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Increased frequencies of storms and droughts due to climate change are changing central European forests
more rapidly than in previous decades. To monitor these changes, multispectral 3D remote sensing (RS) data can
provide relevant information for forest management and inventory. In this case study, data of the multispectral
3D-capable satellite system ZiYuan-3 (ZY-3) were used in a RS-guided forest inventory concept to reduce the field
sample size compared to the standard grid inventory. We first pre-stratified the forest area via the ZY-3 dataset
into coniferous, broadleaved and mixed forest types using object-based image analysis. Each forest type was
then split into three height strata using the ZY-3 stereo module-derived digital canopy height model (CHM).
Due to limited sample sizes, we reduced the nine to six strata. Then, for each of the six strata, we randomly
selected representative segments for inventory plot placement. We then conducted field inventories in these
plots. The collected field data were used to calculate forest attributes, such as tree species composition, timber
volume and canopy height at plot level (terrestrially measured tree height and height information from ZY-3
CHM). Subsequently, we compared the resulting forest attributes from the RS-guided inventory with the reference
data from a grid inventory based only on field plots. The difference in mean timber volumes to the reference was
+30.21 m3ha−1 (8.99 per cent) for the RS-guided inventory with terrestrial height and −11.32 m3ha−1 (−3.37
per cent) with height information from ZY-3 data. The relative efficiency (RE) indicator was used to compare
the different sampling schemes. The RE as compared to a random reduction of the sample size was 1.22 for
the RS-guided inventory with terrestrial height measurements and 1.85 with height information from ZY-3 data.
The results show that the presented workflow based on 3D ZY-3 data is suitable to support forest inventories by
reducing the sample size and hence potentially increase the inventory frequency.

Introduction
Forest inventories provide essential information on tree resources
and forest structure for planning and management. In Ger-
many, forest inventories on a regional and national scale are
usually performed at intervals of 10–20 years. However, due
to climate change, the frequency and magnitude of biotic
and abiotic calamities has increased (IPCC 2018). This increase
requires a shortening of previous inventory intervals to detect
forest changes and adapt management strategies accordingly.
Switzerland, for example, has turned from a periodic to an
annual inventory concept for the Swiss National Forest Inventory
(NFI) in 2009 (Massey et al. 2014). However, the drawback of
the annual concept is a loss in precision due to the reduced
number of permanent terrestrial plots that can be inventoried
within a year. To address this precision loss, Massey et al. (2014)
suggested the integration of aerial remote sensing (RS) data in
a three-phase regression estimation technique in combination

with past inventory data. This approach enables more flexibility
for forest-related data taken from permanent grid sampling
plots and manually interpreted aerial RS data, as well as the
implementation of variance reduction tools, such as post-
stratification. In Switzerland, an improved sampling technique
for the Swiss NFI was also tested for nationwide use of a canopy
height model (CHM) based on aerial images (Ginzler and Hobi
2015). The CHM was used as auxiliary information to post-
stratify the forest area and to reduce estimation errors. The
two studies from Switzerland for the NFI have shown that very
high-resolution aerial images have great potential for optimizing
inventory concepts.

The optimization of inventory concepts using other RS data
types has also been examined in numerous studies. Köhl et al.
(2006) describe different approaches to optimize sampling con-
cepts using auxiliary information from RS data. Auxiliary informa-
tion can be used after sampling to apply post-stratification to
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the sample plots by aggregating them into homogenous units.
Pulkkinen et al. (2018) applied post-stratified estimation in two
real NFI estimation cycles based on stereo aerial images and
reduced the variance of forest inventory characteristics, such as
growing-stock volume. Prior to sampling, a stratification of the
population can be performed with auxiliary information. By strat-
ifying the forest into homogeneous subpopulations, the variance
is reduced compared to simple random sampling (SRS). Thus, a
lower number of sample plots may suffice to achieve a targeted
precision. Grafström et al. (2014) and Wallner et al. (2018) pro-
vide examples of this approach. Further, the approach of two-
phase sampling can be used to support terrestrial sampling in
combination with wall-to-wall maps, which are generated with
observations from auxiliary data correlated to the response vari-
able, such as growing-stock volume. Tomppo (2006) showed the
use of two-phase sampling in the frame of the Finnish multi-
source NFI. They used satellite and digital map data as auxiliary
information in addition to field data to produce estimates for
small areas and wall-to-wall maps. Gautam et al. (2010) applied
a related approach for estimating aboveground biomass in a
tropical forest. In the first phase, they used the satellite char-
acteristics of Advanced Land Observation Satellite (ALOS) and
Landsat 7 data to produce a wall-to-wall map of categories, such
as forest, non-forest and uncertain areas. In the second-phase,
they performed an optimized field data collection and collected a
sample of light detection and ranging (LiDAR) transects over the
target area. Hawbaker et al. (2009) compared stratified sampling
with random sampling using LiDAR data as auxiliary information
and modelled forest structural information, such as diameter at
breast height (DBH), basal area, tree height and biomass. The
mentioned studies showed that auxiliary data sources have a
high potential to support forest sampling concepts. LiDAR and
aerial data provide structural information, but they are compa-
rably costly and limited in area coverage. Satellite data such as
ALOS and Landsat 7 provide high-area coverage free of cost but
have limited information on forest structure. An alternative can
be data from high-resolution RS systems with the ability of stereo
imaging, which enables the derivation of CHM.

Several satellite systems have appropriate sensors to collect
data to generate CHM from high-resolution stereo imagery.
The common stereo systems use along-track stereoscopy,
which captures two or more views from the same orbit.
Studies using high-resolution stereo imagery for forest appli-
cations in Germany include SPOT-5, GeoEye-1/2, WorldView-
2/3, ALOS/PRISM, CHRIS/Proba and Cartosat-1 (Schneider 2009;
Buchhorn and Schneider 2010a, 2010b; Tian 2013a; Straub
et al. 2013; Immitzer et al. 2016; Fassnacht et al. 2017; Tian
et al. 2017). Straub et al. (2013) assessed the usefulness of
stereoscopic satellite data from Cartosat-1 and WorldView-2
stereo imagery for forestry applications by modelling timber
volume. Additionally, forest monitoring and change detection
of forest coverage were analysed with stereoscopic satellite
data by Tian et al. (2013b) and Tian et al. (2017) using data of
WorldView-2, IKONOS, Cartosat-1, ALOS/PRISM and RapidEye.
Further, Immitzer et al. (2016) generated wall-to-wall maps
of timber volume with height values from WorldView-2 data
in conjunction with German NFI data. To date, most of the
studies used 3D satellite data to support forest management
based on forest attribute estimation, forest monitoring and

change detection analysis. However, 3D satellite data have so
far not been used for optimizing the sampling concept of forest
inventories over heterogeneous forests in Germany.

Studies based on the Chinese multispectral (MS) stereoscopic
satellite system ZiYuan-3 (ZY-3) have shown that these data offer
great potential for supporting forest management and invento-
ries. In the study of Li et al. (2019), stand height was tested for
forest mapping. Additionally, Xie et al. (2019) added CHM data
in a land use and land cover (LULC) classification into different
land-cover types, forest types and tree species. Moreover, Li et al.
(2019) estimated aboveground biomass of a larch plantation in
China using MS-3D ZY-3 data.

The main objective of the current study was to assess the
performance of a RS-guided inventory concept, based on infor-
mation derived from ZY-3 MS and three-line stereo data. The key
question was whether the combined spectral–structural infor-
mation derived from ZY-3 data is accurate enough to increase
the efficiency of forest inventory processes via a pre-stratification
of the forest stands. If successful, pre-stratification offers the
possibility to reduce the number of inventory plots by homoge-
nizing the study area without a loss of precision. In German forest
management planning, a threshold <5 per cent relative standard
error is recommended for the estimation of timber volume at
stand- and aggregated enterprise-level (Knoke et al. 2012). With
this in mind, the following research questions were addressed:

1. Does the pre-stratification of forest stands using MS-3D
satellite data permit the reduction of inventory plots while keep-
ing the standard error below the desired threshold of 5 per cent?

2. How well does the RS-guided inventory perform compared
to the grid inventory with respect to the forest attributes ‘height
at plot level’, ‘tree species composition’ and ‘timber volume’?

Study site
The study site is located 5 km north of the city Landshut (Figure 1)
in eastern Bavaria, Germany. The university forest is part of a
forest owned by the Ludwig Maximilian University of Munich. The
study site covers an area of 349 ha and belongs to the forest eco-
region ‘Western Lower Bavarian Tertiary Hilly-Country’ (12.9/1)
(Walentowski et al. 2001). As described in Müller-Starck et al.
(2019), the natural forest vegetation is classified as Fagus-Abies
forest zone. During the vegetation period, the temperature at the
site is higher (15.7◦C) and the precipitation is lower (280 mm)
than the Bavarian mean values (7.8◦C and 700 mm). The eleva-
tion ranges between 440 m to 550 m above sea level (Mosandl
and Höllerl 2013).

Norway spruce (Picea abies (L.) H. Karsten) is the most fre-
quent tree species across every age group. In order to achieve
forest conversion from homogeneous to heterogeneous mixed
stands, a change in the management strategy for spruce was
undertaken. The forest conversion led to a decline of spruce from
59 per cent in 2002 to 46 per cent in 2016 (Friedrich et al. 2017,
Müller-Starck et al. 2019). This in turn lead to an increase in the
tree species European beech (Fagus sylvatica L.), common oak
(Quercus robur L.), silver fir (Abies Alba Mill.), pine (Pinus sylvestris
L.), larch (Larix Mill.) and Douglas fir (Pseudotsuga menziesii). Due
to the change in management strategy, various hardwoods also
benefited. The high-quality valuable hardwoods, referred to as
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Figure 1 Location of the study site in Bavaria, Germany (top left). The picture on the right shows an orthophoto (Geobasisdaten: Bayerische
Vermessungsverwaltung). The forest stand divisions, the position of the forest profile and cross-section (Figure 3) and the subset with the enlargement
of the classification result (Figure 4) are highlighted.

precious hardwoods in this study, include the mountain maple
(Acer spicatum Lam.), ash (Fraxinus L.), wild cherry (Prunus avium
L.) and elm (Ulmus L.). Other hardwoods in the study include
birch (Betula L.), European aspen (Populus tremula L.), rowanberry
(Sorbus aucuparia L.), hornbeam (Carpinus L.) and poplar (Populus
L.). The forest conversion led to a variety of stand type structures,
which range from even-aged spruce monocultures to uneven-
aged mixed stands (Knoke and Weber 2006; Mosandl and Höllerl
2013, Müller-Starck et al. 2019).

Materials
ZY-3 satellite data
Our study is based on a dataset of the Chinese ZY-3 satel-
lite system captured on 09 September 2012. The ZY-3 earth
observation system was developed and launched in January
2012 by the Satellite Surveying and Mapping Application Centre
of the National Administration of Surveying Mapping and Geo-
information of China (Fang and Chen 2012). The system com-
bines a three-line stereo and a four-band MS imaging mod-
ule at 11-bit radiometric resolution. The stereo module consists
of two 22◦ forward- and backward-looking sensors with 3.5 m
resolution and a nadir-looking sensor of 2.1 m resolution. The

MS module combines four spectral bands with 5.8 m resolution
covering the blue (450–520 nm), green (520–590 nm), red (630–
690 nm) and near infrared (NIR) (770–890 nm) spectral ranges
(Tang and Xie 2012).

Reference data
Our reference and validation dataset is composed of two data
sources: (1) inventory field data from the permanent grid
inventory of the university forest, and (2) LiDAR data and digital
orthophotos from the Bavarian Agency for Digitisation, High-
Speed Internet and Surveying (Landesamt für Digitalisierung,
Breitband und Vermessung, LDBV).

Permanent grid inventory
The permanent grid inventory is carried out in the university forest
in a cycle of about 10 years. The inventory is based on concentric
sample plots in a fine-resolution grid of 100 m × 100 m. Mea-
surements are regularly taken on 348 permanently marked field
plots. The centre of the inventory circle was marked with a buried
magnet during the initial recording of the data at the inventory
point. The last permanent inventory was carried out in 2002.
In 2012, there was an unexpected change in management and
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the follow-up inventory was postponed until 2016. The criteria
for data collection were based on three concentric circular plots
(Knoke et al. 2012). The main variables recorded at the plots were
DBH, age, tree species, tree position coordinates and tree height.
Tree age was either updated from the previous permanent inven-
tory (2002) or estimated by the inventory staff based on growth
rings counted at the stumps of recently harvested trees with
similar DBH values. Tree heights were updated for the same trees
measured in the previous inventory. Additional tree heights were
field-sampled from trees in the upper end of the DBH range. For
trees without field-height measurements, we used diameter-age
regression models by Johann (1990).

LiDAR data and digital orthophotos
We used LiDAR data and digital orthophotos provided by the
LDBV. The LiDAR datasets were collected in March 2011 and
April 2013 as first and last pulse echoes with a point density
of 4 points/m2. From the LiDAR data, a digital terrain model
(DTM) and a digital surface model (DSM) were calculated. The
models were prepared with the software ArcGIS 10.4 with a
spatial resolution of 1 m. To compare the datasets at pixel level,
the LiDAR DTM and LiDAR DSM were resampled to 5 m resolution
to have the same spatial resolution as the ZY-3 DSM. A LiDAR
CHM was calculated as the difference between LiDAR DSM and
LiDAR DTM.

The digital orthophoto was derived from aerial images that
were recorded on 16 July 2013 using a Vexcel UltraCam-XP cam-
era during the regular aerial survey of Bavaria. The product was
delivered at 0.2 m spatial resolution and provided as a four-band
spectral dataset (blue, green, red and NIR).

Methods
The main methodological steps are summarized in Figure 2.

Generation of ZY-3 height models
For DSM generation, we used the image processing software DLR-
xDibias. The latter is a peer research software with the latest
image processing techniques developed at DLR (Han et al. 2020).
The DSM was generated from the ZY-3 data using the semi-
global matching (SGM) algorithm in combination with two well-
known similarity measurements (census and mutual informa-
tion), which are selected in the standard SGM stereo matching
procedure (Hirschmüller 2008, d’Angelo et al. 2008). Following
the method in d’Angelo (2013), a ZY-3 DSM with 5 m spatial
resolution was generated based on the combination of Nadir-
Backward, Nadir-Forward and Backward–Forward image pairs.
The ZY-3 DSM was co-registered to the LiDAR DSM based on a 3D
co-registration procedure (Straub et al. 2013). The steps of the
DSM generation procedure are described in detail in Tian et al.
(2013b). Finally, the ZY-3 CHM was derived by subtracting the
LiDAR DTM.

An accuracy assessment was carried out for the DSM and
CHM in terms of vertical offset. Two different reference datasets
were used: (1) the LiDAR DSM and (2) canopy height at plot
level acquired during the terrestrial measurements. First, ZY-3
DSM was visually compared with the LiDAR DSM. Second, for

quantifying the deviance in elevation, the difference between
ZY-3 DSM and LiDAR DSM was calculated based on a statisti-
cally validated number of samples collected as pixel values and
distributed over the study site. The samples represent different
land-cover types such as sealed surface, high-density conifer-
ous forest, low-density coniferous forest, deciduous forest and
grassland. As robust accuracy measures the mean error (ME),
requiring the computation of standard deviation (STD), the nor-
malized median absolute deviation (NMAD), and the root mean
square error (RMSE) were calculated. The STD, NMAD and the
RMSE of the whole sample size and the sample size without out-
liers (threshold for outlier exclusion ±3 × RMSE) were calculated
according to Höhle and Höhle (2009) and Höhle and Potuckova
(2011). We additionally compared the ZY-3 DSM and LiDAR DSM
using a cross-section through a highly structured forest section
(Figure 1). For all pixels along the cross-section we calculated the
mean absolute error (MAE), the ME and RMSE.

ZY-3 data processing and analysis
The pre-processing step of geometric rectification was performed
on the ZY-3 dataset using PCI Geomatica V software. The seg-
mentation and classification of the image data was performed
with the software package eCognition 9.0 and 9.1 by Trimble
Geospatial (Baatz et al. 2004) using an object-based image anal-
ysis (OBIA) technique (deKok et al. 1999; Blaschke 2010). The
OBIA technique explored height and angular information from
stereo-bands combined with spectral information from the MS
bands as described in Wei (2018). Angular signatures, which
provide information on the anisotropy behaviour of the surfaces,
were derived via the ratio of the forward (st1) and backward
(st2) stereo band reflectance (anisotropy ratio, AR). The classi-
fication entailed a top–down concept within a three-level hierar-
chical process, based on forest level, stand level and pixel level.
For classification, the membership function approach offered by
eCognition was used, which works with user-defined functions of
the image object features (Baatz et al. 2004). For each level, a
rule set was developed based on the class properties. The dis-
criminating features on each level were either the digital number
of the respective bands (‘color’ in eCognition nomenclature), AR,
normalized different vegetation index (Rouse et al. 1974) or the
ZY-3 CHM.

The forest area was discriminated from other land-cover types
by applying a multiresolution segmentation with scale (50),
shape (0.1) and compactness (0.5) on the hierarchical process
level forest. The classification on forest level was performed with
a membership function using the ratio Brightness visible, which
is based on the ratio Brightness from the Trimble Reference Book
(2013).

On the pixel level, a chessboard segmentation algorithm was
used to receive pixel-size objects of 5 m × 5 m. The objects
were classified with a membership function into coniferous,
broadleaved and others (grass and no vegetation). The classi-
fication result at pixel level was verified by visual interpretation
based on digital CIR orthophotos. For the validation, a sample
size per class with the ratio 6:2:1 (coniferous, broadleaved and
others) was chosen based on the tree species composition of
the forest. In total, 400 samples were visually interpreted in the
CIR orthophotos. The accuracy assessment was conducted by
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A remote sensing-guided forest inventory

Figure 2 Methodological workflow of the RS-guided sampling and grid sampling concept.

creating an error matrix that included the overall accuracy (OA),
producer accuracy (PA) and user accuracy (UA). Furthermore,
Kappa was calculated (Congalton 1991).

On stand level, a multiresolution segmentation algorithm was
carried out with a scale factor of 12, shape of 0.1 and compact-
ness of 0.5. The resulting objects were assigned to the classes:
pure coniferous, pure broadleaved and mixed stands. The share
of objects at pixel level was ≥80 per cent for pure coniferous and
broadleaved stands. In the final classification step, we used the
mean object height at stand level to assign the existing objects
into three additional height classes, resulting in nine final classes
or strata. As a threshold, we used typical heights associated
with the development stages: ≤12 m (establishment), 12–24 m

(stabilization/qualification) and >24 m (dimensioning) (Mosandl
and Paulus 2002; Knoke et al. 2012).

RS-guided inventory concept based on ZY-3 data
The classification result at stand level was used to conduct a
pre-stratified sampling within a RS-guided inventory concept.
The number of the standard grid inventory plots (348 sample
plots) results from a very fine grid of inventory plots in the
format 100 m × 100 m, that is, one plot per hectare. We reduced
the number of inventory plots for the pre-stratified RS-guided
sampling design by about 75 per cent (to 85 plots) to match the
same number of plots per hectare as the inventory design of the
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Table 1 Overview of strata area, number of inventory plots and weights of inventory plots and strata.

Nh [ha] nh wh Wh

BL 0–12 m 25 5 6% 7%
BL >12 m 42 17 20% 12%
CF 0–12 m 47 8 9% 14%
CF >12–24 m 158 36 42% 45%
CF >24 m 35 10 12% 10%
Mixed 42 9 11% 12%
Total 349 85 100% 100%

Note: Nh = stratum area; nh = sample size of the stratum h; wh = sample size weights; Wh = stratum weights; BL = broadleaved; CF = coniferous.

Bavarian State Forest agency (BaySF) which uses a 200 m × 200 m
grid. Our pre-stratification revealed from a statistical point of
view, that we could not evaluate the area of some strata in
relation to the necessary number of samples. Therefore, we
summarized the mixed classes as mixed forest type without
height stratification. Furthermore, we combined and categorized
the strata broadleaved >12–24 m and broadleaved >24 m as
broadleaved >12 m (Table 1). For the spatial allocation of the
RS-guided sampling plots, we used the automatically calculated
centre of gravity of the OBIA classification (Baatz et al. 2004).
Based on the OBIA classification, objects were considered as
stratum candidates if they were large enough to completely
include an inventory plot (500 m2). From those candidates, the
final 85 segments for inventory plot allocation were randomly
selected in ArcGIS 10.4. Subsequently, we identified the locations
of these plots with a GPS and inventoried the plots in the field,
following the scheme described in the subsection reference data
of the materials section. The tree height was measured at each
inventory plot for the two thickest trees per species.

Comparison of RS-guided inventory with permanent grid
inventory
The RS-guided forest inventory was compared with the perma-
nent grid inventory based on the forest attributes canopy height
at plot level (terrestrially measured tree height and height infor-
mation from ZY-3 data), tree species composition and timber
volume.

Comparison of canopy height at plot level from different datasets

We compared height information at inventory plot level from
RS-guided sampling based on ZY-3 CHM data with terrestrial
measured tree height. We used the tool ‘zonal statistic’ within
the software package ArcGIS 10.4 to calculate different height
metrics from the ZY-3 CHM data at the inventory plot locations.
For the canopy height analysis, we found the maximum height
metric suitable, representing the top height at the inventory plot
level. In our study, a time gap occurred between the RS data
acquired in 2012 and the terrestrial measurements recorded in
2016. The periodic annual increment (PAI) was calculated with
data taken from the grid inventory plots as recorded for the
2002 and 2016 inventories. We calculated the PAI of each tree
species based on a certain number of trees (n) measured at

the grid inventory plots (Table 2) and received a tree species-
specific PAI representing the annual mean increment of tree
species including all age classes. An overall PAI of 4 years was
added to the maximum height values derived from the ZY-3 CHM
pixel values at plot level and compared with maximum values of
terrestrial measurements at plot level of the RS-guided sampling
design.

Tree species composition

The share of tree species composition was calculated based on
the field data collected through the RS-guided inventory and
grid inventory according to Dahm (2006, p. 14). The tree species
composition of spruce, silver fir, Douglas fir, pine, larch, beech,
oak, precious hardwoods and other hardwoods of the RS-guided
inventory was statistically compared to the grid inventory. To rule
out differences in tree species composition of both datasets, the
statistical similarity of variances was evaluated by an F-test and
the similarity of the mean by a t test. For both methods, we used
a significance threshold of P = 0.05.

Timber volume estimation

We estimated the volume of single trees with bark via allometric
models based on height, DBH and form-height functions (Kennel
1973). The timber volume (in cubic metres per hectare of tim-
ber harvested without bark) at plot level was calculated based
on the volume values of single trees. The height of trees with
missing field-recorded heights was calculated with the diameter-
age regression model from equation (1) developed by Johann
(1990). The diameter-age regression model based on tree species
or groups of tree species was parameterized with field-recorded
tree heights (n = 336 trees).

Height = Intercept + a ∗ lnDBH + b ∗ lnDBH ∗ Age (1)

The main difference between the described forest invento-
ries is the sample design. Therefore, we analysed the RS-guided
sampling according to formulas for stratified random sampling
(Str) Cochran (1977). The stratum weights Wh were defined as a
proportion of each stratum size in relation to the total population
area (Wh = Nh

N ), where Nh is the size of stratum h with L strata,
and N is the population size (N = ∑L

h=1 Nh). The standard error
of the stratified population mean systr from equation (2) was
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A remote sensing-guided forest inventory

Table 2 PAI of height calculated from grid inventory data from 2002 and 2016.

Tree species Mean [m] Std. [m] N Std. Error [m]

Douglas fir 0.60 0.23 24 0.046
Larch 0.37 0.25 80 0.028
Pine 0.33 0.20 97 0.021
Silver fir 0.33 0.20 28 0.037
Spruce 0.35 0.20 156 0.016
Precious hardwoods 0.48 0.28 39 0.044
Other hardwoods 0.40 0.22 40 0.034
Oak 0.46 0.26 92 0.027
Beech 0.51 0.32 74 0.037

Note: Std. = standard deviation; N = number of individuals measured at the permanent inventory plots; Std. Error = standard error.

calculated without using a finite population correction factor
because <5 per cent of the population was sampled (Cochran
1977, p. 93, equation 5.7).

sȳstr =
√√√√ L∑

h=1

W2
h ∗ sh2

nh
(2)

where:
systr = standard error of the stratified population mean;
nh = sample size of the stratum h;
Wh = stratum weights;
s2

h = variance of the stratum h.
The grid sampling based on timber volume was evaluated

with formulas for simple random sampling (SRS) by applying
equation (3) (Cochran 1977, p. 27, equation 2.22). Shiver and
Borders (1996) showed that variance estimators developed for
SRS are valid for systematic sampling but lead to conservative
estimates of the population variance. However, criticism by
Cochran (1977) and Köhl et al. (2006) pointed out that using
SRS estimators with systematic sampling could, on average,
lead to an overestimation of the actual error. We accepted
this potential disadvantage and assumed that the systematic
sampling represents a random distribution for the population of
this very heterogeneous forest because the starting point of the
sampling grid was random. The standard error of the sample
mean sy was calculated assuming SRS.

sy =
√

s2
y

n
(3)

where:
sy = standard error of the sample mean;
s2

y = variance;
n = sample size.
The frequency distribution of the estimated timber volume of

both sampling schemes was visually analysed and statistically
evaluated by a chi-square test. We also applied a Monte Carlo
Simulation (MCS) to the grid sampling scheme to verify the per-
formance of the RS-guided sampling concept. For this, the range
of estimated timber volume of the grid sampling data with a
reduced sample size was determined using MCS. The reduction of

grid sampling was repeated 1000 times by a random selection of
85 sample plots from the 348 sample plots. The reduced sample
size corresponds to the 200 m grid of the BaySF inventory concept
(one plot per 4 hectares).

Furthermore, we conducted a variance analysis based on the
relative efficiency (RE) to quantify the efficiency of the different
sampling methods by use of equation (4). The ratio of RE com-
pares the estimated variance of the sampling mean of different
designs whereby n must be constant (McRoberts et al. 2002). In
our case, we compared the estimated mean variance of the MCS
with the estimated mean variance of ‘RS-guided sampling’ with
three and six strata, as well as with maximum height information
at plot level from ZY-3 CHM data called ‘RS-guided sampling with
CHM-height’.

RE = s2
y

s2
ystr

, (4)

where:
s2

y = variance of the estimated population mean of SRS;
s2

ystr
= variance of the estimated population mean of Str.

We used the methods described above to analyse the refine-
ment of the ZY-3 stratification approach in the study site. The
estimated stratified timber volume from three strata (coniferous,
broadleaved and mixed) was compared to six strata (expanded
by height information from ZY-3 CHM) with regard to means,
variances, relative standard errors and RE. Furthermore, we com-
pared the different sampling schemes in relation to mean timber
volume, variance and total timber volume. In addition, we tested
the replacement of terrestrial height information with RS data-
derived heights at plot level. The maximum RS height at plot
level was used instead of terrestrial measured height at plot level
and statistic values of estimated timber volume at plot level was
calculated.

Results
ZY-3 DSM accuracy
The vertical accuracy of the ZY-3 DSM was assessed by visual
analyses and comparing its deviance in elevation with a LiDAR
DSM. As expected, single trees were not detectable, and a
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Table 3 Vertical agreement measurements of ZY-3 DSM and LiDAR DSM per land-cover type. For outlier exclusion, a 3 × RMSE-threshold was applied.

Land cover Sample
size

Sample size
no outliers

Mean [m] Median
[m]

NMAD [m] STD [m] RMSE [m] RMSE no
outliers [m]

Sealed surface 214 211 1.10 0.80 0.71 0.96 1.99 1.46
High-density coniferous forest 264 259 1.80 1.26 1.29 1.88 8.61 2.60
Low-density coniferous forest 467 459 4.03 2.67 2.53 4.06 6.42 5.72
Deciduous forest 177 177 7.00 6.17 5.50 5.62 8.96 8.96
Grassland 698 685 0.96 0.75 0.69 0.81 1.43 1.25

Table 4 The error matrix of the accuracy assessment between areas classified as coniferous forest, broadleaved forest and others (grass and no
vegetation) using ZY-3 data classification and those identified in the CIR-image interpretation

Reference

ZY-3 classification CF BL Others Total UA
CF 221 41 19 281 0.79
BL 8 69 2 79 0.87
Others 2 4 34 40 0.85
Total 231 114 55 400
PA 0.96 0.61 0.62

Note: BL = broadleaved; CF = coniferous; PA = Producer accuracy; UA = User accuracy.

smoothing effect was visible (Figure 3A–D). In general, the
canopy surface was consistently represented but there was
a systematic height offset in the ZY-3 DSM (MAE = 2.65 m;
RMSE = 3.14 m; ME = −2.0 m) which was accounted for,
corrected (Figure 3D, green cross-section) and considered in
further analysis. The combination of ZY-3 DSM and LiDAR DSM
allowed a quality assessment of height values over five different
land-cover types (Table 3). The ZY-3 DSM performed well for the
land-cover types, sealed surfaces and grassland (NMAD between
0.69 m and 0.71 m and a STD between 0.81 m and 0.96 m).
For forested areas, the assessment showed acceptable results
(NMAD between 1.29 m and 5.5 m and a STD between 1.8 m and
5.62 m).

Forest type classification
The confusion matrix for the forest type classification showed an
OA of 81 per cent with a Kappa statistic value of 64 per cent
(Wei 2018). The class of coniferous showed a more precise result,
with a PA of 96 per cent and UA of 79 per cent compared to
broadleaved with a PA of 61 per cent and an UA of 87 per cent
(Figure 4 and Table 4).

Comparison of RS-guided inventory with standard grid
inventory
Comparison of canopy height at plot level from different datasets

In the study, maximum height information from field-measured
trees were compared with maximum height values from ZY-3
CHM data at plot level. The analysis, including outliers, showed a
Pearson’s correlation (r) of 0.61 (Figure 5). Out of the 85 sample

plots, eight showed notable deviances from heights measured in
the field.

Tree species composition

The comparison of tree species composition between standard
grid and RS-guided samplings is shown in the pie charts covering
all tree species (Figure 6 A and B). Coniferous trees represented a
61 per cent share using the grid sampling dataset and a 53.8 per
cent share using the RS-guided sampling dataset. In comparison
to grid sampling, the RS-guided sampling statistic showed a lower
share for spruce and Douglas fir. The other tree species had
no discrepancies with respect to their shares. A F-test and a t
test were applied to examine for differences in the tree species
composition shares. Spruce showed no significant difference in
the variance (F (1.13) = 1.11; P = 0.07) and revealed no significant
difference of the mean proportion (t (2541) =−0.17; P = 0.86).
However, the statistical analyses for Douglas fir (F (2.74) = 2.79;
P = 0.047) and oak (F (1.28) = 1.79; P = 0.000006) showed sig-
nificant difference in the variances. The t test for Douglas fir
(t (13) = 2.72; P = 0.02) and oak (t (322) = 2.52; P = 0.01) also
revealed a significant difference in the mean values. All other tree
species showed no significant difference in their mean composi-
tion. The RS-guided sampling design in Figure 7 displays the share
of tree species divided into six strata. In the broadleaved strata
(Figure 7), a small proportion of less than 20 per cent belonged
to the coniferous tree species. The stratification of the coniferous
strata generally showed a dominance of spruce. However, for the
stratum coniferous >24 m, there was also a bigger proportion of
silver fir. The mixed stratum represented all tree species besides
silver fir. In this stratum, the broadleaved species showed a higher
share than coniferous species.
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A remote sensing-guided forest inventory

Figure 3 The figure on the left shows a forest profile of different RS systems: (A) colour-infrared (CIR) orthophoto, (B) ZY-3 CHM and (C) LiDAR CHM.
The colour scale in (B) and (C) ranges from low heights (green) to very tall heights (red). The right figure (D) presents the DSM cross-section from LiDAR
DSM 5 m (blue) and ZY-3 DSM (green) (Geobasisdaten: Bayerische Vermessungsverwaltung).

Volume estimation
The relative frequency distribution of the estimated timber
volume was determined to compare RS-guided sampling with
grid sampling. In the first step, we visually compared frequencies

(Figure 8). Both showed a close to normal distributions, with
skewness towards the left in grid sampling and towards the
right in RS-guided sampling. In the second step, we statis-
tically analysed the similarity of the frequency distributions
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Figure 4 Classification result of ZY-3 data. Illustrated is a map with the three forest types combined with height classes and an additional bare-land
class. The locations of the 85 selected inventory plots are also shown. The window on upper right shows an enlarged section of the classification result
with inventory plots.

by a chi-square test, which resulted in chi-square ((10) = 9.8,
P = 0.46, n = 433), suggesting no significant difference between
RS-guided sampling and grid sampling. The results of grid
sampling calculated with the method of SRS showed a mean
timber volume of 336.19 m3ha−1, a relative standard error of 2.82
per cent and a total timber volume of 117 280 m3 (Table 5). The
results of the MCS using 85 random plots out of the 348 available
grid sample plots for each of the 1000 runs showed a range
between 298.89 and 374.05 m3ha−1 for a 95 per cent confidence
interval. The principal results of the MCS were a sample mean of
336.47 m3ha−1 and a relative standard error of 5.70 per cent
(Table 5).

The results for the RS-guided stratification into three forest-
type strata (coniferous, broadleaved and mixed) showed a mean
timber volume of 381.78 m3ha−1 compared to a lower mean
timber volume of 366.40 m3ha−1 for six strata. The relative
standard error based on three strata was 4.81 per cent and
based on six strata 4.75 per cent. Both results were below the
targeted 5 per cent error. A comparison between the variances
showed a reduction of the variance of 2948 units for six strata.
The RE improved from 1.09 for three strata to 1.22 for six strata.
This would mean that we would have to increase the MCS stan-
dard grid sample density by a factor of 1.09 or 1.22 to achieve
the same precision as for three or six strata of the RS-guided

sample. The mean timber volume of RS-guided sampling (given
six strata) was 30.21 m3ha−1 (8.99 per cent) higher than the
volume estimated by the grid sampling plots. The variances of RS-
guided sampling based on six strata (25736.61 [m3ha−1]2) were
lower than the variance of grid sampling (31364.21 [m3ha−1]2).
The estimated total timber volume was higher with RS-guided
sampling (three and six strata) than with grid sampling.

The calculated difference in mean timber volume of RS-guided
sampling with RS height was −11.32 m3ha−1 (−3.37 per cent),
which was slightly below the timber volume of the sample mean
derived from grid sampling (Table 5). The relative standard error
was lower than the desired threshold of 5 per cent. The calculated
RE was 1.85, caused by the low variance of the sample mean.

Discussion
The objective of our study was to assess the performance of a
RS-guided inventory concept based on MS-3D ZY-3 satellite data
and compare them with the results of the grid inventory recorded
in the same year. The focus was on assessing the accuracy of
ZY-3 data products and comparing the results of the RS-guided
inventory to the standard grid inventory concerning the forest
attributes: height at plot level, tree species composition and tim-
ber volume. The results were placed in the context of previously
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A remote sensing-guided forest inventory

Figure 5 Scatterplot of canopy heights and terrestrially measured canopy heights at inventory plot level. Outliers are shown in orange.

Figure 6 Percentages of tree species (≥7 cm DBH) at forest enterprise level calculated from datasets obtained with permanent grid sampling (A) and
RS-guided sampling (B).

published studies with RS data of similar spatial resolution. A
summary of the advantages and disadvantages of the RS-guided
inventory concept is listed in Table 6.

Accuracy of ZY-3 data products
The RS-guided forest inventory concept showed promising
results, which depend particularly on the quality of the DSM.
The ZY-3 DSM was compared with a DSM from LiDAR data. We

used LiDAR data as reference, because LiDAR data provide the
most accurate forest height information and the highest level of
detail (Tian et al. 2017) and is nowadays considered to be an even
more reliable source for height information than field data. The
visual assessment of the horizontal height profile from a cross-
section revealed smoothing and edge effects in ZY-3 DSM. The ZY-
3 DSM has a spatial resolution of 5 m, for which we expected the
mentioned effects. As pointed out in Tian et al. (2017) the quality
of DSMs obtained from stereo-satellite data strongly depend
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Table 5 Results for estimating timber volume based on grid and RS-guided sampling.

n Mean
[m3ha−1]

Variance
[m3ha−1]2

Variance of Sample
Mean [m3ha−1]2

Std. Error
[m3ha−1]

Relative Std.
error [%]

Confidence
Interval [m3ha−1]

Total Timber
volume [m3]

Simple Random Sampling
Grid SPL 348 336.19 31364.21 90.13 9.49 2.82 317.58–354.80 117 280
MCS 85 336.47 31401.09 369.42 19.17 5.70 298.89–374.05 117 376
Stratified Random Sampling
RS SPL (3 strata) 85 381.78 28684.64 337.47 18.37 4.81 345.77–417.79 133 189
RS SPL (6 strata) 85 366.40 25736.61 302.78 17.40 4.75 332.30–400.50 127 820
RS SPL with
CHM-height (6
strata)

85 324.87 17018.42 200.22 14.15 4.36 297.14–352.60 113 332

Note: Grid SPL = Grid sampling; MCS = Monte-Carlo Simulation; RS SPL = RS-guided sampling; n = number of inventory plots; CHM = crown height
model.

Table 6 Advantages and disadvantages of the RS-guided inventory concept based on height stratification and sample plot selection for operational
management

Advantages Disadvantages

Large coverage of forest areas. Limited lifetime of the satellite system used.
Stratification of the forest area into similar forest units in the
planning phase.

For subsequent inventories, changes in stratum area are to be
considered.

Enhanced stratification through canopy height information. A remote sensing system with the sensor properties for MS data
and 3D capability or data fusion is necessary.

Reduction of the sample size. Due to temporary sampling, no recording of the increment is
possible.

Cost reduction due to a lower number of samples. Only a few remote sensing systems provide free data, e.g. Sentinel
data.

Approach for heterogeneous mixed forests with high structural
richness.

To reduce errors, the remote sensing data and terrestrial surveys
should be conducted in a timely manner.

Figure 7 The tree species (≥7 cm DBH) composition of the RS-guided
sampling is displayed in percentage for each stratum: broadleaved (BL),
coniferous (CF) and mixed.

on the spatial resolution of the satellite system. The quality of
DSMs also depends on the applied dense matching approaches,
which have recently been improved for stereo sensors with
a lower resolution (Reinartz et al. 2014). Han et al. (2020)
compared the performance of image matchers of five different
software packages in a study with WorldView-1 stereo data

Figure 8 Relative frequency distribution of timber volume (in cubic metres
per hectare of timber harvested with bark). Distributions based on perma-
nent grid sampling (left) and RS-guided sampling with terrestrial height
measurement (right) are shown.

(spatial resolution 0.5 m). The results showed notable differences
even using the same algorithms implemented in the different
software packages. Therefore, our approach could be further
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A remote sensing-guided forest inventory

tested by generating a DSM with a different software package
and, if available, with ground control points (GCPs) to further
improve the quality of the DSM for forestry applications. Due to
the heterogeneity of our forest area, which is characterized by
forest gaps, a variety of development stages, diverse tree species
compositions, etc., testing of the DSMs accuracy for different
land-cover types is necessary (Tian 2013a; Tian et al. 2017). We
performed an accuracy assessment of the height values over five
land-cover types of the ZY-3 DSM, which showed a generally good
performance. Our results are in line with Tian (2013a), reporting
similar results for a forest in southern Germany, using DSM
data from WorldView-2 (spatial resolution 1 m) and Cartosat-
1 (spatial resolution 5 m). A NMAD between 3.95 m and 8.82 m
as well as a STD between 6.46 m and 12.21 m was observed for
forested areas. As already mentioned, LiDAR data have a high
degree of detail and are a recognized reference for forest height
information in scientific studies. Nevertheless, the LiDAR data
of this study should be viewed critically regarding the time of
recording in early spring when the forest was in a leaf-off stage
or at least only partially in leaf. Since we obtained the data from
the LDBV, we had no influence on the time of recording. This and
the time-offset between the collection of the data from which
the ZY-3 DSM and LiDAR DSM were derived may explain parts of
the observed height differences between the two DSMs. Certainly,
the correlation could be improved if the data capture would be
conducted in the same year.

The classification of the forest-type classes based on MS and
angular information derived from the ZY-3 dataset is in line with
the results of the classification approach of Wallner et al. (2018).
The latter study obtained an OA of 84 per cent for coniferous and
broadleaved forest types in Southeast Germany, using RapidEye
data with a similar spatial resolution of 5 m. Also based on
RapidEye data, Schneider et al. (2013) obtained an OA range
between 66 per cent and 77 per cent for classifying a forest in
southern Bavaria into coniferous, broadleaved and mixed forest
types using a multi-temporal data stack. The present results are
also in line with the study of Ottosen et al. (2020). They used
different tiles of mono-temporal Sentinel-2 data with a spatial
resolution of 10 m in the Midlands (England) to classify no trees,
broadleaved trees and coniferous trees with OA ranging from
83.43 per cent to 89.97 per cent.

Forest attributes
The comparison of canopy heights from ZY-3 CHM data compared
with the terrestrial height measurements at plot level was
affected by a time difference of 4 years. Therefore, we corrected
the maximum canopy height at plot level obtained from the ZY-3
CHM with a tree species-specific PAI. This is a common approach
to compensate for the temporal difference of RS datasets and has
for example been applied in the studies of Stepper et al. (2015)
and Tian et al. (2017). The comparison of maximum height at
plot level showed a Pearson’s correlation r of 0.61. The result is
in line with the study of Ginzler and Hobi (2015) who reported
Pearson’s correlations ranging from 0.64 to 0.91 when com-
paring tree heights from CHM with terrestrially measured tree
height from NFI sample plots. Due to the time difference
between the data sets, some forest management measures
may have changed the strata boundary. However, based on

the above comparison, only minor changes within the strata
could be detected. In our dataset, we identified eight sample
plots as outliers. We assumed removal of trees during forest
operations in plots with low terrestrial measured height and high
values in ZY-3 CHM. Records taken by forest managers in the
study region revealed a bark beetle attack on tall trees during
the time gap between acquisition of RS and field data, which
confirmed this assumption. The inventory plots showing tall
trees measured in the field but low heights in the ZY-3 CHM
may be due to the smoothing effect of the CHM, which leads
to a systematic underestimation of tree heights. This outcome is
further aggravated by the fact that terrestrial tree heights at plot
level were only measured for trees with a high DBH, as shown
by the outliers identified. For future studies, attention should
therefore be paid to a smaller temporal difference between the
RS data and the terrestrial survey.

Tree species composition of common species were well
covered at plot level. The RS-based stratification approach
led to an approximately equal distribution of coniferous and
broadleaved tree species for the plots inventoried according
to the RS-guided sampling compared to grid sampling. The
only critical tree species were Douglas fir and oak. According
to forest management records, these species were planted in
small groups to close gaps caused by bark beetles. Even when
correctly classified, these objects did not fulfil the condition of an
area of 500 m2 required to be qualified as a sample plot and may
therefore be underrepresented in our candidate polygons in the
RS-guided approach.

The estimated timber volume and the relative standard error
of timber volume was used as a measure of accuracy to compare
different sampling schemes following Cochran (1977). The results
of the RS-guided sampling showed that the threshold of ≤5
per cent could be met for all examined stratification levels. To
identify differences between the two sampling methods, the
relative frequency distribution of timber volume was analysed
statistically and visually. The statistical analysis revealed no sig-
nificant differences between the frequency distributions of the
sampling methods. The visual interpretation showed a similar
pattern. However, in the RS-guided sampling, certain areas were
recorded with low frequency or were not recorded, such as areas
with very low timber volume (200–300 m3ha−1) and areas with
very high timber volume (above 900 m3ha−1). This could be
caused by the distribution of sampling plots to the respective
strata. The influence of the stratification approach was examined
based on the RE. Stratification into three strata showed a lower
RE than into six strata. McRoberts et al. (2002) obtained similar
RE values for total volume (1.25 to 1.75) when using Landsat
TM imagery and ancillary data to divide their test site into four
strata. Further, the result of estimated timber volume of the RS-
guided sampling with RS height was closer to the grid sampling
values used as reference than the RS-guided sampling. The small
difference in the values could be due to the height information
derived from the CHM. For this approach, only the maximum
height information from the CHM at the inventory plots were used
for timber volume estimation.

An important factor in inventory costs is the sample size. As
Næsset (1997) stated, the collection of data across a regular
grid is time consuming, and the costs are proportional to the
number of sample plots. The stratification approach into height
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classes allowed the reduction of inventory plots by about 75
per cent, which leads to lower inventory costs. Procurement and
evaluation costs of the RS data must be considered but are
likely to be lower than field inventory costs, once functional and
streamlined workflows are implemented.

Conclusion
The study demonstrates that the use of high-resolution MS-
3D RS data can add value to the planning and implementation
of local forest inventories. The suggested approach of exploit-
ing forest height information from stereo-satellite data for pre-
stratification of the forest area in a local forest inventory system
allowed to reduce the sample size by 75 per cent without signif-
icant drop in accuracy for the targeted forest inventory parame-
ters as compared to the full grid inventory. Contrarily, a random
reduction of the samples by 75 per cent led to significantly
worse results as demonstrated with our MCS. The presented
approach could be further refined by improving the quality of
the applied data products and the acquisition timing. Problems
related to the time gap between field and RS data collections
could be partly resolved here by correcting the field data with
PAI models but changes caused by management activities also
occurred and could not fully be accounted for. Nevertheless, it
was possible to use the derived height information from ZY-
3 DSM for volume calculations and the results matched the
required relative standard error of ≤5 per cent. Consequently, the
suggested approach allows either a reduction of inventory costs
or alternatively a higher frequency of inventories. The latter may
become necessary to adequately capture changes in the forests
related to the expected increased frequency and magnitude of
biotic and abiotic calamities in forests in the future.
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