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Workplaces deploy internal guidelines to remain operational during the ongoing COVID-

19 pandemic. It is challenging to assess whether those interventions will prevent super-

spreading events, where an infected individual transmits the disease to 10 or more secondary

cases. Here we provide a model of infectious disease at the level of a workplace to address

that problem. We take as input proximity contact records based on bluetooth technology

and the infectious disease parameters from the literature. Using proximity contact data for

a case-study workplace and an infection transmission model, we estimate the SARS-CoV-

2 transmission rate as 0.014 per proximity contact, going up to 0.041 for the SARS-CoV-2

B.1.1.7 variant first detected in the UK. Defining super-spreading as events with 10 or more

secondary infections, we obtain a super-spreading event rate of 2.3 per 1000 imported SARS-

CoV-2 cases, rising up to 13.7 for SARS-CoV-2 B.1.1.7. This methodology provides the means

for workplaces to determine their internal super-spreading rate or other infection related

risks.
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Introduction

The COVID-19 pandemic has tested our ability to control an infectious disease outbreak at multiple

scales 1. Air traffic was almost completely shut down at the earlier stages 2. Lockdown or curfews

followed in cities, regions and countries where the COVID-19 incidence rose to alarming levels 3.

After the airborne nature of the SARS-CoV-2 (SARS2) virus was confirmed, mask use and social

distancing were introduced 4. These non-pharmaceutical interventions were successful, where and

when applied, reducing the reproductive number and mortality 5. Vaccinations have started in

several countries but we still have a challenging year ahead. The relaxation of lockdowns has lead

to secondary outbreaks worldwide. More alarmingly, a new variant of SARS2 has been identified

in the United Kingdom (lineage B.1.1.7 6) with a higher reproductive number 7, 8. The SARS2-

B.1.1.7 variant is already spreading worldwide.

The economic and psychological impacts of lockdowns have changed our response to the

pandemic 9. The alternative to lockdowns is a distributed approach where workplaces deploy

containment measures to remain operational. In the distributed scenario workplaces, households

and individuals are responsible to carry out the containment measures. Each workplace must do

their part for this distributed approach to work. To achieve this goal, workplaces need support with

knowledge and tools. The focus of most studies on COVID-19 transmission dynamics has been

either at the city/country wide level 10–16 or at the level of aerosol transmission in one room 17, 18.

More work needs to be done at the level of workplaces, taking into account the temporal network

of proximity contacts.
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Here we investigate the generation of SARS2 outbreaks within a workplace, using as input

proximity contact data gathered with bluetooth technology. Our main results are an estimate of

the SARS2 rate of transmission per proximity contact, a generative model to simulate infectious

disease outbreaks within workplaces, estimates of the rate of super-spreading events per imported

case and an evaluation of mask use as an example of non-pharmaceutical interventions within the

workplace.

Results

Proximity contact alarm system

We have collected anonymous proximity contact data from a workplace. The workers wore

button devices that reported a distance alert when the distance between two coworkers was less than

1.5m for 15 seconds (Fig. 1A). The buttons communicated with gateway beacons using bluetooth

technology, which sent data to a backend server. Overall we recorded 21182 proximity contacts

between 605 workers for a period of 44 days. The total number of contacts between any two pairs

of individuals fluctuates over time, from values close to zero during weekends to as high as 20

contacts per individual during working days (Fig. 1B).

The fluctuations between weekdays introduce uncertainty in the expectation of spreading

outbreaks size. An individual becoming infectious on Monday has more potential to infect other

individuals at the workplace than one becoming infectious on Friday and going home during the

infectious period. Furthermore, the correlation of events happening within the same day will be
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shown to be important below.

Disease transmission model

The proximity contact records provide a temporal network to model the spread of airborne

viruses. Using the language of infectious diseases, a primary case is an infected individual who

is the focus of our attention and secondary cases are individuals becoming infected after contact

with the primary case. We will use the term imported to specify that the primary case has been

infected outside the workplace. A typical scenario is an imported primary case that comes to

work (Fig. 2A, red individual). During workdays the primary case will get in proximity contact

with other workplace members. These other individuals could get infected and therefore they are

potential cases. The number of potential cases will depend on who is the primary case and how

many contacts he/she makes during the infectious period. Among those potential cases, some will

become infected and they will be counted as secondary cases.

The more frequent the contacts between a primary case and a potential case are, the higher

the chance of disease transmission. We model this aggregate risk of infection using a disease trans-

mission rate per proximity contact p and the probability of disease transmission after c proximity

contacts with an infectious individual

pc = 1− (1− p)c . (1)

The latter equals 1 minus the probability of no transmission in any of the c contacts. In principle

we could develop mechanistic models of disease transmission to estimate the transmission rate per
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contact 17. However, that would require us to have a precise knowledge of the environment where

these contacts took place (volume, ventilation, temperature), as well as more detailed data of the

proximity contacts. Instead, we determine the transmission rate per contact as the value that is

consistent with the infectious disease reproductive number.

We developed a procedure to simulate the disease transmission given the proximity contact

data, the disease infectious period and the probability of disease transmission after repeated con-

tacts (1). Using this procedure we calculate different statistics characterizing the disease outbreaks

within the case-study workplace with the contact records shown in (Fig. 1B). Figure 3 reports

the expected reproductive number as a function of the disease transmission rate per contact for

infectious periods of 1 or 3 days, which corresponds to the infection periods of the 2019 influenza

20 and SARS2 21, respectively. We can invert this relationship to determine the transmission rate

per contact that is consistent with a reported reproductive number. Table 1 contains reports of

the reproductive number of SARS2, the 2019 influenza and the SARS2 B.1.1.7 variant, together

with our estimates of the associated transmission rates. It may sound counterintuitive that the

2019 influenza has a higher estimated transmission rate than SARS2. However, the 2019 influenza

generates its reproductive number in a shorter infectious period, which implies a higher transmis-

sion rate. More importantly, we estimate a dramatic increase of the transmission rate for the new

SARS2 variant, going from 0.014 to 0.041 transmissions per contact.

With the estimated disease transmission rate we can run simulations to compare different

infectious diseases and to assess the impact of intervention strategies. Mask use is simulated
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by reducing the transmission rate in proportion to the mask efficiency 22, 23. Social distancing is

modelled by removing a fraction of the proximity contacts in proportion to the degree of social

distancing. The latter yields the same reproductive number as mask use (see Methods) and will not

be discussed further.

Distribution of secondary cases

The distribution of secondary cases contains the information to quantify the rate of super-

spreading events. The number of secondary cases is constrained by the number of potential cases,

which is determined by the temporal proximity contact network and the infectious period. The

distribution of the number of potential cases has an exponential tail (Fig. 4A). The average number

of secondary cases generated by an individual is proportional to his/her average number of poten-

tial cases (Fig. 4B). This proportionality together with the exponential tail of the distribution of

potential cases ultimately results in an exponential tail for the distribution of the number of sec-

ondary cases as well (Fig. 4C). The exponential tail is in agreement with reports for the observed

distribution of the number of SARS2 secondary infections 15. The observed data is best fitted by a

negative binomial distribution that is characterized by an exponential tail 15, 24.

Focusing on the number of secondary cases, there is not much difference between the distri-

butions for SARS2 and the 2019 influenza (Fig. 4C). These diseases have a similar propensity to

generate super-spreading events. Therefore, the occurrence of super-spreading events is a general

property of all infectious diseases transmitted by proximity contacts. The super-spreading events

are rooted in the broad distribution of potential cases (Fig. 4A).
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Next, we tested the relevance of the temporal structure of the proximity contacts. To this

end, we shuffled the data in two different ways. In the most complete randomization, we shuffled

the days assigned to all the contacts recorded (mixed-all). In the second approach we keept the

temporal cluster within days intact. We permuted days as a block, keeping contacts happening on

the same day together (mixed-day). The distributions of the number of potential and of secondary

cases have a faster decay for the mixed-all data than for the original records (Fig. 4A,C, circles

vs triangles-down). In contrast, the mixed-day shuffling leads to a slight shift from the original

distributions (Fig. 4A,C, circles vs triangles-left). The temporal clustering of proximity contacts

within days is therefore crucial to obtain the correct distribution of the number of secondary cases.

This observation highlights the importance of working with the actual proximity contact records

of the target workplace.

S-index

From the distribution of secondary cases we determine the statistics of super-spreading

events. Super-spreading events are defined in different ways in the literature, with different publi-

cations having different criteria for how many secondary cases are required for such an event 24–28.

Here, we define a super-spreading event as an event where the number of secondary cases equals or

exceeds 10. Therefore the super-spreading events are associated with the tail of the distribution of

the number of secondary cases. The weight of the tail quantifies the rate of super-spreading events

per imported case. We name this quantity the super-spreading index (S-index). The S-index will

be reported in units of super-spreading events per 1000 imported infectious-disease cases. The S-
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index is determined by both the infection disease and the temporal network of proximity contacts.

For example, a pub may have a higher S-index than a workplace for the same infectious disease,

because proximity contacts are more frequent in a pub than in a workplace.

The legend in Fig. 4C reports the S-index for each distribution. The workplace from where

the proximity contact data originated has a S-index of 2.3 per 1000 imported SARS2 cases. The

2019 influenza has an estimated S-index of 1.7, slightly lower than the 2.3 value for SARS2. We

also noticed that the full randomization of the day labels (mixed-all) reduced the S-index to 0.2

super-spreading events per 1000 imported SARS2 cases. In contrast, the randomization of days

keeping records within the same day together (mixed-day) lead to a smaller decrease of the S-

index from 2.3 to 1.2 super-spreading events per 1000 imported SARS2 cases. Once again, the

latter highlights the importance of working with the actual proximity contact records to get the

correct estimate of super-spreading rate.

SARS2-B.1.1.7 variant

The SARS2 B.1.1.7, first detected in the UK, is raising concerns because of its relatively

higher reproductive number 7, 8. Based on our estimate using the transmission model described

above, the transmission rate of the SARS2-B.1.1.7 variant is 0.041 per proximity contact, 3 times

larger than the previous SARS2 strain (Table 1). As the transmission rate increases, more potential

cases are at risk of becoming actual secondary cases. Therefore, the higher transmission rate

results in a wider distribution of the number of secondary cases (Fig. 4D, triangles vs circles).

The estimated S-index goes up to 13.7 super-spreading events per 1000 imported SARS2-B.1.1.7
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cases for the case-study workplace, 6 times higher than the S-index for the previous variant. The

introduction of mask use, with a simulated mask efficiency of 50% 29, brings the estimated S-index

to 4.9 per 1000 imported SARS2-B.1.1.7 cases, still 2 times larger than the S-index for SARS2.

Discussion

This work highlights the importance of each workplace having an understanding of the proximity

contact patterns among its members. The data collection can be conducted without linking the

devices’ identification numbers to the individuals’ names to assure anonymity. Given the proximity

contact information, each workplace can build its tailored generative model to simulate the spread

of SARS2 and the impact of containment strategies. In our opinion this is a requirement to manage

infectious disease outbreaks using a distributed approach.

We have estimated the SARS2 transmission rate as 0.014 per contact. We cannot determine

if this estimate is specific for the case-study workplace or whether it applies to other workplaces as

well. We will be able to answer this question once data from other workplaces is obtained. We also

estimated the super-spreading rate in the workplace to be as low as 2.3 super-spreading events per

1000 imported SARS2 cases. The numbers for the SARS2-B.1.1.7 variant are more alarming if

the reports regarding the increase in reproductive number prove to be true. The estimated SARS2-

B.1.1.7 transmission rate goes up to 0.041 per proximity contact. The super-spreading rate goes up

to 13.7 super-spreading events per 1000 imported SARS2-B.1.1.7 cases. Simulated mask use, with

50% mask efficiency, brings the S-index down to 4.9 per 1000 imported SARS2-B.1.1.7 cases, still
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2 times larger than what is estimated for SARS2.

Our simulations indicate that the 2009 influenza has similar infectious parameters to SARS2.

The difference in the reproductive number of SARS2 and the 2009 influenza is rooted in the infec-

tious period, 3 days for SARS2 and 1 day for the 2009 influenza. The applicability of the proposed

infection model and the S-index extends beyond the ongoing SARS2 outbreak. Our methodology

can be applied to simulate the spread of other airborne infectious diseases. The necessary require-

ments are anonymous proximity contact records and estimates of the disease infectious period and

the basic reproductive number in the absence of interventions.

Methods

Proximity contact data

The proximity contact data were collected with the social distance monitoring application

from the companies Secufy GmbH and Safefactory GmbH. Battery-powered sensors by Secufy

are attached to the clothing of individuals and act autonomously without storing data locally. Once

activated, each sensor uses Bluetooth Low Energy to measure the signal strength from other sen-

sors. The signal strength is then used to estimate the relative distance to other sensors in its vicinity.

If a distance threshold of 1.5 meters is exceeded for a time interval of 15 seconds, the involved sen-

sors beep, directly alerting the affected users that the distance is too close. In addition to this, any

shortfall of the minimum distance that lasts longer than 15 seconds is sent to a backend solution

from the company Safefactory GmbH, which logs all proximity alarms. The data was collected in
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a data protection compliant manner at the company ISA S.p.A..

Infectious disease transmission model

The infectious disease transmission model takes as input the proximity contact records for a

workplace with n individuals over a period of m days. Let Cijd be the number of contacts between

a pair of individuals (i, j) on day d, where i ∈ [1, . . . , n] and d ∈ [1, . . . ,m]. Following our main

model assumption (1), the probability of disease transmission from i to j, given that i becomes

infectious on day d and remains infectious till d+ T , is given by

Pi→j,d(p, C, T ) = 1− (1− p)
∑d+T

k=d
Cijk , (2)

where i, j ∈ [1, . . . , n] and d ∈ [1, . . . ,m− T ]. The expected reproductive number is given by

RM(p, C, T ) =
1

n(m− T )
∑
ijd

Pi→j,d(C, T ) , (3)

and the distribution of the number of secondary cases (k) by

Pk =
1

n2(m− T )
∑

Xijd=0,1

∏
ijd

P
Xijd

i→j,d (1− Pi→j,d)
1−Xijd , δk,

∑
j
Xijd

, (4)

where δi,j is the Kronecker delta, δi,j = 1 for i = j and δi,j = 0 otherwise. Numerical simulations

were performed to generate 10,000 random sets of X and calculate Pk.

The super-spreading index (S-index) is defined as

S =
∑
k≥10

Pk . (5)

Wearing masks is modelled as a reduction of the probability of disease transmission from p

to pµ, where 0 ≤ µ ≤ 1 quantifies the mask efficiency.
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Social distancing can be modelled by replacing Dijd
∑d+T

k=d Cijk with the binomial sampling

D∗ijd = Binom
(
D∗ijd; q,D

∗
ijd

)
, (6)

where q is the probability that the recorded proximity contacts will take place after social distanc-

ing. The expected reproductive number in this case is equal to

RM(p, C, T ) =
1

n(m− T )
∑
ijd

∑
D∗

ijd

Binom
(
D∗ijd; q,D

∗
ijd

) (
1− (1− p)D

∗
ijd

)

=
1

n(m− T )
∑
ijd

Pi→j,d(pq, C, T ) . (7)

Therefore, social distancing is equivalent to a reduction in the transmission rate from p to pq, which

is mathematically equivalent to the mask use model above.

Estimation of the transmission rate per contact

The transmission rate per contact was estimated as the solution of the equationRM(p, C, T ) =

R0, given C, T and R0.

Reproductive number at the workplace

The percentage of contacts at the work place is reported as 21% 30, 25% 31, 16% 32, and 20%

33. We assume a value of 20%.

The basic reproductive number of SARS2 in the absence of interventions is reported as 2.4 21.

The workplace basic reproductive number therefore equals R0 = 0.2× 2.4 = 0.48. The infectious

period of SARS2 is 3 days 21.
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The basic reproductive number of the 2009 influenza in the absence of interventions is re-

ported as 1.7 19. The workplace basic reproductive number therefore equalsR0 = 0.2×1.7 = 0.34.

The infectious period of influenza is 1 day 20.

The basic reproductive number of the SARS2-B.1.1.7 variant is reported to be 1.74 8 or 2.24

7 higher than for SARS2. We use a factor of 2, which is the average between the two reports,

resulting in the reproductive number R0 = 2.24× 2.4 = 5.4 and the workplace basic reproductive

number R0 = 0.2 × 2.24 × 2.4 = 1.1. The infectious period of SARS2-B.1.1.7 is assumed to be

the same as for SARS2, 3 days.
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14. Kühn, M. J. et al. Assessment of effective mitigation and prediction of the spread of sars-cov-2

in germany using demographic information and spatial resolution. medRxiv (2020). URL

https://www.medrxiv.org/content/early/2020/12/22/2020.12.18.20248509.

15. Sun, K. et al. Transmission heterogeneities, kinetics, and

controllability of sars-cov-2. Science 371 (2021). URL

https://science.sciencemag.org/content/371/6526/eabe2424.

16. Zhang, J. & et al. Changes in contact patterns shape the dynamics of the covid-19 outbreak in

china. Science 368, 1481–1486 (2020).

17. Lelieveld, J. et al. Model calculations of aerosol transmission and infection risk of covid-19

in indoor environments. Int. J. Environ. Res. Public Health 17, 8114 (2020).

18. Riediker, M. & Tsai, D.-H. Estimation of Viral Aerosol Emissions From Simulated Individ-

uals With Asymptomatic to Moderate Coronavirus Disease 2019. JAMA Network Open 3,

e2013807–e2013807 (2020).

15

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.04.21252550doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.04.21252550
http://creativecommons.org/licenses/by-nc/4.0/


19. Balcan, D. et al. Seasonal transmission potential and activity peaks of the new influenza

A(H1N1): a Monte Carlo likelihood analysis based on human mobility. BMC Medicine 7, 45

(2009). URL https://doi.org/10.1186/1741-7015-7-45.

20. Cori, A. et al. Estimating influenza latency and infectious period dura-

tions using viral excretion data. Epidemics 4, 132 – 138 (2012). URL

http://www.sciencedirect.com/science/article/pii/S175543651200031X.

21. Li, R. et al. Substantial undocumented infection facilitates the rapid dissemination of novel

coronavirus (sars-cov-2). Science 368, 489–493 (2020).

22. Reiner, R. C. et al. Modeling covid-19 scenarios for the united states. Nature Medicine 27,

94–105 (2021).

23. Vazquez, A. Multi-type branching and graph product theory of infectious disease outbreaks.

medRxiv (2020).

24. Adam, D. C. et al. Clustering and superspreading potential of sars-cov-2 infections in hong

kong. Nature Medicine 26, 1714–1719 (2020).

25. Shen, Z. et al. Superspreading sars events, beijing, 2003. Emerg Infect Dis 10, 256–60 (2004).

URL https://www.ncbi.nlm.nih.gov/pubmed/15030693.

26. Liu, Y., Eggo, R. M. & Kucharski, A. J. Secondary attack rate and

superspreading events for sars-cov-2. Lancet 395, e47 (2020). URL

https://www.ncbi.nlm.nih.gov/pubmed/32113505.

16

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.04.21252550doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.04.21252550
http://creativecommons.org/licenses/by-nc/4.0/


27. Hasan, A. et al. Superspreading in early transmissions of covid-19 in indonesia. Scientific

Reports 10, 22386 (2020).

28. Wong, F. & Collins, J. J. Evidence that coronavirus superspreading is fat-tailed.

Proceedings of the National Academy of Sciences 117, 29416–29418 (2020). URL

https://www.pnas.org/content/117/47/29416.
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Virus Reproductive Reproductive Infectious Transmission

number number, workplacea period (days) rate per contact (p)

2019 Influenza 1.7 19 0.34 1 20 0.031

SARS-CoV-2 2.4 21 0.48 3 21 0.014

SARS-CoV-2 New 4.8 b 1.1 3 c 0.041

Table 1: Input and estimated parameters: Infectious disease parameters based on literature re-

ports, together with the estimated transmission rate per contact. Superscripts indicate the reference

sources. a Reproductive number corrected for a 20% of contacts taking place at workplace (See

Methods). b The reproductive number of SARS2-B.1.1.7 is reported as 1.74 8 or 2.24 7 times higher

than of SARS2. We use a factor of 2, which is the average between the two reports. c Assumed

equal to the SARS2 value.
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Figure 1: Proximity contact records. A) Schematic representation of the system recording prox-

imity contacts. B) Time series of the contact rate per individual based on data for the case-study

workplace.
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Figure 2: Infection model. A primary imported case (red) comes in contact with other work-

place members during the course of the infectious period. Five other individuals are exposed and

are potential cases. Disease transmission happens in two instances (red arrows) resulting in two

secondary cases.
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Figure 3: Estimation of the transmission rate per contact: Reproductive number as a function

of the transmission rate per proximity contact for an infectious disease with an infectious period of

1 or 3 days. The dashed line connects a given reproductive number with the estimated transmission

rate per contact.
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Figure 4: Distribution of potential and secondary cases: A) Distribution of potential cases.

B) Average reproductive number of each individual as a function of his/her average number of

potential cases. The average is taken over sliding time windows with a size given by the disease

infectious period. C) Distribution of secondary cases. The symbol ∗ indicates that these are results

from simulations and not real data for the indicated infectious diseases.
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