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Abstract—Emerging segments such as Urban Air Mobility re-
quire new safety-critical avionic systems. The complexity of these
avionic systems has ever been increasing, but even more rapidly
in the last two decades in form of the number of components,
functions, and interactions. At the same time, demanding time-
to-market requirements have to be adhered to by development
companies. To cope with these challenges, agile development
approaches are required that guarantee safety-by-construction.
This paper presents an endeavor to tackle these challenges by
holistic utilization of Model-based Systems Engineering, System-
Theoretic Process Analysis, and formal methods. The approach
is demonstrated in a use-case that analyzes a simplified Collision
Avoidance System architecture. Results show that the presented
approach is able to improve the development by automating and
validating error-prone tasks of the safety assessment.

Index Terms—MBSE, SysML, STPA, Safety, OCL

I. INTRODUCTION

Two contradicting factors highlighted by the Systems Engi-
neering (SE) vision 2025 of International Council on Systems
Engineering (INCOSE) are demanding time-to-market require-
ments and complexity growth in terms of components, func-
tions and interactions [1]. Additionally, these challenges are
further reinforced by emerging segments like Urban Air Mo-
bility (UAM), which introduce similar requirements towards
the system development. Tackling the increasing complexity,
while achieving fast time-to-market for safety-critical avionic
systems, is a challenging task for companies. To achieve this
task, companies require agile development approaches that
can guarantee safety-by-construction. This paper represents
an endeavor that leverages, integrates, and enhances state of
the art of methods like: Model-Based Systems Engineering
(MBSE), System-Theoretic Process Analysis (STPA) and for-
mal methods. All three approaches and their contributions to
the topic will be explained shortly in the following paragraphs.

A recent trend to tackle complexity during development
is MBSE. MBSE can be characterized as the formalized
application of modeling to support SE development activities
[2]. To deal with arising consistency problems in classical
SE developments, where a document is created for every
discipline, MBSE uses a central model for development and
documentation [3]. One prominent modeling language of
MBSE is Systems Modeling Language (SysML).
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To enhance MBSE, formal methods are used. Formal meth-
ods are mathematics based techniques for the specification and
verification of hardware and software systems. They provide
a means for the systematic description of systems and support
development and verification of systems [4], [5]. Using formal
methods with MBSE is achieved in this paper through SysML.
SysML can be currently described as semi-formal notation
[6] and therefore builds a good basis for the application
of formal methods. Combining formal methods with semi-
formal notations, used in industry, is one way of improving
semi-formal notations, while simultaneously increasing the
popularity of formal methods as explained in [7]. One common
way of formally verifying properties within SysML models is
the usage of Object Constraint Language (OCL) [8]. OCL is
a typed formal language, which uses functions and logical
operators to analyze properties of sets [9]. SysML tools, like
the Cameo Systems Modeler, allow using OCL for formal
verification and validation of the modeled systems [10].

To accommodate for new and complex software driven
cyber-physical systems in the aviation domain, the STPA
hazard analysis was developed. The main issue that STPA
tries to address, is the lack of considerations for interactions
(human-system, system-system) and software specifications in
classical safety approaches [11]. In this paper, we consider
how a formalized STPA approach can be integrated into
SysML. By integrating the STPA within SysML, a promising
connection between the development and safety analysis tasks
is established. Even though, this combination of SysML and
STPA was already demonstrated by other authors, the formal-
ization in this paper enables to additionally automate parts of
the analysis. In the following, the combined approach is called
SysML-STPA. Furthermore, OCL is used to automatically
validate parts of the safety analysis.

The following sections will elaborate the SysML-STPA
concept in more detail. First, required background information
will be introduced in Section II. Afterwards, the developed
methodology will be described in Section III. The methodol-
ogy is then demonstrated with a simplified Collision Avoidance
System (CAS) use-case in Section IV. Finally, the results
are discussed in Section V and a short summary is given in
Section VI.
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II. RELATED WORK

This section starts with an overview of classical safety
processes and standards in the aviation industry. Afterwards,
it is explained why the STPA was developed and how this
safety analysis can be formalized to enable automation of
analysis parts. Furthermore, it is described how the STPA can
be integrated into the SysML. Finally, a short overview is given
that explains where this work positions itself in regard to this
related work.

A. Classical Aviation Safety Processes and Standards

Safety processes and standards are an important part of the
development of safety-critical systems. Looking at the aviation
domain, the two main development standards are ARP4754A
and ARP4761. ARP4754A [12] explains the main approach
and development constraints that are needed for the certifi-
cation of complex aviation systems. Additionally, ARP4761
[13] explicitly describes the required safety considerations
within the development of aviation systems. These safety
considerations include the use and connection of multiple
hazard analysis examples: e.g. Functional Hazard Assessment
(FHA), Failure Mode And Effects Analysis (FMEA), and Fault
Tree Analysis (FTA). Furthermore, standards like DO-178C
[14] and DO-254 [15] guide the design assurance of software
and hardware, respectively.

B. Safety Consideration with STPA

To accommodate for new and complex software driven
cyber-physical systems in the aviation domain, the STPA was
developed. STPA is a top-down hazard analysis that tries to
address the lack of considerations for system interactions and
software specifications in the classical hazard analyses [11].
To incorporate these aspects, STPA uses hierarchical control
structure model of the developed system for its safety analysis
purposes. To analyze the system, STPA is composed out of two
main steps. First, the model of the system is analyzed towards
potentially Unsafe Control Actions (UCA), i.e. actions able to
introduce a hazardous system state. In the second step, affected
parts of the system model are analyzed to identify causes for
executing UCAs. If such a cause was identified, mitigating
safety constraints are introduced, preventing the occurrence of
these causes. An extensive description of STPA is presented
in [11], [16].

C. Formalization of STPA

The formalization of STPA in [17] is based on the clus-
tering of every system component (source controllers), their
interactions (control actions), the considered hazards and the
corresponding analysis context into formal sets [17]. Formally,
these parts are defined as: source controller SC € S§C,
control action CA € CA, hazards H € ¢ and context
Co € Co. For all combination of these sets, a hazardous
provided function was specified, formalizing these relations
as: HP(H,SC,CA,Co) and returning true for every com-
bination that is hazardous when provided. Subsequently, a

second hazardous not provided function was specified, for-
malizing these relations as: HNP(H,SC,CA,Co) and re-
turning true for every combination that is hazardous when
not provided. Using these definitions, a requirement function
R(SC,CA,Co) was defined that is used to automatically gen-
erate requirements in combination with the previous functions.
On the one hand, a requirement that the control action shall be
provided can be generated for every true result of the HN P
function: HNP — R. On the other hand, a requirement that
the control action shall not be provided can be generated for
every true result of the HP function:n HP — —R. Even
though the general idea behind the formalization of the STPA
is really promising, it was not yet shown how this formalized
STPA approach can be leveraged within a state of the art
modeling language, like SysML. The proposed approach in
this paper considers this aspect by extending and integrating
it into SysML.

D. Combining STPA with SysML

Integrating safety considerations into SysML is a promis-
ing concept, which is why the Object Management Group
(OMG) started to integrate various safety analysis types into
the SysML [18]. Consequently, this led to the development
of the Risk Analysis and Assessment Modeling Language
(RAAML) [19]. The RAAML shows how five safety analysis
types can be integrated into the SysML with the STPA
being one of them. As a foundation for the further devel-
opments, a few stereotypes and concepts were borrowed for
the proposed SysML-STPA. These are visualized in Fig. 1la,
namely the stereotypes ««ControlStructure>> and <«Controller>»
for the system description, the stereotypes <«ControlAction>>
and «Feedback>> for the description of system interactions,
the «Situation»> stereotype for the specification of hazards
and losses, and finally the <«OperationSituation>> stereotype
for the context labeling. Furthermore, the concept of using an
internal block diagram (ibd) for the STPA control structure
was borrowed and visualized in Fig. 1b.

Not only the RAAML did consider the combination of the
SysML and STPA. Another example is the Model-based STPA
(MBSTPA) shown in [20], where the usage of state charts in
SysML is proposed for modeling of the STPA control structure
and the analysis execution. Additionally, it was shown in [21]
that by formalizing the resulting requirements of the STPA
in SysML, it is possible to check them via a formal model
checking tool.

E. Contribution of Paper

As described in the previous sections, this paper wants to
combine MBSE, STPA and formal methods. This is why,
the presented related works are important contributions to
the proposed approach. Even though, there is already the
RAAML describing a way to combine MBSE in form of the
SysML with STPA, it is not yet demonstrated how this can
be combined with the formalization presented in Section II-
C. Combining all ideas of the related work and formalizing
the STPA in the SysML enables even further benefits than
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Fig. 1: Aspects Reused from the RAAML STPA Implementation

previously described in [17]. Some examples will be presented
in the following section.

III. PROPOSED APPROACH

In this section, SysML-STPA will be introduced. This
approach shows how STPA can be formally integrated into
SysML and how the formalization is leveraged to automate and
validate parts of the analysis. The SysML-STPA is described
in an abstract way in this section. An application example is
presented in the following Section IV.

A. RAAML - SysML-STPA Foundation

Prior to the SysML-STPA analysis execution, a description
of the analysis scope is needed that is established by the usage
of the RAAML stereotypes as depicted in Fig. 1a. Defining
the scope includes the system description, signal specification,
definition of hazards and losses and the specification of
considered contexts.

For the context definition, the <«OperationalSituation»>
stereotype of RAAML was extended. It was augmented with
an «enumeration»> property named Stafes to formally define
the context variables of the context. This extension is required
to enable an automated generation of hazard tables described
later in this section. Since this is not a direct part of the
RAAML, this is visualized in Fig. la with the dashed line
surrounding the «enumeration>>. Moreover, a «Dependency>>
relation between the contexts and the control actions was in-
troduced to specify which control action needs to be analyzed
in which context. All the previously described stereotypes
should be applied in the model to define the scope of the
analysis. After defining the scope of the analysis, the STPA
control structure needs to be modeled. This control structure
specifies all connections and interactions between the systems
as depicted in Fig. 1b, while using the model elements
augmented with corresponding stereotypes.

B. Extended SysML-STPA Profile

RAAML represents a good foundation for the SysML-
STPA, since it already introduces most of the stereotypes
necessary for the SysML-STPA. One central point, which the
RAAML currently does not address, is the ability to execute
the analysis in centralized hazard tables. This requirement
is addressed in the SysML-STPA with the introduction of
the «STPA Analysis Block>> and «STPA Unsafe Control
Action»> stereotypes. Both are displayed in Fig. 2 with their
corresponding attributes.

Moreover, some additional stereotypes were required to ful-
fill the formal needs of the SysML-STPA. Stereotypes of this
category are: «STPA Causal Factor Category>» and <«Process
Variable »> of Fig. 4 as well as the «STPA Requirement>> in
Fig. 2¢ can be mentioned. All extensions will be described in
more detail in the following.

C. Analysis Block - Identifying Hazardous Actions

If the scope of the analysis and the corresponding control
structure were modeled as presented in Fig. 1, the first
implemented function can be used. This function enables to
create instances of the «STPA Analysis Blocks>>, where the
first five attribute entries of Fig. 2a are filled automatically.
Namely, the: Control Action, Context, Context Value, Source,
and Receiver are inserted automatically.

Traditionally, with the use of guidewords, the first analysis
step of the STPA is executed to identify potential hazardous
control actions. This step is substituted in SysML-STPA with
the analysis of all created ««STPA Analysis Block>> instances.
Within the attributes of the «STPA Analysis Block>> displayed
in Fig. 2a, seven guidewords were implemented. These guide-
words present ways how a potential hazardous situation can
emerge, when providing or not providing a control action
as visualized in Fig. 3. During the SysML-STPA process,
the guideword attributes are used to establish a connection
between an analysis block instance and one or more possibly
resulting hazards. These hazards are modeled beforehand in
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«STPA Analysis Block»
STPA Analysis Example
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STPA Analysis Block
[Class]
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+Control Action : ControlAction [1]
+Context : OperationalSituation [*]
+Context Value : EnumerationLiteral [*]
+Source : Controller [1]
+Receiver : Controller [1]
+Not provided in this context : Situation [*]
+Provided in this context : Situation [*]
+Provided, but too early : Situation [*]
+Provided, but too late : Situation [*]
+Provided, but out of order : Situation [*]
+Provided, but stopped too soon : Situation [*]

«STPA Unsafe Control Action»
STPA UCA Example

«stereotype» =
STPA Unsafe Control Action
[Class]

attributes
+UCA Description : String [1]
+Context : OperationalSituation [*]
+Context Value : EnumerationLiteral [*]
+Source : Controller [1]
+Control Action : ControlAction [1]
+Receiver : Controller [1]
+Hazard Reference : Situation [*]
+Feedback Variables : Feedback [*]
+Command Variables : ControlAction [*]
+Process Variables : ValueProperty [*]
+CausalFactorCategory : EnumerationLiteral [*]
+Causal Factor Rational : String [*]

bdd [Package] Examples [ STPA_Requirement ])
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STPA Requirement 0

«stereotype» Rl
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attributes
‘+Hazard Reference : Situation [*]
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(a) STPA Analysis Block

(b) STPA Unsafe Control Action

(c) STPA Requirement

Fig. 2: Additional STPA Stereotypes

TABLE I: Requirement and UCA Structure related to Guidewords

Guide Requirement Text Structure

UCA Description Structure

[6)) The [SC'] shall always be able to apply [C'A] to the [SC] when [Co]

The [SC'] does not apply [C'A] to the [SC] when [Co]

2) The [SC'] shall not apply [C'A] to the [SC] out of order when [Co]

The [SC] applies [C'A] to the [SC'] out of order when [Co]

3) The [SC'] shall not stop applying [C'A] too soon to the [SC] when [Co]  The [SC] stops applying [C'A] too soon to the [SC] when [Co]

“) The [SC'] shall not apply [C'A] to the [SC] too late when [Co]

The [SC] applies [C'A] to the [SC] too late when [Co]

&) The [SC'] shall not apply [C'A] to the [SC] too early when [Co]

The [SC] applies [C' A] to the [SC'] too early when [Co]

6) The [SC'] shall not apply [C'A] to the [SC] too long when [Co]

The [SC] applies [C' A] to the [SC'] too long when [Co]

[@) The [SC'] shall never be able to apply [C'A] to the [SC'] when [Co]

The [SC] applies [C'A] to the [SC'] when [Co]

Out of order

Not provided But needed > () Stopped too soon ®)
Needed Applied too late @
Provided
Not needed Applied too early

> (5)
Applied too long ©

Fig. 3: STPA Guidewords (adapted from [22])

the scope of SysML-STPA as described in Section III-B,
where every hazard is marked with an «Situation» stereo-
type. Finally, the analysis block attributes are completed with
additional entries for the Analyst, the Assessed status, and an
ID.

D. STPA Requirement - Automatically Derived

Due to the establishment of connections between analysis
block instances and potentially resulting hazards, the second
automated function can be applied to create «STPA Re-
quirement>> instances. Using the formal functions that were
introduced in Section II-C [17], requirements can be gener-
ated automatically using the attributes of the analysis block
instances. Essentially, the analysis blocks entries define the
two functions: hazardous provided HP(H,SC,CA, Co) and
hazardous not provided HNP(H,SC,CA, Co). Hence, the

requirements can be generated similarly: P — —R and
HNP — R. In SysML-STPA, the requirement function
R(SC,CA,Co) uses predefined text building blocks and
inserts the corresponding elements as shown in TABLE 1,
when creating the text for the ««<STPA Requirement>> instances.
Simultaneously, the other reference attributes of the require-
ment are added, which are shown in Fig. 2c.

E. UCA Block - Identifying Potential Causes

Not only the text for the requirements can be generated
automatically in this way. Additionally, the UCA Description
attribute of the «STPA Unsafe Control Action» stereotype
instances can be generated as displayed in TABLE 1. Formally,
this can be described as the unsafe control action function
UCA(SC,CA,Co), which has an inverse relationship to the
HP and HNP functions: HP — —-UCA and HNP —
UCA. This means that every time a hazard connection is
established within a guideword of an analysis block, a UCA
instance can be generated automatically. By further utilizing
the formalized attributes of the analysis block, also other
attributes of the «STPA Unsafe Control Actions>> stereotype
instances of Fig. 2b can be copied from the analysis block
and entered automatically: Control Action, Context, Context
Value, Source, Receiver. When analyzing causes of the UCA
execution of a source controller, possible reasons can be:



bdd [Package] Examples [ Causal Factor and Process Variable ])

«STPA Causal Factor Category»

Feedback and Information Causal Factor Category [STPA Handbook 2018]

«block»
STPA Process Variables Automated Controller

[15] Feedback/info sent by sensor(s), but not received by controller

[17] Feedback/info is not received or applied to sensor(s)
[18] Feedback/info does not exist in control structure or sensor(s) do not exist

[16] Feedback/info is not sent by sensor(s). but is received or applied to sensor(s)

[19] Sensor(s) respond adequately, but controller receives inadequate feedback/info
[20] Sensor(s) respond inadequately to feedback/info that is received or applied to sensor(s)
[21] Sensor(s) are not capable or not designed to provide necessary feedback/info

[STPA Handbook 2018]
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Fig. 4: Causal Factors and Process Variables Stereotypes with Examples Above

incorrect incoming Commands, incorrect returned Feedback,
and incorrect internal Process Variables.

To complement these three attributes, an additional stereo-
type was required for the Process Variables. This «STPA
Process Variable>> stereotype is depicted in Fig. 4. Addition-
ally, exemplary Process Variables for automated controllers
were inherited from the STPA Handbook [16], implemented
as helping examples, and displayed in Fig. 4. If these three
mentioned attributes are modeled, decorated with the corre-
sponding stereotype, and connected to the controllers, they
can also be inserted automatically into the generated UCA
instances.

Moreover, the additional Causal Factor Category attribute is
given within the «STPA Unsafe Control Action>> stereotype,
where causal factors can be entered to support the causal
analysis within SysML-STPA. Corresponding examples are the
feedback related causal factors displayed in Fig. 4. For this
purpose, 21 causal factor categories were identified within the
STPA-Handbook [16] and formally deposited as «Enumera-
tionLiterals>> in the SysML-STPA profile.

All possibilities to fill attributes of the UCA instances are
combined into the third automated function. The inserted
information can then be used by the engineer to find causes
for the occurrence of UCAs. UCA instances are, like the
instances of analysis blocks, proposed to be analyzed in tables
for usability reasons with the following process. The UCA
description of the UCA instance tells the engineer which
UCA shall be considered in the corresponding UCA instance.
Additionally, all automatically inserted variables (Feedback,
Command, Process) present possible causes for the UCA
occurrence. These variables, in combination with the helping
causal factor category sentences, help the engineer to come
up with possible causes for the UCA execution. Finally, these
identified causes are documented as text within the <«Causal
Factor Rational>> attribute of the UCA instance. This process,
to identify potential causes, is repeated, till all causes are
found and documented. The final SysML-STPA step includes
the usage of the identified causal rationals to derive safety
constraints preventing UCAs from happening. This final step
is not yet formalized and therefore not demonstrated within

this paper, but has potential to be partially formalized in future
endeavors.

F. Analysis Validation with OCL

Prior to this section, it was described how the creation of
analysis parts can be automated through formalization. Besides
this, it is also possible to validate parts of the analysis, when
following a formal structure. To enable the validation, the OCL
was chosen as formal validation language, due to its inherent
connection with SysML. Because of the limited size of the
paper, only two simple example checks will be presented.
One situation that can be checked during the use of SysML-
STPA is, if there are hazard entries in both the Provided
in this context and Not provided in this context attribute of
one of the analysis block stereotype instances displayed in
Fig. 2a. This would indicate a design flaw in the analyzed
system, since this would mean that both executing and not
executing the control action would lead to a hazard. Hence,
these entries should be looked at in more detail again in the
analysis. This correlation was also formally described in [17].
Using the OCL, corresponding entries of the analysis blocks
can be validated with the validation rule in Fig. 5.

context STPA Analysis Block inv CheckForInconsistenciesInSTPA:
if

not self. "Provided in this context’—ocllsUndefined() and
not self. ’Not provided in this context’—oclIsUndefined()
then false
else true

endif

Fig. 5: OCL Validation of Potential Conflicts

Another example is the validation, if an Analyst name was
entered in the corresponding attribute for every analysis block
that was already marked as assessed. This might not sound
like a very important check, but could be really helpful for
certification purposes. To elucidate this, one important part
of the safety assessment and the development in general is
the traceability throughout all phases. This means that every



decision should be documented and comprehensible. Hence,
it is important to be able to trace and recap safety related
decisions to the corresponding analyst. This is facilitated
within SysML-STPA with the analyst name check.

G. Further Potential of Formalization

Some advantages of formalization were described in the
previous sections. These include automation and validation
of analysis parts. Even though these are already promising
advantages, there is even further potential to use the formal-
ization. One example is the use of metrics, which can be used
in various ways within the development. Exemplary, a metric
was implemented that allows to track the analysis progress by
looking at the Assessed attribute status of the analysis block.
This is only one example of many possible applications based
on the formalization of the safety assessment. Consequently,
this is one area that has a lot of potential to further improve-
ments.

IV. CAS USE-CASE

In this section, the previously described SysML-STPA will
be demonstrated with a simplified Collision Avoidance System
(CAS) use-case. CAS is an avionic system that provides
advisories to the pilot to prevent mid-air collisions of aircraft.
To enable the automated functions, it is also required to
follow the formal style described in Section III, by using
the stereotypes and connections required for the SysML-STPA
process.

A. SysML-STPA - System and Control Structure

For the first step of SysML-STPA, it is needed to model
the system and its control structure. In this CAS use-case, the
main system is an Aircraft. Within this Aircraft, only the CAS,
the corresponding Sensor Unit and the Pilot are considered.
This system description is also modeled in Fig. 6, where every
Aircraft component is formally marked with a <«Controller>>
stereotype.

bdd [Package] System[ System Example ])

«ControlStructure»
Aircraft

CAS.
«block»
«Controller» Sensor Unit, Pilot
CAS «block» «block»
s «Controller» «Controller»
Component failures Sensor Unit Pilot

Fig. 6: Aircraft System Components

To visualize the considered system interactions, the SysML-
STPA control structure is used in Fig. 7. In this example, two
control actions and one feedback are considered. CAS can
provide an Advisory to the Pilot to indicate that a collision
could happen with the current flight trajectory. Based on
the Intruder Information feedback by the Sensor Unit, these
advisories can be calculated. Moreover, the Pilot has the ability

to change the mode of the CAS to enable or disable the CAS
advisories. Again, the formal style is followed by applying the
«ControlAction»> and «Feedback>> stereotype to the signals.
For the control actions, the SysML stereotypes are shown in
Fig. 10.

ibd [ControlStructure] Aircraft[ Aircraft ]J

Sensor Unit ‘

Intruder Information

Coloring Legend
Il <<ControlAction>>
B <<Feedback>>

Advisory

Pilot

Mode Change

Fig. 7: Aircraft Control Structure

B. SysML-STPA - Scope and Context

Following the system description, the scope of the analysis
needs to be defined in terms of the hazards and losses that
shall be considered. Hence, the hazards Aircraft violating the
minimum separation standards and Pilot is not aware of CAS
state were chosen and modeled in Fig. 8. Hazards can lead to
losses and for this analysis the losses Property Damage and
Loss of Life are considered and modeled in Fig. 9.

bdd [Package] Hazards [ Hazards ])

«block»
Aircraft Related Hazards
«Situation»

Aircraft violates minimum seperation standards

«Situation»
Pilot is not aware of CAS state

Fig. 8: Aircraft Related Hazards

bdd [Package] Losses [ Losses ])

«block»
Aircraft Related Losses

property Damage.

«Situation»
Loss of Life

«Situation»
Property Damage

Fig. 9: Aircraft Related Losses

To finish the specification of the analysis scope, the relevant
contexts situations for the analysis are required. Since every
control action shall be analyzed in relevant context situations
within SysML-STPA, it is necessary to define the relation
between every control action and corresponding contexts. This
was done for the Advisory and Mode Change control actions
in Fig. 10 with a «Dependency>> relation. As depicted, the
Advisory control action is connected to the AdvisoryRequest
as well as the IntruderPresent context, which again have
their own internal context variables within the States <«Enu-
meration>>. The meaning behind the established relations is



that the Advisory shall be analyzed according to both the
AdvisoryRequest and IntruderPresent contexts. Similarly, a
«Dependency>> relation was established between the Mode
Change control action and the complementary ModeChange
context.

bdd [Package] Context Variables [ Context Variables ])

«OperationalSituation»
AdvisoryRequest

States |

«ControlAction»
Advisory

«OperationalSituation»
ModeChange States
«enumeration»
«ControlAction»
Mode Change

States
Fig. 10: Aircraft Context Variables

_ 9«Operationalsituation»
IntruderPresent

| |

«enumeration»
States

No intruder present

Intruder present

«enumeration»
States

No advisory nee&edr
Advisory needed

No mode change w anted
Mode change w anted

C. SysML-STPA - Identifying Hazardous Actions

Now that all fundamental parts of the system were mod-
eled previously in this section, the implemented automated
functions can be applied to generate the first analysis part.
When executing the function to generate instances of analysis
blocks, all analysis blocks displayed as STPA Elements in
Fig. 11 are created. As explained in Section III-C, all attribute
entries upon the guideword attribute columns are automatically
inserted. To prevent overloading the figure, only two of the
seven guidewords of Fig. 3 are displayed in this example.
For control actions, where more than one relation is drawn
to a context, all combinations of context values are created as
visible at the rows three till six of Fig. 11.

Utilizing the automatically generated analysis block ele-
ments, the first analysis step was executed. This means that
for every analysis block element, it was analyzed whether a
executing the control action in the corresponding context can
lead to a hazard. When one of the previously modeled hazards
can occur in consideration with the guideword, a connection
to the corresponding hazard is established in guideword field
of the analysis block element. Exemplary, in the first row of
Fig. 11 providing the Mode Change control action when No
mode change wanted, the hazard could occur that the Pilot is
not aware of the CAS state. This analysis process was repeated
for every row in the table of Fig. 11. Moreover, when finishing
the analysis of one element, the Assessed attribute was checked
and the Analyst was inserted.

Additionally, the validation of the analysis is visualized in
Fig. 11, where two rows are marked due to the implemented
validation rules of Section III-F. The first validation result is
demonstrated with the yellow color (warning) in the second
row of Fig. 11, due to the missing Analyst entry. Secondly,
the fifth row of Fig. 11 is marked with a red color (error),
because entries in both guideword columns were provided. As
explained in III-F, this can indicate a design flaw or mistake in

the analysis, where both cases need to be handled. Moreover,
Fig. 12 shows how a metric can be used to calculate the
analysis progress in percentage over the development time.
Since all analysis block instances of Fig. 11 are assessed,
the progress consequently is 100%. Metrics like these gain
in benefit in larger developments, where tracking the analysis
progress is required and more challenging.

D. SysML-STPA - Identifying Potential Causes

Foundational to the second analysis step, the system and
analysis scope were modeled and the first analysis step was
executed. Beforehand, it was described in Section III-D and
Section III-E, how the analysis block entries can be leveraged
for the execution of functions to create UCAs and require-
ments. Every time one or more hazards were entered in a
guideword column in Fig. 11, the automated functions create
requirements and UCAs that follow the formal structure of
TABLE 1. The resulting seven requirements are displayed in
Fig. 13, where e.g. STPA Req. 0 corresponds to the accidental
Pilot induced Mode Change in the CAS of Fig. 11 row one.

On the other hand, also one UCA instance is generated for
every time one or more hazards were entered in a guideword
column. As a result, the UCA in Fig. 14 was created describing
the scenario of the sixth row of Fig. 11, where no Advisory
is provided to the Pilot, even though it should have been.
In addition to the automatically generated description, also
the Feedback, Command, and Process Variables were inserted.
This further information is collected and inserted automatically
out of the system model shown earlier in this section. Finally,
up to 21 causal factor categories were provided from the STPA
Handbook [16] in the model and three of them exemplary
displayed in Fig. 14. With the help of all the information
provided in the UCA instance, the second analysis step of
identifying potential causes for the execution of an UCA can
be performed. In this example, three causes were provided for
the missing application of the Advisory of the CAS. The first
one being that the CAS does not provide the required Advisory
due to an accidental Mode Change of the Pilot. Following
the current SysML-STPA methodology, the potential reasons
were documented as Causal Factor Rational within the UCA
element in Fig. 14. When an assessment of a UCA instance is
finished, the Analyst changes the Assessed attribute to true and
inserts his name. Normally, the STPA would be concluded with
the development of safety constraints preventing UCA causes
from happening. This last step could be achieved with the
introduction of safety-driven design decisions, like redundancy
or monitoring.

V. DISCUSSION

This paper proposes an integrative approach that, not only
enables the execution of the STPA within the SysML, but also
allows automating and validating parts of the analysis through
formalization. As explained in Section II-D, also other authors
did consider the combination of SysML and STPA. Hence,
combining the demonstrated SysML-STPA analysis with the



# Name Context Context Value ‘ Source ‘ Control Action Receiver it przzlndteeitm this Provided in this context ‘ Assessed ‘ Analyst ‘
1 I sTPAElement 0 |5 ModeChange | O Nomode change wanted g b Mode Change ] cAS = 2’;‘;‘ fsnot aware of .16 A Ahlbrecht
> =] STPA Element 1 == ModeChange O Mode change wanted ’_\ Pilot Mode Change [ CAS = Zz;t is not aware of Ptrue
dvisoryRequest = O No advisory needed Aircraft violates
3 & sTPA Element 2 IntruderPresent | O No intruder present Ecas Advisory R Pilot (=2 minimum seperation [Atrue A, Ahlbrecht
standards
dvisoryRequest = O No advisory needed Aircraft violates
4 =] sTPA Element 3 IntruderPresent | O Intruder present Ecas Advisory R Pilot (=) minimum seperation [ true A. Ahlbrecht
standards
1 AdvisoryRequest O Advisory needed __ Aircraft violates Aircraft violates
5 =] STPA Element 4 ntruderPresent O No intruder present Ecas Advisory R pilot £ mini peration ==} minil p [Ftrue A, Ahlbrecht
standaids standards
dvisoryRequest = O Advisory needed Aircraft violates
6 =] sTPA Element 5 IntruderPresent | O Intruder present Ecas Advisory R pilot £ minimum seperation [Atrue A. Ahlbrecht
standards
Fig. 11: Automatically Generated STPA Hazard Analysis Elements with Validation
# =1 Date | ,é, Scope | =1 Amount of Analysis Elements | =1 Amount of Assessed Analysis Elements| =1, Percentage of Assessed Analysis Elements
1 |2021.07.07 17.42 7] STPA Elements 6 6 100

Fig. 12: Metric to Track Analysis Progress

# Name Text
1 [’l 1 STPARegq.0 The [Pilot] shall never be able to apply [Mode Change] to the [CAS] when [ModeChange] is in state [No mode change wanted].
2 [®l 5 STPAReq. 1 The [Pilot] shall always be able to apply [Mode Change] to the [CAS] when [ModeChange] is in state [Mode change wanted].
3 [Rl 6 STPAReq. 2 The [CAS] shall never be able to apply [Advisory] to the [Pilot] when [AdvisoryRequest] is in state [No advisory needed] and [IntruderPresent] is in state [No intruder present].
4 [’l 7 STPARegq. 3 The [CAS] shall never be able to apply [Advisory] to the [Pilot] when [AdvisoryRequest] is in state [No advisory needed] and [IntruderPresent] is in state [Intruder present].
5 [Rl 3 STPAReq. 4 The [CAS] shall always be able to apply [Advisory] to the [Pilot] when [AdvisoryRequest] is in state [Advisory needed] and [IntruderPresent] is in state [No intruder present].
6 [Rl 2 STPAReq.5 The [CAS] shall never be able to apply [Advisory] to the [Pilot] when [AdvisoryRequest] is in state [Advisory needed] and [IntruderPresent] is in state [No intruder present].
7 [Rl 4 STPAReq.6  The [CAS] shall always be able to apply [Advisory] to the [Pilot] when [AdvisoryRequest] is in state [Advisory needed] and [IntruderPresent] is in state [Intruder present].
Fig. 13: Automatically Generated Requirements
# Name UCA Description ‘ F\?aer(ij:s; ks ‘ C\g:ranbalzs ‘ \5’:;?{)5;5 Causal Factor Category Causal Factor Rational Assessed | Analyst ‘
Intruder - Mode Component [11] Failures involving the controller [13] The [CAS] does not provide the
Information Change failures (for physical control.lers) %;eectc r[]::;:f;rfvt]h?[epitlzgn accidental
E—:devﬁ::rﬂ ?;f;enfgi;‘é?l\r/hen o ;i]trfgfacgen?;:lter?)l Inpukfrom [19] The [CAS] does not receive the
. o correct [Intruder Information] due to
1 ] stpauCA 2 [AdvisoryRequest] is in state [19] Sensor(s) respond adequately, oo tromagnetic interference in the true  A. Ahlbrecht

[Advisory needed] and
[IntruderPresent] is in state
[Intruder present].

o

but controller receives inadequate
feedback/info

communication lane between the
[Sensor Unit] and the [CAS].

[11] The [CAS] does not provide the
correct [Advisory] due to an internal
hardware failure.

Fig. 14: Automatically Generated UCA Analysis Element

formalized checking of requirements presented in [21] could
be an interesting idea for future endeavors.

In general, the SysML-STPA helps to enable a better
connection between MBSE developments and safety consider-
ations, since both can use the same model as central artifact.
This is possible due to the similar nature of MBSE and STPA,
where both are based on systems-theory and use a model as
backbone for their approaches. Regarding the combination of
development activities and safety approaches in the aviation
industry, the ARP standards lead the way. Even though STPA
is currently not a direct suggestion within the ARP, it might
become more relevant in the future with the development of
the AIR6913 [23]. Moreover, it was already demonstrated in
the automotive industry how the STPA could be included in the
established ISO 26262 process with the analysis of a steer-by-
wire system, by the NHTSA [22]. This idea of combining the
classical safety approaches with STPA can even be improved
with the integration directly within a MBSE development

process as demonstrated within this paper.

Despite the advantages that the SysML-STPA approach
provides through its automation and reduction of error-prone
tasks, current drawbacks need to be considered. One drawback
is the need to use the API of the SysML tool. The Cameo
Systems Modeler tool API is used to enable the creation and
changing of elements, so essentially the automated functions
except the OCL validation. For this purpose, a standardized
implementation could be useful for future applications. This
could be more easily implemented with the currently devel-
oped second SysML version. Plans for the second version
include the development of a standardized API and a better
usability [24]. Another interesting discussion point is that, by
automating parts of the analysis, a lot of analysis elements
might be generated automatically. This could also include
unnecessary overhead for the analysis execution and needs to
be evaluated in the future.



VI. CONCLUSION

Conventionally, safety analyses are conducted by a sepa-
rate team of safety engineers and executed on documents.
To enhance the connection between safety assessment and
development, this paper suggests using SysML-STPA, which
is a formalized STPA integrated into the MBSE development.
Both MBSE and STPA are based on systems-theory concepts
and a holistic view of system development. Hence, their
underlying approaches are compatible and can be integrated
well with each other. In addition, it was demonstrated for a
CAS use-case that formalization helps to improve the safety
assessment in various ways. Demonstrated examples include:
automated creation and validation of analysis parts as well as
the usage of metrics to keep track of the analysis progress.
These implementations proved to be helpful in the analysis
execution of the CAS use-case, since error-prone tasks could
be automated. For instance, this helps to manage increasing
complexity in system development and ensures that engineers
are able to focus on important tasks of safety assessment. This
paper’s combination of MBSE, STPA and formal methods has
a lot of potential for improvement in future endeavors with
further validation, automation and metric possibilities.
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