<u>Testing</u> of a Monitoring Reporting & Verification (MRV) Scheme for non-CO₂ aviation effects

On behalf of the German Environment Agency FKZ 3720 42 502 0 2020 - 2023

K. Dahlmann, M. Niklaß, V. Grewe

F. Linke, S. Maertens, S. Matthes, M. Plohr,

J. Scheelhaase, F. Wozny

Overview of current project activities

We focus our presentation on charts 6-8, 11, 13, 17-20.

Climate Effects of Aviation Emissions Direct greenhouse gases CO IPCC (1999) NO_x H₂O_{CO₂} Soot SO₂ **UHC** <u>Indirect</u> greenhouse gas 1.3 g 0.04 g chemistry Direct aerosol effect Aerosol effects on clouds contrails Popovicheva et al. (2004)

Effective Radiative Forcing in 2018 caused by historical air traffic emissions

CO₂, NO_x and contrails cirrus are major contributors to aviation ERF

FINAL REPORT

Updated analysis of the non-CO2 climate impacts of aviation and potential policy measures pursuant to the EU Emissions Trading System Directive Article 30(4)

Individual contributions to total climate impact of alternative routings

One Day Case Study of European Air Traffic on 18 December 2015

Matthes et al., 2020

Example 1: Lulea – Gran Canaria (ESPA-GCLP) **Contrails-dominated climate impact**

Example 2: Baku – Luxembourg (UBBB-ELLX) NO_v-dominated climate impact (no contrails)

- Climate-optimised routings can mitigate the total climate impact significantly
- The total climate impact of a flight can decrease despite increasing emissions (e.g. -35% ATR₂₀ for +1% fuel increase)
- Climate-optimised routings might not be cost-optimal (need for market-based / policy measures)

Results from ATM4E

Need for market-based / policy measures

Various options for integrating non-CO₂ effects of aviation into EU ETS and under CORSIA

Integration based on CO₂ equivalents (CO2e)

Choosing a CO2e method is a trade-off between high climate mitigation incentives and low efforts for MRV activities.

Key criteria for selecting a CO2e method

- CO2e factors must provide an incentive for mitigating non-CO₂ effects
- CO2e factors should be easy to calculate, predictable and transparent

MRV: Monitoring, Reporting & Verification

Niklaß et al., 2020

Recommendation for CO₂ equivalent calculations, representing the non-CO₂ aviation effects

- Simple CO2e factors (constant, distance- or latitude-dependent)
 - ... further increase the focus on CO₂ reduction
 - ... might create false incentives (incentive to fly higher rather than lower)
 - ... "penalize" climate-optimised routings (due to the increased fuel burn)
 - <u>Potential applications:</u> Estimation of the ecological footprint

- MRV effort could be reduced and transparency enhanced by using a public reference matrix with CO2e estimates for various
 - ... airport pairs and flight paths
 - ... aircraft and engine types
 - ... weather situations
- CO2e estimates must be assumed conservatively:
 Aircraft operators must not be better off with CO2e estimates

Matthes et al., 2021

Niklaß et al., 2020

effort for MRV activities

Project interfaces between Tasks 1, 2 & 3

DLR

MRV: Monitoring, Reporting & Verification

Task 1: Monitoring and reporting of non-CO₂ effects

Objective of task 1:

 CO_2

equivalents

Testing the steps to be performed by an aircraft operator to monitor and report CO₂ equivalents in the EU ETS ("airline perspective")

- Evaluation of emission indices for releval along the flown flight profile
 Calculation of CO₂ equivalents per flight
 - How can these activities be structured and automated?
 - What level of effort is required?
 - Are there any legal issues?

Task 1: Monitoring and reporting of non-CO₂ effects

Task 1 Monitoring & Reporting of non-CO2 effects AIRLINE (per individual flight) PERSPECTIVE Task 2 Verification of the AUTHORITY reported CO₂ equivalents (per individual flight)

Objective of task 1:

Airline

Data

Testing the steps to be performed by an aircraft operator to monitor and report CO₂ equivalents in the EU ETS ("airline perspective")

- European Air Transport Leipzig
 - German cargo airline owned by Deutsche Post
 - Main hub at Leipzig/Halle Airport
 - Providing flight and fuel data of approx. 30 short and medium/long haul flights
- Most frequent aircraft types:
 - Airbus A300-600RF
 - Boeing 757-200PCF
- Route network within the project:
 - Intra-European Routes: 19
 - North-Atlantic Routes: 2
- Reference route:
 - Madrid (MAD) Leipzig (LEJ)
 - Frequency: approx. 10 flights

Task 1: Monitoring and reporting of non-CO₂ effects

Objective of task 1:

Testing the steps to be performed by an aircraft operator to monitor and report CO₂ equivalents in the EU ETS ("airline perspective")

1. NO, Emissions Calculation Procedure based on Boeing Fuel Flow Method 2:

- 4 Step calculation procedure can be completely automated
- <u>Data Source: ICAO Engine Exhaust Emissions Databank (EDB)</u> Fuel flow and emission indices for 4 engine operating conditions: 100%, 85%, 30%, 7% of max. rated thrust
- Required fuel flow data is directly recorded by aircraft/operator

2. Calculation of CO2e per flight:

- Climate-response calculation based on <u>AirClim</u> (climatological mean data)
- Requires flight profile and emission inventory of CO₂, H₂O, NO_x
- Procedure can be automated but no public version available
- Open Source software of AirClim under development

Project interfaces between Tasks 1, 2 & 3

DLR

MRV: Monitoring, Reporting & Verification

Task 2: Verification of non-CO₂ effects

Objective of task 2:

Testing the steps to be performed by a reviewing authority to verify reported CO2e in the EU ETS ("authority perspective")

Are there any legal issues?

Task 2: Verification of non-CO₂ effects

Objective of task 2:

Testing the steps to be performed by a reviewing authority to verify reported CO2e in the EU ETS ("authority perspective")

- 1. Query of relevant flight plan data (here: Eurocontrol DDR2 m3 data, if available)
 - Processing of flight data according to the required granularity
 - Procedure can be completely automated
- 2. (Simplified) fuel flow estimation along the trajectory:
 - Calculation performed with varying simplifications
 (incl./excl. wind data, detailed A/C performance vs. regressions, etc.)
 - Automation depending on the procedure
- 3. NO_x Emissions Calculation Procedure based on Boeing FF Method 2
- **4. Projection of aircraft emission along the flown flight profile**Procedure can be fully automated
- **5.** Calculation of CO₂ equivalents per flight (Step 3 & 5 analogous to Task 1: Procedures can be completely automated)

Task 3: Application for a simplified estimate of CO₂ equivalents

Task 3

Development of an application for a simplified estimate of CO₂ equivalents per flights

Task 4

Development of a concept for integrating the simplified CO2e application into TREMOD

Objective of task 3:

- Provide a simplified calculation methodology for estimating the total ecological footprint (CO₂ & non-CO₂ effects) of a flight
- Simplified CO2e estimate should be based only on data, which are already used by UBA for CO₂ calculation, like airport location and aircraft type

Note:

Simplified CO2e estimates should not be used for a MRV scheme as they ...

- ... further increase the focus on CO₂ reduction
- ... might create false incentives (incentive to fly higher rather than lower)
- ... "penalize" climate-cost-efficient routings (due to the increased fuel burn)

Task 5: Review of the EASA-EC-Report

1. Aviation Non-CO₂ Impacts – Current status of science and remaining uncertainties

- Comprehensive and thoughtful status of the current understanding of the atmospheric impacts of aviation emissions.
- A large part of the summary is based on the findings in Lee et al. (2021) and for net NOx-RF on Skowron et al. (2021) and rounds it off by addressing other recent literature, leading to the more general conclusion that <u>"the largest of these effects are the forcing from the current-day net NO_x effect and contrail cirrus."</u>
- Discussion on uncertainties is in general largely supported

2. Technological and Operational factors for limiting or reducing non-CO₂ impacts from aviation and related trade-off issues

- Summarises in more detail the knowledge on non-CO₂ emissions.
- Trade-offs are discussed for e.g. CO₂ and NO_x emissions

3. What research has been undertaken on potential policy action to reduce non- ${\rm CO_2}$ climate impacts?

- EC-Report provides a comprehensive and broad analysis of possible measures for the limitation of aviation's non-CO₂ effects
- This selection comprises most types of potential policy measures suitable for the reduction of air transport's climate relevant species.

Task 5: Review of the EASA-EC-Report

Task 5
Review of the EASA-EC-Report

Feasibility of the implementation of non-CO₂ aviation effects in policy measures

Roadmap: Some possible steps forward

- 1. Uncertainties: Make use of uncertainties in calculation of equivalent CO₂
- 2. Transition: Stepwise implementation of CO2e accounting (20%, 40%, 60%, ... at different years)
- 3. Inclusion of uncertainties: CO2e accouting for confidence intervals for each species individually (e.g. only 20%, 40%, 60%, 80% depending on uncertainties)
- 4. Planning reliability: No surprises (e.g. based on weather forecast or hindcast)

Summary

Aviation climate effects

- CO₂ and non-CO₂ are important contributors to aviation's climate impact
- The understanding of non-CO₂ effects has been largely increased
- The nature of non-CO₂ effects, i.e. the dependency on meteorology largely limits reduction in uncertainties

Requirements for non-CO₂ calculation methods

- Should provide incentives for actually reducing non-CO₂ effects
 - not a constant factor, but depending on e.g. technology and operations
 - not simply adding costs, but providing the possibility to reduce climate impact and cost of operation

Policy measures and inclusion of non-CO₂ effects by CO₂e calculations

- Several calculation methods for non-CO₂ effects are in principle available, which differ in the degree of detail and are subject to uncertainties related to atmospheric science.
- Effort for operationalization is strongly dependent on the chosen CO₂e approach
- Risk assessment is required to better understand the impact of uncertainties on the calculation of non-CO₂ effects and thereby on the potential of setting wrong incentives
- Operational feasibility currently tested. Monitoring, reporting and verification of non-CO₂ emissions seems to be technically possible.
- · Promising measures could be selected now, the economic impact analysed and pilot projects conducted

