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In the efforts to reduce both CO2 emissions and non-CO2 climate impacts in global aviation,
encouraging the take-up of Sustainable Aviation Fuels (SAF) is seen as a key element. Although
there are currently seven ASTM-approved SAF production pathways, availability of the required
feedstock and increased costs compared to conventional jet fuels pose major challenges for a
fast market uptake. It is therefore advisable to use the currently available capacities in a smart
way, i.e. taking into consideration the maximum potential for mitigating climate impact for
a given scenario as well as a cost-optimal and economic efficient allocation in the operational
context. For such complex tasks, all information regarding the system under consideration
should be made available over the entire lifecycle. For this purpose, a Digital Twin concept
for SAF is proposed and demonstrated, linking together information from models and data
to form a virtual representation of the fuel and mirror the fuel during its lifecycle. Special
emphasis is placed on the representation of uncertainties of the involved model predictions and
the traceability of the provenance of all information within the Digital Twin. The methodology
is tested and demonstrated for a decision making problem typical for the utilization of SAF
under the current regulatory constraints, namely the blending of conventional fuel with SAF to
a drop-in SAF blend. The fact that the physical properties of the conventional jet fuel might
vary within its specification requires a careful selection of the blend ratio and the candidate
SAF to achieve an optimal blend given associated cost functions and constraints. It is identified
that due to the defined constraints and the cost function, not always the SAF with the highest
possible blend ratio is selected as the best choice. It is shown that the inclusion of uncertainties
narrows the range of possible blend ratios and hence affects the decision process and the optimal
decision. However, this approach reflects a risk-informed decision since uncertainties in the
model prediction are considered in the decision process.

I. Introduction

In the efforts to reduce both CO2 and non-CO2 emissions in global aviation, encouraging the take-up of Sustainable
Aviation Fuels (SAF) is seen as a key element [2, 3]. While the general term Aviation Alternative Fuels (AAFs) refers

to fuels produced from feedstock other than crude oil, SAFs additionally require strict compliance with sustainability
criteria along the production cycle and a substantial reduction of lifecycle CO2 emissions compared to a fossil fuel [4].
This broad definition results in a variety of possible production pathways for SAFs [5] involving a diverse range of
bio-based feedstock. Although there are currently seven ASTM-approved SAFs [6], regulatory policies as well as
technological limitations only allow the use of SAFs in blends with conventional jet fuels in a range between 10% and
50% SAF content. Thus, depending on the blend ratio and the chosen feedstock, the reduction potential for CO2 and
non-CO2 emissions of a specific SAF varies. The fact that the price of SAF today is higher than petroleum-based Jet A
and SAF availability is still limited poses another major challenge in its market uptake.

It is therefore advisable to use the currently available volumes in a smart way, i.e. taking into consideration the
maximum potential for mitigating climate impact for a given scenario, as well as a cost-optimal and economic efficient
allocation in the operational context. This requires the consistent collection and tracking of all available data and
information along the lifecycle of a SAF with respect to the considered scenario. Only on the basis of this knowledge
optimal decisions regarding SAF deployment can be made and strategies for future climate mitigation effective SAF
utilization can be inferred. Furthermore, there is an increasing need for airlines to precisely track the CO2 footprint of
the utilized fuel in order to profit from accounting and offsetting schemes like CORSIA [7] or EU-ETS [8] when using
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Fig. 1 Sustainable Aviation Fuel lifecycle. [1]

SAF. From a technical perspective, the quantitative impact of SAF utilization on Maintenance, Repair and Operation
(MRO) is not clear. Point measurements showed potentially reduced maintenance and repair costs, as well as operational
advantages due to lower aromatics content and higher thermal stability of SAF. Systematic tracking of fuel impacts on
MRO could potentially guide future decision making.

In addition to the data collected, predictions from computer models enable the evaluation of SAF usage over the life
cycle prior to the actual deployment in an aviation mission. These models cover, inter alia, the prediction of unknown
fuel properties [9], the sensitivity of the combustion process on varying fuel composition in the engine [10] or the
expected climate impact, e.g. from the resulting soot emissions. Connecting these models and augmenting them with
the gathered real-world data yields a holistic virtual representation of the fuel’s lifecycle and its impact on the various
stakeholders, commonly referred to as a Digital Thread [11]. As an integral part of this Digital Thread, a Digital Twin
(DT) embodies a digital representation to closely mirror or emulate the life of an entity along the Digital Thread, in
this particular case the fuel under consideration. It is important to note that a single Digital Thread might incorporate
multiple Digital Twins interacting with each other as for example in the case of multiple candidate fuels which are
compared and selected for a specific scenario.

Digital Twins are gaining increasing interest for their potential of a unified virtual representation in fields such
as manufacturing, aerospace, healthcare and medicine. Proposed applications range from smart manufacturing of
components [12] up to full scale model representations of physical systems [13] for the purpose of a streamlined
certification process. As the latter involves high consequence decisions, uncertainties in the models and data contained
in the Digital Twin must be taken into consideration. Clearly, this requires the underlying architecture of the Digital
Twin to cope with uncertain data, commonly implemented in a probabilistic approach [14]. Combining methods and
concepts for Digital Twins and uncertainty quantification finally enables risk-informed decision making on the basis of a
comprehensive and consistent source of information.

Due to the various sources of data, information and model predictions contributing to a Digital Twin, keeping track
of data provenance is another critical issue in the application of Digital Twin concepts. The broad term provenance
thereby refers to understanding where a piece of data originates from and how it is connected to other datasets and
models [15]. Therefore, data provenance modeling of the Digital Twins can be seen as a connecting backbone within a
Digital Thread system.

Although a growing body of literature on Digital Twin concepts exists [16, 17], state-of-the art Digital Twins
are largely the result of custom implementations that require considerable deployment resources and a high level of
expertise in the specific field of application [14]. This paper therefore aims at developing a Digital Twin for Sustainable
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Fig. 2 Flowchart of the SAF lifecycle involving operations (boxes), decisions (diamonds) and data and information
streams (gray arrows).

Aviation Fuels that is in conjunction with a superordinate Digital Thread concept. Special emphasis is placed on the
representation of uncertainties of the involved model predictions and the traceability of the provenance of all information
within the system.

II. Problem formulation
This section describes the problem considered in this paper and identifies and defines the involved elements which

must be represented in the Digital Twin system.

A. Sustainable Aviation Fuel lifecycle
Figure 1 summarizes the typical lifecycle of a bio-based SAF from feedstock growth to actual utilization in a flight

mission. It involves the production of an arbitrary feedstock (e.g. algae, biowaste, used cooking oil), its transport and
pre-processing, the conversion into a SAF through a refining process as well as the distribution at the airport. Although
not shown here, all of these high level elements might incorporate several additional processes which are specific to the
chosen production pathway and utilization strategy. This feedstock-to-wake lifecycle can be seen as an extension of the
well-to-wake lifecycle concept for conventional jet fuels [18]. In contrast to the latter, several SAF specific challenges
exist:

• Varying lifecycle emissions depending on the SAF production pathway
• Increased number of stakeholders (e.g. feedstock producers) compared to conventional jet fuels
• Increased level of process complexity over the whole lifecycle
• Additional regulatory policies, for example regarding the allowed blend ratio with a conventional fuel
On a more abstract level, this lifecycle can be exemplified in a flowchart as depicted in Fig. 2. It interprets the SAF

lifecycle as a sequence of operations, decisions and information streams. Operations (indicated as black boxes) can be
seen as a high level summary of events connected to the fuel. Again, only the most relevant ones are shown for brevity.
Amid all of these operations information and data regarding the fuel are generated, ranging from the CO2 emission
during the production over the chemical composition until the local emissions during the flight. On the basis of these
information, decisions (shown as diamonds) regarding the fuel and its utilization must be made. Exemplary shown
are the decision which SAF to select, how to blend with a conventional fuel and how much fuel to lift on the wings
of the aircraft for a specific mission. Naturally, all of these decisions influence the downstream part of the lifecycle.
Furthermore, for an optimal decision, all upstream information and data should be available. Thus, collecting all of the
data along the lifecycle and providing a basis for the associated decisions is a key task for a Digital Twin in this scenario.
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Fig. 3 System abstraction of a Digital Twin -based decision.

Ultimately, information and decisions from consecutive runs of the Digital Twin serve as a feedback loop to optimize
the usage of the fuel in the operational context, hence enabling a smart utilization.

Note that the work at hand specifically focuses on the last elements of the lifecycle in which the deployment and
utilization of a produced SAF at the airport is considered. Therefore, upstream processes from the SAF production
are not explicitly taken into consideration but are represented in terms of resulting data, for example for the chemical
composition of the SAF.

B. System abstraction
For the definition of key terms and concepts, we take a closer look at the abstraction of a Digital Twin-based decision

as summarized in Fig. 3. The Digital Twin, i.e. the virtual representation of the fuel, forms the core element. In the
DT, knowledge regarding the real world entity is collected and processed. Here, knowledge entails all information
characterizing the Twin as it is as well as how it could be. While the former refers to data collected during the runtime
of the DT, the latter comprises for example results and findings from model based predictions regarding downstream
operations in the lifecycle. A specific example of a knowledge element is given by measurement data as a result of
an experimental characterization of the real word entity. The chemical composition of the fuel represents the most
fundamental piece of measurement data, as it provides the basis for the characterization of the fuel.

At any point within the lifecycle a state is imposed on the DT by the surrounding. In the case of a liquid fuel, this
state is determined by the surrounding pressure and temperature. From the imposed state and the knowledge regarding
the Twin, physical properties can be deduced, for example the density or viscosity. In the present DT concept, this
state/property mapping is realized using advanced models for each of the required fuel properties (see Sec. III.A and
III.A.1).

Inherent characteristics of the DT (e.g. the chemical composition) are changed by a transformation. The most
prominent example is the blending of the fuel within the DT with an other fuel (change of composition). Operations
feeding data and knowledge into the Digital Twin are summarized as experiments and are not limited to physical
experiments but can include auxiliary models which use the DT, providing insight into the entity and hence additional
knowledge.

Finally, transformations or experiments can be affected by a decision. For example, a decision regarding a specific
blend ratio causes a transformation of the chemical composition of the DT, thus changing the inherent characteristics of
the DT. Decisions are driven by a cost function which is an arbitrary function that must be optimized to achieve an
optimal decision. Thus, this cost function is not limited to economic quantities but might incorporate fuel properties
and knowledge calculate and contained in the DT. Typically, such cost functions are subject to constraints and policies
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restricting the domain over which the cost is optimized. An important example for such a constraint is the maximum
allowed blend ratio of 50% volume for synthetic fuels as stated in ASTM D1655.

III. Methodology
During the distribution and utilization process as detailed in the previous section, different stakeholders require

different data regarding the SAF, e.g. fuel properties for blending or CO2 production footprint for reporting and
accounting. Preferably, this data is collected, stored and provided through a unified virtual representation of the fuel
under consideration. For this purpose, a Digital Twin concept for SAF is proposed.

A. Digital Twin
In this approach, the fuel and its properties from the physical space are represented in the virtual space using property

models and collected data. A schematic of this concept is given in Fig. 4. A fuel in the physical space is determined
by its chemical composition 𝐶 and a state 𝑆 = {𝑝, 𝑇} imposed by the environment. 𝑝 and 𝑇 denote the pressure and
temperature, respectively. In dependance of the state and the composition, physical properties Π of the fuel can be
measured. Π might include, inter alia, density 𝜌, surface tension 𝜎 or kinematic viscosity a. For the Digital Twin, this
system is abstracted in the virtual space through suitable property models and data storage and data fusion methods.
Hence, for all states imposed on the fuel in the physical space, the corresponding fuel properties are returned by the
Digital Twin in the virtual space without the need of further measurements or experiments.

1. Fuel property models
The fact that conventional and alternative jet fuels both are highly complex mixtures consisting of hundreds of possible

hydrocarbon combinations still poses major challenges to the accurate model-based prediction of their respective physical
properties. Physical properties of the fuel are therefore calculated within the Digital Twin using probabilistic Machine
Learning models. From this broad class of models, a probabilistic model based on the Mean Quantitative-Structure
Property Relationship (MQSPR) method [19] is selected for the work at hand. In this approach, fuels are represented as
one mean pseudo-structure that is inferred by a weighted average over structures of 1887 molecules that could be present
in the individual fuel. The MQSPR method assumes a relationship between pseudo-structures and physical properties of
compounds as well as similar chemo-physical properties for compounds with similar structure and substructures [20].
The resulting pseudo-structure is then correlated with the physical properties of the jet fuel.

A Deep Neural Network algorithm with the Monte-Carlo Dropout technique (MCNN) [21] is applied for the
correlation of the fuel properties with the pseudo-structures. During the prediction of a dataset, network neurons are
deactivated randomly and the prediction is repeated multiple times, resulting in varying outputs and finally a distribution
of the predictions. This distribution thus characterizes the model uncertainty. The models are trained using a broad
database of XX conventional fuels and YY synthetic fuels. An example of the distribution of property predictions for a
conventional jet fuel is given in Fig. 5. The density of the fuel is evaluated at 𝑇 = 15° C.

Chemical composition 𝐶 from GCxGC characterization and the state 𝑆 are required as inputs to the MQSPR model.
Thus, fuel properties are calculated from the corresponding MQSPR model as

Π = M𝑀𝑄𝑆𝑃𝑅 (𝑆, 𝐶). (1)

Further details on the used fuel property models are given in the work of Hall et al. [19].

2. Data provenance
With each interaction of the Digital Twin, data and information contained in the Digital Twin might be altered or

updated, for example when a new state of the fuel is examined and hence the fuel properties are recalculated. In order to
keep track of such changes, information regarding the provenance of data must be captured and stored within the Digital
Twin. Several approaches for provenance models are available from the literature [22], among which the W3C PROV
Recommendation [23] is a widely accepted standard. In this standard, data provenance is defined as information about
entities, activities, and agents involved in the generation of a piece of data and their relationship to each other. The core
concept involving these three main components and their relationship is shown in Fig. 6: An entity is a generic thing
that one wants to describe the provenance of. An activity is a process that takes place in a specific setting and timing,
changing or using the entity. Finally, an agent is responsible for an activity. In the context of the fuel Digital Twin,
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(a) Physical space (b) Virtual space

Fig. 4 Abstraction of a fuel through a Digital Twin (PM=Property Model).
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Fig. 5 Distribution of density predictions from the MQSPR model for a conventional jet fuel at 𝑇 = 15° C.
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properties of the fuel would correspond to entities, while a model calculation within the Digital Twin can be seen as an
activity. Lastly, the subordinated process in which the Digital Twin is used acts as an agent in the provenance model.

All operations concerning the Digital Twin are tracked and described during the runtime using these definitions.
Provenance information is made available in terms of a graph of all recorded provenance.
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wasGeneratedBy
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xsd:dateTime

startedAtTime
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Fig. 6 Core concept of the W3C PROV model [24].

3. Uncertainty management
To enable risk-informed decision making using the Digital Twin, uncertainties in the model prediction must be

considered. The fact that probabilistic Machine Learning models are utilized for the prediction of fuel properties within
the Digital Twin provides access to the uncertainties in the model predictions. Consequently, respective prediction
intervals are provided and stored for each fuel property. With this information at hand, non-deterministic simulations
can be conducted using the Digital Twin. The full distribution of the property models is reduced to the median of the
distribution as well as the boundaries of the interval covering 95% of the predictions (95% prediction interval/PI). Both
values are indicated in Fig. 5 for an exemplar density prediction.

IV. Example case study
In order to demonstrated the proposed Digital Twin framework, an example case involving the blending of a

conventional jet fuel with one of three candidate SAFs is studied. In this scenario, three different types of SAF are
available at a blending location (e.g. an airport). The fact that the physical properties of the conventional jet fuel might
vary within its specification and all three SAFs differ in their respective physical properties requires a careful selection
of the blend ratio and the candidate SAF to achieve an optimal blend. Figure 7 summarizes the resulting decision
problem and the corresponding DT workflow according to the concept from Fig. 3. In a first step, a virtual blending
study is conducted involving each of the three SAFs. Hence, this operation describes an experiment increasing the
information stored with in the DT. Based on the acquired information, a decision which of the three fuels to select for
blending and which blend ratio to use is made. This decision involves constraints from the regulatory limits regarding
SAF blending (e.g. maximum blend ratio, minimum density of the resulting blend) as well as a cost function rating the
available choices in the decision. Finally, the conventional jet fuel is blended with the SAF DT from the decision.

The inclusion of uncertainties are demonstrated through the example of prediction intervals of the underlying fuel
property models in the DT (see Sec. III.A.1). A simplified cost function based on the estimated soot reduction potential
is utilized. Through the DT concept, data provenance as described in Sec. III.A.2 is tracked using the W3C model.
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Fig. 7 Decision problem and DT workflow for SAF blending.

A. Fuels
Results from the 2006 CRC world fuel survey [25] provide the data basis for the conventional jet fuels in the present

study. From this survey, detailed data including physical properties as well as chemical composition (from GCxGC
measurements) is available for 28 different Jet A compliant jet fuels. These 28 fuels are used to mimic the variation
in physical properties over conventional fuels that might be available at the blending location. This is illustrated in
Fig. 8 for four key properties, namely aromatics content 𝑌𝑎𝑟𝑜𝑚, density 𝜌15 at 15 deg celsius, hydrogen content 𝑌ℎ and
net specific energy 𝐸𝑛𝑒𝑡 . Boxplots portray the variation of these quantities over the 28 fuels. Data was extracted from
respective experimental measurements reported in the CRC world fuel survey.

As SAFs, two fuels from a HEFA (Hydro-processed Esters and Fatty Acids) production pathway and one from an
ATJ (Alcohol to Jet) production route are considered. While the HEFA pathway has the highest technological maturity
the ATJ production routes currently do not have much technological development but might gain importance in the
future.

Especially in the HEFA case, the chemical composition and thus the performance of the fuel highly depends on the
feedstock type. For this reason, two different HEFA fuels are compared. HEFA 1 was characterized in depth during
the European Unions JETSCREEN research project. From this project, an extensive collection of measurement data
regarding chemical and physical properties is available. HEFA 2 is a fuel currently under investigation at the DLR
Institute of Combustion Technology and varies slightly in the chemical composition compared to HEFA 1.

The ATJ fuel under consideration was also characterized as part of the JETSCREEN project and is composed of
99.9% of iso-paraffins. A comparison of the key properties of the three SAFs is given in Fig. 8. All three SAFs have
an aromatics content below 0.5% and a hydrogen content and specific energy above the conventional fuels from the
CRC survey. Thus, resulting blends will have a higher hydrogen content then the neat conventional fuel but a reduced
aromatics content and density.

B. Cost function and constraints
A simplified correlation for the soot emission of a fuel based on its hydrogen content is utilized as a cost function.

This reflects the fact that through the use of SAF blends not only the CO2 emissions are reduced but also non-CO2
emissions such as soot can be reduced. Through this approach, the SAF blend with the highest soot reduction potential
is selected.

The correlation is derived from experimental data. During the EU JETSCREEN project [26], the effect of different
conventional and alternative jet fuels on pollutant emissions, principally non-volatile particles, but also NOx was
measured in a detailed experimental measurement campaign. Various combustor configurations were tested under
laboratory conditions, going from academic ones (for better understanding), to more representative ones (APU, tubular
combustor and injection system representative of a real engine). Results from the APU measurements [27] are considered
in the following since this configuration and the conditions (power setting etc.) closest resemble the conditions in a real
aircraft engine. Experimental data for the relative black carbon mass concentration in dependence of the fuel hydrogen
content is given in Fig. 9. They demonstrate an exponential decay in concentration with increasing hydrogen content.
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Fig. 8 Variation in fuel properties for conventional jet fuels (CRC) and the three SAFs.
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Fig. 9 Cost function based on hydrogen content and black carbon mass concentration (soot).

Thus, an exponential function can be fitted against the experimental results (least squares fit with correlation coefficient
𝑅2 > 0.9).

Hydrogen content of the SAF blends is calculated based on the resulting chemical composition. Thus, the cost
function Soot(𝑌𝐻 ) can be transformed to Soot(𝑥𝐵𝑙), evaluating the soot reduction in dependence of the blend ratio.

Constraints for the selection problem are determined by the standard specification for jet fuels containing synthesized
hydrocarbons under ASTM D7566-20c. For brevity, only the constraints regarding density 𝜌𝐵𝑙 and aromatics content
𝑌𝑎𝑟𝑜𝑚,𝐵𝑙 of the blend are considered for the present example. Both are known to be challenging to match when aiming
for higher blend ratio. Furthermore, for both ATJ and HEFA blends, the maximum allowed blend ratio in ASTM D7566
is 50% volume w.r.t the synthetic compound. Since the density 𝜌𝐵𝑙 for the standard specification must be evaluated
at a liquid temperature of 𝑇 = 15 °C, all Digital Twins operate at a state of Π = {𝑇, 𝑝} = {15 °C, 1 bar}. Hence, the
resulting set of state, cost function and constraints reads:

State:
{𝑇, 𝑝} = {15 °C, 1 bar}

Cost function:
Soot(𝑌𝐻 ) = Soot(𝑥𝐵𝑙)

Constraints:
𝑥𝐵𝑙 ∈ [0, 0.5]
𝜌𝐵𝑙 ∈ [775, 840]
𝑌𝑎𝑟𝑜𝑚 ∈ [8.0, 25]

C. Results
The decision problem from Fig. 7 is evaluated for each of the 28 conventional fuels from the CRC survey (see

Sec. IV.A). In the following, results from a single evaluation of fuel CRC334 POSF4385 are discussed at first. Then,
results from all evaluations are compared.

1. Single conventional fuel evaluation
Figure 10 displays the provenance graph of the conventional fuel CRC334 POSF4385 before blending and hence

before the decision problem. Three operations (orange boxes) were already conducted: the DT was created followed
by an experimental characterization of the chemical composition through GCxGC analysis. This data was read into
the DT, determining the composition. With this information, all physical properties were recomputed. Note that
for brevity, only density, viscosity and surface tension are included in the graph. Furthermore, additional data from
physical experiments within the CRC survey were provided to the DT, indicated by an additional entity (yellow element
MeasurementData:density). Thus, this graph provides traceable information regarding the history of the DT and its
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Fig. 10 Provenance graph of a conventional fuel DT before blending.

contained data.
In the next step, a blending study is conducted for each of the three SAFs. For this purpose, the conventional fuel

is gradually mixed with each of the three SAFs taking into consideration the constraint for the blend ratio. For each
mixture, physical properties are evaluated. As aforementioned, only aromatics content and density are considered at this
point. While the density is computed using the MQSPR model detailed in Sec. III.A.1, aromatics content is calculated
using a linear mixing rule:

𝑌𝑎𝑟𝑜𝑚,𝑏𝑙 =
∑︁
𝑖

𝑟𝑖𝑌𝑎𝑟𝑜𝑚,𝑖 = 𝑥𝑏𝑙 · 𝑌𝑎𝑟𝑜𝑚,𝑐𝑜𝑛𝑣. + (𝑥𝑏𝑙 − 1) · 𝑌𝑎𝑟𝑜𝑚,𝑆𝐴𝐹 , (2)

where 𝑟𝑟𝑒𝑙,𝑖 is the relative volume in the mixture. For the conventional fuel, 𝑟𝑖 = 𝑥𝑏𝑙 while for the SAF 𝑟𝑖 = (𝑥𝑏𝑙 − 1).
Results from the blending study for fuel CRC334 POSF4385 are given in Fig. 11. Figure 11a shows the aromatics
content in the blended fuel over the blend ratio. Values outside the constraint are indicated by a red shade. Since the
aromatics content is computed from a mixing rule, only deterministic results, i.e. a single line for each SAF, is given.
For all three SAFs, the blend is within the constrained area regarding the blend ratio. In contrast, the blends’ density is
predicted by calculation the new composition of the blend based on the GCxGC data of the neat fuels and the blend
ratio. This new composition is then used as an input to the probabilistic ML model and hence the 95% prediction
interval (colored shades) can be taken into consideration alongside the median prediction (solid lines). This reveals
uncertainties around the median prediction in the magnitude of ±5kg/m3 and highlights the importance of the clear
portrayal of uncertainties: When considering only the median values, all blends from all three SAFs would stay within
the constraint regarding minimum density. However, if it is demanded that the whole 95% prediction interval must be
above the minimum constraint, ATJ blends with a blend ratio 𝑥𝑏𝑙 > 0.375 as well as HEFA1 blends with 𝑥𝑏𝑙 > 0.375
drop below the minimum density.

Due to this requirement, the cost functions for ATJ and HEFA1 are limited to maximum blends of 𝑥𝑏𝑙 > 0.375 and
𝑥𝑏𝑙 > 0.375 as shown in Fig. 12. For this case, HEFA1 represents the best choice, i.e. the SAF for which the minimum
value of the cost function is achieved, corresponding to the highest possible reduction in soot emission. It is important
to point out that this does not relate to the maximum possible blend ratio for fuel CRC334 POSF4385 which could be
achieved using HEFA2. Hence, a higher impact on the ultimate objective (here: reducing soot emissions) is possible
without the maximum possible blend ratio among the three SAFs.

Finally, Fig. 13 shows the essential elements of the provenance graph of fuel CRC334 POSF4385 after the decision
and the blending. Again, all operations are given as orange boxes, namely the three blending studies, the decision and
the the blending with the best choice. Interaction with other DTs (for the three SAFs) is indicated by gray entities. It can
be traced back that the blending operation changed the composition of the DT and triggered the recomputation of the
physical properties of the fuel.
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2. Overall evaluation of the CRC fuels
The decision discussed in the previous section is now repeated for all of the 28 conventional fuels from the CRC

survey to identify the optimal SAF and blend ratio for each fuel. As the CRC fuels vary in their composition (see Fig. 8),
optimal choices differ between the fuels. A summary of the 28 decisions is given in Fig. 14. Cases exist for which all
three fuels can be utilized up to the maximum allowed blend ratio of 𝑥𝑏𝑙 = 0.5 (e.g. CRC334 POSF4385). In these
cases, HEFA1 is selected as best choice, since it has the highest potential for soot reduction in the cost function.

As already identified in the previous section, there are conventional fuels for which the SAF with the highest potential
blend ratio is not the optimal choice under the given constraints and cost function. This highlights the smart utilization
of SAF as discussed in the introduction, meaning that the optimal utilization of a given SAF cannot only be determined
by a single objective (e.g. high blend ratio) but should take multiple targets into consideration .
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Fig. 14 Summary of options and decisions for all CRC fuels.

3. 50 − 100% SAF evaluation considering drop-in fuel property constraints
Both ATJ and HEFA SAF are currently limited to 50% volume blend ratio due the corresponding specifications.

However, there are efforts to advance these limits towards higher blend ratio and ultimately 100% SAF utilization in
order to maximize the CO2 and non-CO2 emission reduction potential. In order to shed light on the effects on fuel
blending, the presented case study is repeated and adjusted towards possible 100% SAF utilization. For this purpose,
the constraint on the blend ratio 𝑥𝑏𝑙 is altered to

𝑥𝐵𝑙 ∈ [0, 1.0] (3)

while the constraints on density and aromatics content remain unchanged. The latter ensures that the drop-in characteristic
of the resulting fuel blend is maintained.

Resulting blends and best choices are summarized in Fig. 15. Although the blending limit was increased to a
𝑥𝑏𝑙,𝑚𝑎𝑥 = 1.0, all possible blends stay below 𝑥𝑏𝑙,𝑚𝑎𝑥 = 0.65 due to the constraints on density and aromatics content.
Obviously, the system is more sensitive to these constraints then to the maximum allowed blend ratio.

There are fuels for which the best choice of SAF changes when changing the constraint on maximum blend ratio
(indicated by orange labels). For example, for fuel CRC040 POSF3940 or CRC101 POSF4369 the best choice is HEFA1
under the constraint of 𝑥𝐵𝑙 ∈ [0, 0.5] but this shifts to HEFA2 under the constraint of 𝑥𝐵𝑙 ∈ [0, 1.0]. This is due to the
fact that the blend ratio for HEFA2 is primarily constrained by the maximum allowed blend ratio and increases when
changing this constraint. Hence, the associated cost function is able to drop below the HEFA1 cost function, which is
primarily constrained by minimum density and aromatics content.

These examples again emphasize that each decision depends not only on the fuels under consideration, but also on
the constraints placed on the system.
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Fig. 15 Summary of options and decisions for all CRC fuels for 𝑥𝑏𝑙,𝑚𝑎𝑥 = 1.0. Orange labels indicate fuels for
which the best choice of SAF changes when changing the constraint on maximum blend ratio.

V. Summary and outlook
In order to track aviation fuels over their lifecycle and support decision making using the collected data and

information, a Digital Twin concept based on a virtual representation of the fuel was presented. In this concept, the
state-property relationship of fuels is represented through probabilistic machine learning models for each physical
property under consideration. This enables fast modeling of the real world behavior of the entity over multiple operations
within the lifecycle, e.g. production, blending or combustion of the fuel. Essential elements occurring in all of these
operations - experiments, transformations, decisions - were identified and interpreted in the Digital Twin context.
Furthermore, a strict tracking of the provenance of each piece of data and information within the Digital Twin through the
W3C provenance model is adopted. The fact that probabilistic Machine Learning models are utilized for the prediction
of fuel properties within the Digital Twin provides access to the uncertainties in the model predictions and builds the
key element for uncertainty management in the proposed concept.

The methodology was successfully demonstrated for a decision making problem typical for the utilization of SAF
under the current regulatory constraints, namely the blending of conventional fuel with SAF to a SAF blend. It involved
three different SAFs that should be blended with a conventional jet fuel. The fact that the physical properties of the
conventional jet fuel might vary within its specification required a careful selection of the blend ratio and the candidate
SAF to achieve an optimal blend given associated cost functions. For this purpose, the expected soot emission of the
blend was utilized as a cost function. It was shown that the inclusion of uncertainties narrowed the range of possible blend
ratios and hence affected the decision process and the optimal decision. However, this approach reflects a risk-informed
decision since uncertainties in the model prediction are considered in the decision process. It was identified that due to
the defined constraints and the cost function, not always the SAF with the highest possible blend ratio was selected as
the best choices. In a last step, the constraint on the maximum blend ratio was adjusted towards a possible 100% SAF
utilization. Although the blending limit was increased to 1.0, all possible blends stayed below 𝑥𝑏𝑙,𝑚𝑎𝑥 = 0.65 due to the
constraints on density and aromatics content, which were kept constant in this study. Furthermore, conventional fuels
were identified for which the best choice of SAF changes when changing the constraint on maximum blend ratio.

The methodology was successfully demonstrated, yet with a limited focus on fuel blending and a simplified cost function.
In further studies, the following issues should be addressed:

• Additional quantities should be included in the cost function to fully reflect the complexity of the decision problem.
This should include, inter alia, the economic cost and availability of the SAF, the CO2 reduction potential and the
lifecycle CO2 emissions. Further critical properties for blending should be included in the constraint of the cost
function to fully reflect the requirements for drop-in blends as summarized in ASTM7566 under Table 1 and 2.
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For example, this should include the distillation curve as pointed out by Kaltschmitt [28]. As already identified,
including the uncertainties in all of this data and predictions is a must for a robust decision. Furthermore, the
scenario in the work at hand should be extended to cover further operations and decisions from the SAF lifecycle
as summarized in Fig. 2. This could include models and data from the SAF feedstock, production and deployment
and would aid in identifying dependencies between information and decisions over the lifecycle.

• For the presented case study, data from existing resources was provided to the Digital Twin. However, in order
to mimic a real world/real time entity through the DT, interfaces capturing data from real-time resources, e.g.
sensors, must be incorporated. For example, data from sensors measuring physical properties of the fuel before
and after blending could be used to update the model predictions and provide a feedback loop. Furthermore,
coupling sensors with the Digital Twin would enable smart sensing. This means that only a few, easily measurable
quantities are measured by sensors while others are predicted using the Digital Twin.

• Although a single ML model was utilized for each physical property in the Digital Twin, the predictive capabilities
of the models might differ depending on the application domain [9]. Thus, it would be advisable to dynamically
select adequate models for each physical property. Methods for automatic model selection or model fusion should
therefore be included into the DT concept.

• The cost function in the example at hand preferred fuels and blends with high reduction capabilities for soot
emissions. As demonstrated in Sec. IV.C.1, this resulted in cases in which not the SAF with the highest possible
blend ratio was selected, but the SAF with the highest soot reduction. However, this would mean that although
the maximum soot reduction was achieved, there was a potential for a higher CO2 emission reduction through a
higher blend ratio. Clearly, there are cases with a trade-off between CO2 and non-CO2 reduction, depending on
the available SAF. Since there are implications in recent research that the climate impacts of non-CO2 effects are
highly sensible to flight mission parameters such as aircraft trajectory and ambient atmospheric conditions [29],
these information must be included in the decision. This would result in a truly smart utilization of SAF.
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