?|| and absolute

2

orientation error \z[}f — 7| of the agents for localization-only and SLAC.

parameters are identical to the simulation, see Section V-A.
To account for real-world effects, for instance shaking rovers
moving on rough terrain, the noise standard deviation Ors
is multiplied by two, see (3). SNR of the received signals
varies between 3dB to 27dB. The ground-truth trajectories
as well as the estimated trajectories for localization-only and
SLAC are shown in Fig. 8. Hereafter, we examine position
and orientation estimation performance, as well as the antenna
and ranging bias calibration. To provide a fair comparison, the
Bayesian filtering algorithm derived in Section IV is applied to
both SLAC and localization-only, where for localization-only,
the calibration states (16) are omitted from the state vector.

B. Position and Orientation Estimation

Position and orientation estimation performance is evaluated
for the second part of the measurements, from 6min Os to
12 min 30's, when all agents except Magellan are moving. First
we focus on positioning. An empirical CDF of the absolute po-
sition error of all agents is shown in Fig. 9a. For localization-
only, the 90" percentile error is larger than 1m for Drake
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and Vespucci, and 0.62m and 0.49m for Dias (MMA) and
Magellan, respectively. With SLAC, positioning performance
is improved considerably, lowering the 90" percentile error
to 0.51 m, 0.47m and 0.32m for Drake, Vespucci and Dias.
As Magellan is not moving during the whole time, parameter
observability is impaired and its ranging bias is estimated
incorrectly at the beginning, see Fig. 13. This causes some
amount of snapshots with larger position errors and the outlier
in the CDF curve Fig. 9a. The positioning performance for
Dias with MMA is slightly better than for Drake and Vespucci
with singleport antennas. Overall, cooperative SLAC shows a
considerable improvement in positioning performance, which
confirms the simulation results.

Next, we investigate the empirical CDF of the absolute
orientation error shown in Fig. 9b. For Dias with the four-
port MMA, the 90" percentile error decreases from 6.7° with
localization-only to 5.0° with SLAC. Drake and Vespucci are
equipped with a singleport antenna, their orientation can thus
only be observed indirectly through position changes over time
and the motion model (21). This results in much larger orien-
tation errors, e.g. 16% of Drake’s orientation errors are > 50°.
The comparably bad orientation estimation performance of
singleport agents is also apparent in the simulation, see Fig. 3b,
but the effect is more pronounced for the measurement data.
However, in a practical system, one would usually include
other sensors to alleviate this problem, see the discussion
in Section VII-C. In general, SLAC improves the orientation
estimation performance, especially for the multiport agent Dias
with MMA. However, the improvement is not as pronounced
as in the position domain. Potential causes could be more
accurate prior information, or a mismatch of the motion model.

Also for the measurement results, the position and orienta-
tion performance is influenced by many different aspects like
geometry, propagation and SNR, the motion model and the
choice of parameters. In order to investigate the calibration
aspect more deeply, we treat the antenna and ranging bias
calibration using the measurement data separately.

C. Antenna Calibration

Fig. 10 shows the antenna response of the four-port MMA
installed on Dias in terms of its power and phase pattern.
Before it was integrated on the rover, the MMA antenna
response has been measured in a near-field measurement
chamber. The measured antenna response @°(¢) = GOb(¢),
see (12a), (12b) and (13), has then been used for the local-
ization algorithm and as prior for SLAC. The shape of the
final antenna response estimated by SLAC @7 (¢) = G¥b(¢)
is similar to the measurement from the near-field measurement
chamber. However, there are differences visible in both, power
and phase domain.

To evaluate the impact of the antenna response calibration,
all signals received by the MMA on Dias from its neighboring
nodes are used to perform ML DoA estimation [13], [37] in
post-processing. Fig. 11 shows the empirical CDF curves of
the absolute ML DoA estimation error |<£f ;=i ;1, using either
the prior antenna response or the estimated antenna response
by SLAC. For all neighbors, DoA estimation performance with
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Fig. 10. Prior antenna response a?(¢) = C:'?b(zz)) and antenna response

estimated by SLAC after S snapshots & (¢) = G’fb(qﬁ) of the MMA with
four ports installed on rover Dias. The prior antenna response obtained in
a near-field measurement chamber is represented by dashed-dotted and the
antenna response estimated with SLAC by solid lines.

the SLAC antenna response outperforms the prior antenna
response, as the curves move towards the top left of the
plot. With the prior antenna response, the 90" percentile DoA
estimation error is between 7.0° to 11.3°, whereas with SLAC
it is between 4.1° to 6.3°. Over all agents, this means an
improvement from 9.6° to 5.9°. In contrast to the near-field
measurement, where only the antenna itself can be measured,
SLAC is able to estimate the installed antenna response on the
rover. The model mismatch of the antenna response is reduced
and DoA estimation performance is improved.

In order to analyze the cooperation gain for antenna cal-
ibration, we compare non-cooperative, where no agent to
agent links are present, to cooperative SLAC. Fig. 12 shows
again the empirical CDF of the absolute DoA estimation
error, but now for signals received by the MMA of Dias.
Using the prior antenna response obtained in the near-field
measurement chamber, cooperative SLAC is slightly better
than non-cooperative SLAC. We further examine a second
case, where the antenna response prior is less accurate, by
using the antenna response from EM simulation of the MMA
as prior and assuming o4 = 0.3. As EM simulation does
not account for manufacturing inaccuracies, DoA estimation
performance with the antenna response from EM simulation
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EM simulation (EM Sim. Prior) is shown with dashed lines.

is clearly worse. In this case, non-cooperative SLAC can
improve the performance, but cannot surpass the prior from the
near-field measurement chamber. Cooperative SLAC is able
to achieve almost the same performance as with the more
accurate prior from the near-field measurement chamber. By
cooperation, more signals from more diverse directions are
received and position and orientation accuracy is improved
[14]-[18], which leads to faster convergence of the antenna
response calibration.

D. Ranging Bias Calibration

Fig. 13 shows the estimated ranging biases §; of all agents
and anchors over time. From the prior value of Om, they
quickly converge to initial estimates. After around 3 min, the
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estimates are refined due to the movement of Dias (MMA) and
stay constant until 6 min. Then, when Drake and Vespucci start
moving, especially the ranging biases of Drake and Magellan
change again. From 8 min on, the estimations have converged
and stay relatively constant until the end. The plot underlines
the importance of motion for the parameter observability.
When only one agent is moving, the ranging biases are only
partially observable.

In order to evaluate if estimating the ranging
biases has improved ranging accuracy, we calculate
the ranging RMSE over all links in the network,

Vien(C e s, — &2, P/IL;)/ID]. Using the signal
round-trip time (RTT), the qstimated distance without

correction is calculated as dfﬂ» = c(i'f,j — fifj) /2,
and with ranging bias correction by SLAC as
di; = o(7; — 78;)/2 + 0] + 65, see (1). The ranging

RMSEs without ranging bias correction and with correction
by non-cooperative and cooperative SLAC are shown in
Fig. 14. Without correction, the ranging RMSE is usually
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cooperative SLAC is slightly worse. Looking at Fig. 13,
this can be explained by the estimated ranging bias of the
static agent Magellan, which is first estimated with the
wrong sign. When three agents are moving, the algorithm
is able to correct the mistake and from 8 min until 12 min
30s, the ranging RMSE with cooperative SLAC is mostly
below 0.2m. The peaks towards the end are likely caused
by larger distances between the agents and anchors. Without
cooperation, the ranging biases are not fully observable, and
the ranging RMSE remains around 0.3 m. The considerable
decrease of the ranging RMSE from 0.4m to 0.2m using
cooperative SLAC emphasizes that cooperative SLAC is able
to estimate ranging biases and thus improve ranging accuracy.

VII. DISCUSSION
A. Observability

A detailed observability analysis of SLAC for cooperative
localization is an open research topic, which is beyond the
scope of this paper. However, we discuss a few initial obser-
vations. For the antenna calibration aspect, it is intuitive that
the full manifold should be covered, as the antenna response
cannot be estimated for directions, from which no signal
has arrived. However, since the antenna response is spatially
bandlimited [38], [39], it is not necessary to observe signals on
an infinitesimally small angular grid. Applied to cooperative
SLAC, this means the antenna response is observable when the
respective agent is doing turns, or another agents drives around
it. In practice, the update interval is usually chosen such that
it is suitable for the envisaged agent dynamics. Signals should
thus be observed on a small enough angular grid when the
robot is turning. If this is not the case, then simply more turns
are necessary to capture the antenna response. For the ranging
bias calibration, we also notice the importance of motion. For
instance in Fig. 13, we see that when only one agent in the
network is moving, the ranging bias of Magellan is estimated
wrongly. With three moving agents, all ranging biases become
observable and are estimated correctly.

B. Multipath Propagation

The proposed SLAC algorithm directly evaluates the like-
lihood functions of the received signals (25) and (27) as in
direct localization [55]. This is in contrast to the two step
approach, where first directions and distances are estimated
and later positions and orientations are estimated by a sub-
sequent algorithm. Direct localization can unfold most of its
potential in two cases: Firstly, when the number of antennas
is large and massive arrays are employed [56]-[58]. Secondly,
when the number of links is large, as in dense cooperative
networks [59]. For both cases, it has been shown that direct
localization is much more robust with respect to multipath
propagation, and thus considerably outperforms the two step
approach. With massive arrays and device-to-device (D2D)
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links being considered for 5G and 6G cellular networks, direct
localization methods receive an increasing amount of attention.
The measurements presented in Section VI were done on open
grassland, with negligible multipath propagation. Thus the
performance of cooperative SLAC in multipath environments
is beyond the scope of this paper. However, depending on
the envisaged application, multipath propagation could be an
issue. Therefore the impact of multipath on cooperative SLAC
deserves an investigation.

C. Sensor Fusion

This paper focuses exclusively on radio navigation. For a
practical system targeting e.g. localization for smart vehicles
or robotic swarms, sensor fusion is key to accuracy and
reliability. For a robotic platform, proprioceptive sensors like
inertial sensors and wheel odometry are typically available.
For many applications, it is also desired to sense and map the
environment with exteroceptive sensors such as mono or stereo
cameras and laser scanners. Such information is also valuable
for localization, and is exploited e.g. in SLAM. We propose
SLAC within a Bayesian framework, which is well suited for
a sensor fusion approach or to be integrated with SLAM.
If further sensor are considered, their calibration parameters,
e.g. the biases of inertial sensors, can be integrated into the
state space. Integrating proprioceptive sensors usually leads
to a more accurate prediction. In addition to the improved
localization performance, this would be very beneficial for
cooperative SLAC, as it could reduce the computation time
required for the numerical optimization. With a more accurate
prediction, the number of iterations until convergence of the
IEKF-like update step (36) could be reduced.

D. Distributed Estimation

The SLAC algorithm introduced in Section IV is a central-
ized estimation scheme. In practice, such an approach could
be implemented by sending all measurements from the agents
to a fusion center, which perform the calculations and then
sends the estimated positions and orientations back to the
agents. Depending on the application, a distributed estimation
scheme, where each agents performs its own estimations,
could be favorable, see [19], [60], [61] and the references
therein. In general, by distributed estimation a single point
of failure is avoided and the computational load is distributed
among the agents. As the aim of this paper is the introduction
of cooperative SLAC for radio navigation and a proof-of-
concept with simulations and measurements, a distributed
implementation is beyond the scope. Nevertheless, the authors
belief this could be an interesting direction for future research.

VIII. CONCLUSION

In this paper we have introduced cooperative SLAC, an
approach to calibrate antenna responses and ranging biases
simultaneously with localization, without additional sensors.
By simulation with random trajectories and antenna responses,
we have shown that cooperative SLAC can estimate ranging
biases and antenna response deviations. Thus, in the practically
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relevant case where such biases and deviations exist, the
position and orientation RMSE with SLAC has been shown
to be more than one order of magnitude lower compared to
localization-only. We have further evaluated measurement data
from four robotic rovers, where one of them was equipped with
a four-port MMA to enable DoA estimation. Analyzing the
convergence, we have realized that movement of the agents
is crucial for parameter observability. When the calibration
parameters have converged, the ranging RMSE -calculated
over all links in the network was reduced from 0.4m to
below 0.2m with SLAC. Furthermore, the 90" percentile
DoA estimation error was reduced from 9.6° with the antenna
response measured in a near-field measurement chamber to
5.9° with SLAC. We conclude that cooperative SLAC is a
viable approach to perform calibration during operation, as
it mitigates model mismatch and thus improves position and
orientation accuracy.

APPENDIX A
PARTIAL DERIVATIVES OF LOG-LIKELIHOOD FUNCTION

First, we calculate the partial derivatives of distance (1) and
DoA (2) w.rt. pj and p3:

ads . —(p° — ps ods .
z,sj _ (I:] IZz) _ z;j’ (43)
op;  |lp; —pjl| op;
965 .  —(p° — ps 9bS .
om0 m g,
op;  lp5—mpil* -1 O op;

Next, we calculate the partial derivatives of the log-likelihood
function w, which is defined separately for single-
port and multiport agents, see (37). For a singleport agent, the

partial derivative of (25) w.r.t. ToA 77, is given by:

0Ly ; (v¢;) _ 1 Re 2(r; ) (7 (73 ))rs ;) 0s(78;)
s 2 s 2 s
aTi,j Trs HS(Ti,j)” aTiyj

(45)
For a multiport agent, the partial derivatives of (27) w.r.t. ToA
7;;» DoA ¢7 ; and sampling matrix entries g; are given by

Ts s s s Ts s s s
L3 (61,:705098) _ 1 OL; (9357550 9)

= Re
s 2 s
6¢i’j Urf,j aeiaj
ob(¢s ;) .
vec Gf,jWﬂsT(Ti7j) , (46)
1,7
= ~ H
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respectively, with

Ly (055,755.90)

We

Oej ;
H
_22 eij (e;j) i1l (,r,; )H eij
Trs (e;;)"es; ™ 7 70 (efy)er

. o oLg (=53
can now compute the partial derivative —=%-<—"=, where

only the partial derivatives w.r.t. pj, p3, ¢;, 0; and g; for each
node ¢ € D are nonzero, see (48) and (50) to (52).
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