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Artificial intelligence (Al) driven calibration in solar power plants

» Why Al models in solar power plants?

* Quick overview to Deep Learning Algorithms
» Heliostat calibration

« Conclusion
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Why Al models in solar power plants?

Why deep learning [1]
» Solar tower plant technology relies on numerical models
— Design and planning
— Forward control
— Feedback control

Deep learning

Older learning
algorithms

Performance

* Numerical models are limited by the quantity of influencing factors
— Approximations lead to deviations from reality

— It's not possible to capture all factors >
Amount of data

» Deep learning algorithms improve model behavior through
sensor data continuous.

* The use of Deep Learning is conceivable in almost every area in solar power plants

[1] http://neuralnetworksanddeeplearning.com/
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http://neuralnetworksanddeeplearning.com/

Introduction: Deep Learning Systems

* Deep learning based algorithms are driven
by Neural Networks (NN)

[1]

[1] https://lwww.shutterstock.com/de/search/neuron?studio=1
[2] http://neuralnetworksanddeeplearning.com/”
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Introduction: Deep Learning Systems

tep functi
* Deep learning based algorithms are driven 1.0- i
by Neural Networks (NN) .
« Every Node in a Network is described by 06+
a mathematical activation function o
[2]
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[1] https://lwww.shutterstock.com/de/search/neuron?studio=1
[2] http://neuralnetworksanddeeplearning.com/
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Introduction: Deep Learning Systems

* Deep learning based algorithms are driven
by Neural Networks (NN)

« Every Node in a Network is described by
a mathematical activation function
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* The cost describe the difference between
the predicted and the correct value
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https://www.youtube.com/watch?v=tIeHLnjs5U8

Heliostat calibration

» The efficiency of the power plant depends largely on the
ability of the heliostats to precisely align their focal point.

» Highly complex issue
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Heliostat calibration

» The efficiency of the power plant depends largely on the
ability of the heliostats to precisely align their focal point.

» Highly complex issue
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Heliostat calibration

» The efficiency of the power plant depends largely on the
ability of the heliostats to precisely align their focal point.

» Highly complex issue

« Standard calibration is done by regression algorithms
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Heliostat calibration

Calibration mode

Geometry- f(posis,a, B,y ...) = P0Syeq —— Heliostat

- Is-Positio .
Heliostat *Regression 2=

v
m =™ Q
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Heliostat calibration

In Operation

Is-Position

Heliostat » f(posis, 0, B,y ...) = poSyeq —— |  |Heliostat
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Heliostat calibration

* Regression Method: » Al Method:

» Solver stops working when parameters are * No linear dependence between parameters
linearly dependent

f(posisr o, a,y ) = POSnot req

» Geometry Model with 8 Parameters is not » Thousands of parameters able to fit high
sufficient complex problems

* It's not given, that the accuracy gets better « Accuracy gets better every time the calibration
over time IS done
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Heliostat calibration

Calibration mode

Is-PositioQ

Heliostat Heliostat
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Heliostat calibration

In Operation
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Heliostat calibration
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* Problem: With 4 Inputs the network starts giving relevant results only after feeding >10K

(simulated) Sun and Heliostat positions (per Heliostat)thorough it
- Reality is more complex and has fewer data points

* Solution 1: GET MORE DATA (Thats what i‘m working on right now)
« Solution 2: Try to get more information out of the data you already have
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Heliostat calibration
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Heliostat calibration

1,00E-04 : — — — T
Data Net Image Net Hybrid Net Triple Net
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Heliostat calibration

15x15 Image (Stand. @Leaky-Relu)

2-4 Input Variables (Norm. @Leaky-RN

0,01 4

Loss

0,00 4

1,00E-04
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Heliostat calibration
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Heliostat calibration

Another Problem: Pictures can only produced and used in
calibration mode. Outside the calibration mode we have only the
heliostat and the sun position

@ ©

OP0e
\l—v 4

@oec

oo (Iof 1 ) X )
\/ \/ = \/

V7o /=Y
. ]

) &2/

Another Solution: Data Imputation
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Generativ Adversarial Network (GAN)

Condition Vector

- E—) Predictiv Network -
0
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Predicted Labels




Generativ Adversarial Network (GAN)

Condition Vector

D-dimensional
noise vector

I - ‘ Generator Network > -— Predictiv Network -
0

10

Condition Vector
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Predicted Labels




Artificial intelligence (Al) driven calibration in solar power plants

Sun Elevation 70

* We have shown: 5
* GANs are able to produce raytracer Images
with high accuracy but including real
heliostat errors

Sun Azimuth
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Artificial intelligence (Al) driven calibration in solar power plants

* We have shown:
* GANs are able to produce raytracer Images
with high accuracy but including real 102 - e
heliostat errors o
* It is possible to calibrate Heliostats with an
Al only with the Axis Position of the |
Heliostats if you have enough Data | K Date
——— 2k Datapoints
—— 10k Datapoints
1E-03 L+ — e —— ey
1 10 100

Epoch
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Artificial intelligence (Al) driven calibration in solar power plants

* We have shown:
* GANs are able to produce raytracer Images
with high accuracy but including real
heliostat errors

* It is possible to calibrate Heliostats with an
Al only with the Axis Position of the
Heliostats if you have enough Data

0,01

Loss

 Also with a small amount of data you can {
calibrate the heliostats if you use the target { 1
pictures as a support.

1,00E-04

T T T
Data Net Image Net Hybrid Net  Triple Net
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Artificial intelligence (Al) driven calibration in solar power plants

 Setting up the Generator-Predictor Network System

* GET MORE DATA

 Test the calibration method at the solar tower plant in Julich
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Thanks for your attention!
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