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Abstract

We propose a new scheme for simulation of collisions with multiple possible outcomes in variable-
weight DSMC computations. The scheme is applied to a 0-D ionization rate coefficient computa-
tion, and 1-D electrical breakdown simulation. We show that the scheme offers a significant (up
to an order of magnitude) improvement in the level of stochastic noise over the usual acceptance-
rejection algorithm, even when controlling for the slight additional computational costs. The
benefits and performance of the scheme are analyzed in detail, and possible extensions are pro-
posed.
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1. Introduction

Direct Simulation Monte Carlo [1] is one of the most ubiquitous tools for simulation of rar-
efied gas flows. The conceptually simple algorithm, which works by simulating the stochastic
motion of a large number of computational particles (each representing a huge number of real-life
atoms/molecules/electrons), has shown the ability to capture a very wide range of phenomena.
Some examples of the wide range DSMC applications include modeling of microcombustion [2],
hypersonic re-entry with ionization and radiation [3], planetary-scale phenomena [4–6], electrical
breakdown [7, 8], and processes in electric propulsion systems [9]. Various extensions to DSMC
include include hybridization with CFD solvers [10, 11], DSMC-based methods to model contin-
uum flows via solution of the Fokker–Planck equation [12, 13], velocity-space hybridization with
kinetic solvers [14, 15], and variable weight DSMC [16–19].

In some applications trace species (e.g. chemical radicals, high-velocity tails of the distribution
function, or particles in high internal energy states) significantly affect the flow. “Vanilla” DSMC
cannot model trace populations efficiently because it requires a single ratio of real-life particles to
computational particles. The variable weight DSMC approach obviates the problem by allowing
one to use a variable ratio of real-life particles to computational particles. Thus, by assigning
a different computational weight to trace species, one can avoid an exorbitant number of total
particles in the simulation in order to obtain adequate statistics on low-population species or
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states. Such an approach has found wide application in collisional plasma modeling (in Particle-
in-Cell Direct Simulation Monte Carlo codes, also known as PIC-DSMC codes), where the molar
fractions of electrons and ions can be several orders of magnitude lower than those of the neutral
background species [7, 18, 20]. The drawback of variable weight DSMC is the particle splitting
required to obtain the correct collision rate; this leads to a uncontrolled growth in the number of
simulation particles and necessitates the occasional or periodic merging of particles [21]. Particle
merging adds an additional step to the DSMC algorithm and reduces the accuracy of the simulation
because some information about the system is irretrievably lost when one reduces the number of
particles. A variety of algorithms have been developed to efficiently merge particles in a manner
that reduces the errors introduced by merging [15, 21–29].

Variable weight DSMC tackles the problem of resolving low populations but it does not address
another issue of DSMC – that of modeling low-probability collision events. Although one can
achieve a desired level of accuracy by performing time-averaging, this is not feasible for unsteady
simulations. Poor modeling of low-probability collision events affects both the overall noise in the
simulation and can also lead to incorrect results if an unsteady simulation is run at conditions close
to a bifurcation point. For example overestimation of a chemical reaction rate over the course of
several timesteps might lead to transition of a deflagration into a detonation, or underestimation
of an ionization rate leads to a drop in current instead of electrical breakdown.

In [30], a fractional collision scheme was proposed for variable weight DSMC. In the proposed
scheme (later expanded to multi-species flows [20]), the number of collisions to be performed is
increased by a integer factor of cm (in [20] values of cm range from 2 to 32), and only a fraction (equal
to 1/cm) of the chosen particles actually undergoes the collision. This has been shown to greatly
improve simulation accuracy, and it is obvious that increasing the number of collisions sampled
improves the statistics when modeling low-probability collision processes. Instead of increasing the
number of particles throughout the whole simulation, the fractional collision scheme only increases
the number of post-collision particles. These can be merged down to a lower number of particles
before performing collisions in another physical cell, and before convection and acceleration steps
in the conventional time-splitting approach. A non-conservative fractional collision algorithm
was also investigated in [20] to model charge-exchange collisions whilst minimizing the creation
of additional particles. However, this fractional collision scheme also increases the number of
simulated high-probability collisions that may already be adequately captured with a standard
collision scheme.

The current work proposes an alternative collision algorithm: an event splitting algorithm
which can be considered as a form of bet hedging — instead of simulating only a single outcome
of a specific collision event, we simulate all possible processes that may occur, and weight their
outcomes (i.e. the newly created particles) according to their probabilities. Such an idea was
expressed in [31, 32] in the context of improvement of modeling of spontaneous photon emission,
but has not received further attention to our knowledge.

The paper is structured as follows. First, we describe the proposed algorithm, and touch upon
its potential benefits and drawbacks. Next, we verify this approach for a 0-dimensional case of an
Ar/Ar+/e– mixture accelerated by a constant electric field with elastic collisions between electrons
and argon atoms and electron-impact ionization reactions. We investigate the gains in accuracy
and reduction in variance provided by the event splitting algorithm, and propose several possible
future modifications. Finally, we apply the collision-splitting algorithm to secondary emission
boundary conditions as well, and perform a 1-dimensional breakdown simulation in an argon-filled
gap. We assess the noise in the anode current density and investigate the computational cost and
level-of-stochastic-noise benefits of treating collisions and/or boundary conditions using the event
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splitting scheme.

2. Collision algorithm description

As mentioned in the introduction, we model a rarefied gas flow by simulating the motion of a
large number of particles, each representing a much larger number of real-life atoms, molecules, or
electrons. As in “vanilla” DSMC, we separate the collision, convection, and acceleration steps [1].

We use the No-Time-Counter collision scheme [1] adapted to variable-weight DSMC [33]. The
fractional number of collisions in a physical cell is computed as follows:

Ncoll,frac =
1

V
Np,cNp,d(nσtotg)maxΔt. (1)

Here V is the volume of the physical cell, Np,c and Np,d are the number of DSMC particles of
species c and d respectively, (nσtotg)max is the maximum value of n ∙ σtot ∙ g in the physical cell,
g is the relative velocity of the colliding particles, σtot(g) is the total collision cross-section, n is
the computational weight of the particles, and Δt is the timestep. For the case of same-species
collisions, the quantity Np,cNp,d is replaced by 1

2
Np,c(Np,c − 1). The integer-valued number of

collisions is then computed via stochastic rounding as

Ncoll = bNcoll,frac +Rc , (2)

where R ∼ U(0, 1) is a random number sampled from the uniform distribution over the interval
[0, 1].

When a particle pair (with weights n1 and n2 and a relative velocity g) is tentatively chosen
for a collision, it is accepted with a probability of

P =
MAX(n1, n2)σtotg

(nσtotg)max

. (3)

In DSMC simulations, it is often assumed that σtot = σel, even when inelastic collisions can
occur in the flow. This is done to minimize time spent on computing inelastic collision cross-
sections, even though the actual process may not be computed during the collision loop (due to
acceptance-rejection sampling of the different processes). However, this simplifying approximation
does not always hold and can lead to significant error both in the elastic and inelastic collision
rates [34, 35]. Therefore in our work all possible collision cross-sections are summed in order to
compute σtot. For the test problem considered in the present work, we only consider elastic and
electron-impact ionizing collisions in an ionized argon flow. The elastic electron-argon collision
cross-section and the electron-impact ionization cross-section used in the present work (based on
BSR data [36, 37]) are shown on Fig. 1, and it can be seen that at high energies (and equivalent
relative velocities), the ionization cross-section is comparable in magnitude to the elastic cross-
section. Therefore, we compute the total cross-section accounting for all the possible processes
occurring in the flow.

We assume without loss of generality that the particle with computational weight n1 has the
greater weight. When a pair is accepted for a collision, the heavier particle is split into two
particles: one with weight n2 (the weight of the lighter collision partner) and one with weight
n1 − n2. The particles with weights n2 collide and their post-collision velocities are computed
based on the cross-section model used in the simulation, while the particle with weight n1 − n2

does not have its velocity affected.
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Figure 1: Elastic and ionization cross-sections for electron-argon collisions as a function of energy, BSR data [36, 37].

Usually, if inelastic collisions can occur, the exact type of collision to be performed is determined
by an acceptance-rejection scheme. For our considered test-case (of an Ar/Ar+/e– mixture), for
electron-neutral collisions (with only elastic and ionizing collisions), the type of collision to be
performed is determined by the ratio Pel = σel

σtot
(where σel is the elastic cross-section). A random

number R uniformly distributed over the interval [0, 1] is sampled, and checked against Pel. If
R < Pel, then an elastic collision is performed, otherwise, an ionizing collision is performed. From
Fig. 2 we can see at energies below approximately 30 eV, the ratio of the ionization cross-section
to the total collision cross-section (computed as σtot = σel + σion) reaches a value of 0.1 at most.
Thus, if the electron temperature is sufficiently low (i.e. very few electrons have an energy higher
than 30 eV), for an accepted electron-neutral collision pair an acceptance-rejection-based scheme
will perform an ionization reaction for less than 10% of the collisions. For even colder electron
distribution functions, the fraction of ionizing collisions will be even lower. If one takes processes
with even smaller cross-sections (such as electron-impact excitation reactions) into consideration,
then collisions for those processes will be performed even less frequently than ionizing collisions.
This is the motivation for our collision scheme modification, which improves the fidelity of modeling
low-probability processes.

Our proposed event splitting algorithm is the following: we perform an additional particle split
based on the probabilities of the possible collision events that can occur for the considered collision
pair. After the initial split (of the heavier particle with weight n1 into particles with weights n2

and n1 − n2), the colliding particles of weight n2 are split into two particles, of weights Peln2 and
(1 − Pel)n2. The first of these two particle pairs undergoes an elastic collision, while the second
pair undergoes an ionizing collision. In a general case, where for a given collision pair (of species
c and d) Nproc,cd various processes can take place, after the initial split of the heavier particle
(into particles with weight n2 and n1 − n2), the event splitting algorithm would further split the
particles with weights n2 into Nproc,cd smaller particles, with weights n2Pi, i = 1, . . . , Nproc,cd,
where Pi = σi/

∑
i σi. Here Pi is the probability of a process i, and σi is the cross-section of the

corresponding process.
Figures 3, 4 show a schematic of how the variable-weight DSMC collision routines are performed

(for an argon-electron collision that can be either elastic or ionizing) when one uses acceptance-
rejection to select the type of collision to perform (Fig. 3), and when one uses fractional collisions
(Fig. 4). For the purposes of the illustration, it is assumed that the statistical weight of the argon

4



10215.76
E, eV

10 4

10 3

10 2

10 1

100

/
to

t

el/ tot

ion/ tot

Figure 2: Ratios of the elastic and ionization cross-sections to the total electron-argon collision cross-section as a
function of energy, BSR data.
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Figure 3: Schematic showing how argon-electron collisions are performed in variable weight DSMC when acceptance-
rejection sampling is used.

particle (n1) is larger than that of the electron particle (n2). As mentioned previously, the first step
is to split the heavier particle (in this case, the argon particle) into two particles, one of which has
the same weight as the electron particle and will be the one undergoing the collision (the velocity,
computational weight, and all other properties of the second argon particle with weight n1 − n2

remain unchanged). Then, the collision is performed. In the case of the acceptance-rejection
scheme, either three or four computational particles are produced from the initial two particles,
depending on which collision type is chosen. For the case of event splitting both the elastic and
inelastic collisions take place and six particles are produced unless one of the probabilities (Pion or
Pel) is zero.

A pseudocode description of the standard variable-weight DSMC collision procedure (using
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Figure 4: Schematic showing how argon-electron collisions are performed in variable weight DSMC when the
fractional collision method is used (here, Pion = 1− Pel.)

the variable-weight NTC formulation [33]) and the event splitting collision procedure is given by
Algorithms 1, 2, respectively.

This proposed event splitting approach provides a significant improvement in the level of
stochastic noise in computed inelastic rate coefficients, as will be shown in the numerical results
section. First, however, we consider a theoretical analysis of the benefits of the proposed scheme
in a simplified setting. Let us assume that

1. We have a single inelastic process that has a threshold (activation) energy Emin, the proba-
bility of sampling a particle of species c with sufficient energy is pE

2. The probability of a particle undergoing the inelastic process is pi = const if the relative
kinetic energy of the colliding particles is larger than Emin; otherwise, the probability of a
particle undergoing the inelastic process is 0

3. The velocity distribution of only one of the two colliding species affects the rate. For example,
in electron-impact processes the velocities of the incident electrons are significantly higher
than the velocities of the neutral species, and it is mostly the electron velocity distribution
that affects the rate. We shall denote this species c

4. We sample Np,c particles (with uniform weight nc)

5. Our total cross-sections are Maxwell-molecule-like, so σtotg = const

6. We test each particle for a collision exactly once (so Ncoll = N and each particle is selected
exactly once)

7. Each particle is accepted for a collision (since (nσg)max = nσg = const)

If one uses acceptance-rejection, the rate coefficient (denoted ki) of the process is proportional to
ncN∗, where N∗ is the number of particles of species c whose energy exceeds the threshold energy
Emin and that are accepted for an inelastic process (probability of acceptance is pi). So each
particle undergoes two independent Bernoulli trials: first with probability of success pE, second
with probability of success pi. Thus, N∗ follows a binomial distribution B(Np,c, pEpi). Therefore,
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Algorithm 1: Standard variable-weight DSMC collision algorithm

for l ← 1 to Ncoll do
sample particle of species c in current cell (with index j1 and weight n1);
sample particle of species d in current cell (with index k1 and weight n2);
g ← compute relative velocity of particles j, k;

{σi(g)}Nproc,cd

i=1 ← compute cross-sections of all possible processes between species c, d;
σtot(g)←

∑
i σi(g);

R ← U(0, 1);
if MAX(n1, n2)σtot > (nσtotg)max then

(nσtotg)max ← MAX(n1, n2)σtot;
end
P ← MAX(n1, n2)σtotg/(nσtotg)max;
if R < P then

{Pi}
Nproc,cd

i=1 ← {σi/ σtot}
Nproc,cd

i=1 ;
if n1 > n2 then

create particle of species c with weight (n1 − n2) and velocity of particle j1;
set weight of particle j1 to n2;

else if n2 > n1 then
create particle of species d with weight (n2 − n1) and velocity of particle k1;
set weight of particle k1 to n1;

end

sample process i to model based on probabilities {Pi}
Nproc,cd

i=1 ;
simulate process i for collision of particles j1, k1;

end

end

for the expectation of the rate coefficient computed using acceptance-rejection (denoted kAR
i ) we

have

E[kAR
i ] ∝ ncNp,cpEpi, (4)

and for the variance of the rate coefficient we have

Var(kAR
i ) ∝ n2

cNp,cpEpi(1− pEpi). (5)

If one uses event splitting, all particles with sufficiently high energy contribute towards the
rate. So only one Bernoulli trial is performed, and the rate is proportional to ncpiME, where ME

is the number of particles whose energy exceeds the threshold energy Emin. Thus, ME follows a
binomial distribution B(Np,c, pE). Therefore, for the expectation of the rate coefficient computed
using event splitting (denoted kCS

i ) we again have

E[kCS
i ] ∝ ncNp,cpEpi, (6)

and for the variance of the rate coefficient we now have

Var(kCS
i ) ∝ n2

cNp,cpEpi(1− pE). (7)
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Algorithm 2: Event splitting variable-weight DSMC collision algorithm

for l ← 1 to Ncoll do
sample particle of species c in current cell (with index j1 and weight n1);
sample particle of species d in current cell (with index k1 and weight n2);
g ← compute relative velocity of particles j, k;

{σi(g)}Nproc,cd

i=1 ← compute cross-sections of all possible processes between species c, d;
σtot(g)←

∑
i σi(g);

R ← U(0, 1);
if MAX(n1, n2)σtot > (nσtotg)max then

(nσtotg)max ← MAX(n1, n2)σtot;
end
P ← MAX(n1, n2)σtotg/(nσtotg)max;
if R < P then

nmin ← MAX(n1, n2);

{Pi}
Nproc,cd

i=1 ← {σi/ σtot}
Nproc,cd

i=1 ;
if n1 > n2 then

create particle of species c with weight (n1 − n2) and velocity of particle j1;
set weight of particle j1 to n2;

else if n2 > n1 then
create particle of species d with weight (n2 − n1) and velocity of particle k1;
set weight of particle k1 to n1;

end
for i ← 1 to Nproc,cd do

reduce weight of particle j1 by nminPi;
reduce weight of particle k1 by nminPi;
create particle of species c with weight nminPi and velocity of particle j1;
create particle of species d with weight nminPi and velocity of particle k1;
collide the newly created particles, simulating collision process i;

end

end

end

Comparing the variances of the rate coefficients computed using the two different algorithms, we
obtain

Var(kAR
i )

Var(kCS
i )

=
1− pEpi

1− pE

. (8)

Since pi < 1, we see that Var(kAR
i ) > Var(kCS

i ). Thus, in this simplified case the collision-splitting
algorithm leads to a lower variance in the computed inelastic rate coefficient. The above analysis
should not qualitatively change when relaxing the simplifications for more realistic simulations,
and it is expected that the variance reduction is larger the more rare the event is that is being
split.

We note that the proposed event splitting scheme has a computational cost. First, in the
acceptance-rejection scheme, only a single computation of post-collision velocities is performed for
each collision, either for the elastic or the inelastic process chosen to be simulated. In the splitting
scheme, Nproc,cd post-collision velocities are computed for each collision. Of course, the value of
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Nproc,cd may vary from timestep to timestep and from cell to cell, depending on the velocities of
the particles in a given cell and the processes themselves – especially if the processes have an
activation energy. Depending on the complexity of the scattering laws for the inelastic processes,
the computation of post-collision velocities for all possible processes might incur a noticeable
computational cost. Second, as seen from Fig. 4, the event splitting scheme leads to creation of
a larger number of particles when compared to the acceptance-rejection scheme. The number of
post-collision computational particles in the acceptance-rejection scheme leads is at most four (in
case of an ionizing collision), whereas use of the splitting scheme leads to six particles instead of
two (assuming the electron has sufficient energy to ionize the atom). For example, if one were to
take Nexc electron-impact excitation reactions into consideration, then the maximum number of
post-collision particles in the acceptance-rejection scheme will not change (an excitation reaction
will produce three particles), but the splitting scheme will produce 6 + 2Nexc particles for each
collision (again, assuming an incident electron with sufficiently high energy). This in turn will lead
to the need for more frequent merging to control the particle counts. Merging not only requires
additional computational effort, but also introduces additional error into the simulation (such as
error in the heat flux and other higher-order moments of the distribution function [15, 38]).

One possible modification of the event splitting scheme that would reduce the number of post-
collision particles and scattering computations involves process binning. The outline of such a
scheme is as follows: different inelastic processes are grouped based on some criteria, and either
an acceptance-rejection scheme is used to choose a collision group, and all the possible collision
processes within that group are performed via event splitting, or the colliding particles are split
according to the probabilities of each group, but only one collision from each collision group
is chosen (via acceptance-rejection). The investigation of such a modification is left for future
work. On the other hand, a possible computational benefit of the proposed algorithm is improved
parallelization efficiency. After we split particles based on elastic and inelastic process probabilities,
these split collision pairs are collided independently of each other, and this can be parallelized. On
hybrid computational architectures, which aim to make the most efficient use of the large number
of threads available on GPUs, this can provide an additional parallelization option, especially when
the total number of physical grid elements is comparable to the number of available threads, and
physical domain decomposition-based parallelization reaches its limit. In the present work, we
focus on assessing the performance and properties of the splitting scheme for the simple test-case
described above: an ionized argon flow with electron-impact ionization reactions (so an argon-
electron collision can have two possible outcomes: an elastic scattering, or an ionization reaction).
The questions of how the performance of the algorithm scales with the number of considered
processes will be considered in future work.

3. Numerical results

All simulations were performed using an in-house variable-weight DSMC code developed at UT
Austin. The simulations were performed serially on a workstation with an i7-4790 CPU and 32 GB
of RAM.

3.1. 0-dimensional ionization rate computation

We assess the validity and performance of the event splitting scheme by using it to simulate
a 0-dimensional Ar/Ar+/e– mixture accelerated by a constant electric field. We consider elastic
argon-argon collisions (modelled with the VHS model [1]), elastic electron-argon scattering, and
electron-impact ionization reactions. The cross-sections for the electron-argon collisions are based
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on BSR data [36] (see Fig. 1), and the Okhrimovskyy scattering model is used for argon-electron
collisions [39]. The two electrons after an ionization event are assumed to have equal energy. The
initial number density of the neutral background gas was set to 1023 m−3, and the initial number
density of the ions and electrons was 1016 m−3. The simulation timestep was 10−14 s. The initial
background gas temperature was set at 300 K, and the initial temperature of the electrons was
4.5 eV. We considered two values of the applied reduced electric field E/n: 50 Td and 500 Td to
assess our collision scheme in two regimes: with a low ionization rate and a high ionization rate
– the ionization rate differs by two orders of magnitude between these cases. We also varied the
number of argon and electron particles used in the simulation.

To simplify the analysis, we used the same number of DSMC particles for the argon neutrals
as for the electrons. The simulations were run with the following nominal numbers of particles
for each species: 100, 200, 500, 1000, 2000, 5000, 10000, 30000. (The overall number of particles
is twice each value). Since we use a variable-weight DSMC scheme, the number of particles
varies from timestep to timestep. The numbers given above are the target numbers of particles
passed onto the octree-based merging algorithm used for the present simulation [24]. The adaptive
merge algorithm stops refinement of velocity space once the post-merge number of particles is less
than the target number of particles. Merging was performed once the number of particles for a
given species exceeded 110% of the target particle number. Thus, the number of particles in the
simulation never exceeds 110% of the target particle number, but can occasionally drop lower than
the target particle number, depending on where the particles are located in velocity space.
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Figure 5: Temporal evolution of the electron temperature for an applied reduced field of 50Td (left) and
500Td (right). Dotted lines denote solutions obtained with target number of particles set to 100 for each species;
solid lines denote solutions with a target number of particles set to 30000 for each species. The black dashed line
denotes the solution given by the Bolsig+ solver.

After an initial transient period, the system reaches a quasi-steady state, characterized by a
constant electron temperature and a constant rate of growth of the electron number density, as
shown on Figs. 5–6. From this rate of growth, the value of the ionization rate coefficient at each
timestep can be computed, and that is the main quantity of interest we will be considering in
the present analysis. We can also compare both the quasi-steady state ionization rate coefficient
and electron temperature to the values obtained via the Bolsig+ solver [40], which we treat as a
reference solution. After the system had reached the quasi-steady state we gathered statistics over
600,000 timesteps (for an applied reduced field of 50 Td), and 300,000 timesteps (for an applied
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Figure 6: Temporal evolution of the electron number density for an applied reduced field of 50Td (left) and
500Td (right). Dotted lines denote solutions obtained with target number of particles set to 100 for each species;
solid lines denote solutions with a target number of particles set to 30,000 for each species.

reduced field of 500 Td) to quantify the computational effort and the error in the ionization rate
coefficient.

Assuming a Maxwellian velocity distribution of the electrons, and taking into account that 1)
neutral species are much heavier than the electrons, and 2) neutral species are much slower than
the electrons, the fraction xion of the electron distribution function that can cause an ionization
reaction can be computed as

xion ≈

(
me

2πkTe

)3/2 ∫ ∞

vmin

4πv2
e exp

(

−
mev

2
e

2kTe

)

dve =
4
√

π

∫ ∞

v̂min

v̂2
e exp (−v̂e) dv̂e. (9)

Here me is the electron mass, Te is the electron temperature, vmin is the minimum velocity an
electron should possess in order to ionize a neutral: vmin =

√
2Eion/me, where Eion is the ionization

energy of the neutral species (15.76 eV for argon), and v̂min = vmin/
√

2kTe/me. Thus, for the
500 Td applied reduced field roughly 30% of the electron distribution function has a sufficiently
high enough energy to cause an ionization reaction after quasi-steady state has been reached,
whereas for the 50 Td applied reduced field, only 8-9% of the electrons can cause an ionization
reaction. From Figs. 5–6 it is evident that for the weak applied reduced field of 50 Td simulations
with a low number of particles exhibit a higher level of noise. Both schemes are similar in that
respect, which is to be expected. However, on Fig. 6 we can clearly see the all-or-nothing nature
of the acceptance rejection scheme when the external field is weak and the number of particles
in the simulation is low. The electron number density stays constant over noticeable periods of
time, and exhibits rapid jumps during timesteps at which ionization events occur. Use of the event
splitting scheme leads to a smoother behavior of the density — while the level of variation is still
high, no rapid jumps can be seen. The variance in the electron temperature profiles (as seen on
Fig. 5) are more similar between the event splitting and acceptance-rejection collision schemes,
since the elastic electron-neutral collisions (which are not a low-probability event) cause changes
in the electron temperature as well. Thus, the variance reduction achieved with the event splitting
scheme depends on how dependent the quantity of interest is on the split event.

We consider the low-particle case (100 particles for each species) of the weak applied field
(reduced field value of 50 Td) in more detail. Figure 7 shows the mean electron number density
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Figure 7: Temporal evolution of the ensemble-averaged electron number density for an applied reduced field of
50Td, with the shaded regions showing a range between the 5-th and 95-th percentiles.

computed from 50 ensemble simulations (that used different random seeds), as well as its 5th-95th
percentile range. It is evident that the range of values of the electron number density at a given
time is narrower when one uses event splitting. Conversely, one can consider another quantity of
interest: the time at which a certain electron number density is exceeded. Again, the uncertainty in
the time required to achieve a specific electron number density value is lower when event splitting
is used.
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Figure 8: The ionization rate coefficient plotted against the computational time spent on a single timestep for an
applied reduced field of 50Td (left) and 500Td (right) for different numbers of particles used in the simulation.
Vertical bars denote a range of plus-minus standard deviation. The black dashed line is the solution given by the
Bolsig+ solver.

We now focus on analyzing how the choice of a collision scheme and the number of particles
used in a simulation affects the computed instantaneous rate coefficient. Figure 8 shows the
average computed rate coefficient and the range (±1 standard deviation) as a function of the
average computational time spent on a single timestep for different numbers of particles used
in the simulation. This computational time involves simulation of the collisions, the merging of
particles (if required), and their acceleration. It should be noted that the value of the computed
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standard deviation is up to 1-2 orders of magnitude larger than the value of the rate coefficient
itself. Therefore, due to the log scale of the Y-axis, the range of ±1 standard deviation is cut
off at the lower end, as negative values cannot be represented on the plot. Such a plot allows
us to not only verify the convergence of our simulations to a single value (which is close to that
given by the Bolsig+ solver), but also assess the level of stochastic noise in the rate coefficient
and compare the computational costs of the two collision algorithms. We can see that use of the
event splitting scheme leads to a noticeable reduction in the noise in the ionization rate coefficient.
As the number of particles is increased, the computational cost increases and the noise is reduced
for both schemes. At higher numbers of particles, the event splitting scheme has slightly higher
computational cost due to the larger number of scatterings computed at each timestep. However,
achieving a comparable level of accuracy with the acceptance-rejection scheme would require many
more particles and incur an even higher computational cost.
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Figure 9: The average computational time spent on a single timestep plotted against the relative error in the
ionization rate coefficient for an applied reduced field of 50Td (left) and 500Td (right). Vertical bars denote a
range of plus-minus standard deviation in the computational time

To better understand the relation between computational cost and noise in the computed rate
coefficient, we plot the average computational time per timestep against the relative error in the
ionization rate coefficient. We define the relative error as

Error(kion) = 100% ×
1

kion

√√
√
√
∑

t

(
k

(t)
ion − kion

)2

Nt

, (10)

where k
(t)
ion is the instantaneous ionization rate coefficient at timestep t, Nt is the number of

timesteps the statistics are computed over, and kion =
∑

t k
(t)
ion/Nt is the mean of the computed

ionization rate coefficient. Figure 9 shows the computational cost associated with a specific de-
sired/acceptable level of noise in the ionization rate coefficient. From the figure we see that the
event splitting scheme allows for a 10 to 25-fold reduction in the stochastic noise compared to
the acceptance rejection scheme for the 50 Td case, and a 4 to 5-fold reduction for the 500 Td
case, without a significant increase in computational cost. Conversely, achieving a specific de-
sired/acceptable level of noise would require up to 100 times as many particles when using the
acceptance-rejection scheme as compared to the event splitting scheme. We note that the variations
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Figure 10: The relative error in the ionization rate coefficient plotted against the total number of particles in
the simulation for an applied reduced field of 50Td (left) and 500Td (right). Horizontal bars denote a range of
plus-minus standard deviation in the number of particles. Dashed lines show an inverse-square-root scaling trend.

in computational cost seen on Fig. 10 are due to the variations in the number of particles in the
simulation, as well as the occasional particle merging (which has a cost of order Np log(Np) [24]).

Modern hybrid computer architectures require both computationally-efficient and also memory-
efficient algorithms in order to reduce data transfer between nodes and CPU/GPU units. Hence,
it is useful to see how the error scales with the (average) number of particles used. From Fig. 10
we see that the error of both collision schemes scales as 1/

√
Np as expected, where Np is the total

number of relevant collisional particles in the simulation (the sum of argon neutral particles and
electron particles). Thus, achieving the same of level of noise with the acceptance-rejection scheme
as with the event splitting scheme would require the use of 100-200 times more particles for the
50 Td field case and 16-25 times more particles for the 500 Td field case.

Next, we examine the distribution of the instantaneous rate coefficients. As was shown on Fig. 6,
depending on the flow conditions and the number of particles in the simulation, the acceptance-
rejection scheme may have very few ionizing collision occurring over the course of the whole sim-
ulation. Given its all-or-nothing nature, when these collisions do occur, they correspond to a
very large instantaneous ionization rate. Figure 11 shows the distributions (probability density
functions obtained via binning) of the instantaneous ionization rate coefficients for different num-
bers of particles used in the simulation for the case of a 50 Td reduced field. We see that the
acceptance-rejection collision scheme indeed produces a very wide distribution of rates (reaching
up to approximately 5×10−13 m3/s, even though the nominal rate is approximately 1.14×10−16 m3,
i.e. 3 orders of magnitude lower). The distribution of the ionization rate obtained via event split-
ting is narrower, and while its range is of the same order of magnitude when 200 particles are used
in the simulations, it is rapidly reduced as the simulation particle count is increased. In fact, the
distribution obtained with the event splitting algorithm is so narrow compared to that obtained
with the acceptance-rejection algorithm that it can hardly be seen on the two lower subplots on
Fig. 11. We therefore add insets to these subplots with a greatly expanded scale for the x-axis.
We observe that the range of the distribution of instantaneous rate coefficients is comparable to
the actual value of the ionization rate coefficient (the value obtained with the Bolsig+ solver is
plotted as a black line). We also observe that the distribution still has a significant number of
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Figure 11: Probability density functions of the ionization rate coefficient for different total numbers of particles
used in the simulation. The value of the applied reduced field is 50Td. Insets have a decreased range on the x-axis
in order to improve legibility. The solid black line denotes the value of the ionization rate coefficient given by the
Bolsig+ solver.

zero-rate timesteps, as evidenced by the height of the leftmost red bar (which is proportional to
the percentage of timesteps with a zero instantaneous rate coefficient).

Figure 12 shows the distributions of the instantaneous ionization rate coefficients for the case
of a 500 Td external electric field. For low particle counts the overall qualitative behavior of the
distributions is similar to the 50 Td case, except that the ranges of the two distributions produced
by the different collision algorithms are more comparable to each other. For the highest number of
particles used in the simulation (bottom-right), the distribution obtained with the event splitting
algorithm has no zero-rate values and is centered nicely around the value given by the Bolsig+
solver. A Poisson distribution of ionization events is shown on the lower-right subplot to better
highlight the range of values one can expect to obtain in the limiting case [41] and to show that
at sufficiently high particle counts the event splitting scheme provides quite close results.

Finally, we look at the fraction of timesteps with a zero value of the instantaneous rate coefficient
as a function of the number of particles used in the simulation. From Fig. 13 we see that this
fraction strongly depends on number of particles for both collision algorithms, and that the slopes
of these lines differ significantly between the two collision algorithms. For the 50 Td case, it is
hard to discern the change in the fraction of timesteps with a zero-rate for the acceptance-rejection
algorithm when plotted simultaneously with the curve obtained from the simulations that used
the event splitting algorithm. When plotted separately (see inlay on Fig. 13), we can see the linear
decrease, but the fraction of timesteps during which no ionization happens is still extremely high –
at least 99%. For the 500 Td case, the behavior of the two algorithms is somewhat more comparable
(which is to be expected, given the higher population of the high-velocity tails of the electron
distribution function and a larger average ionization probability due to the higher temperature of
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Figure 13: Fraction of timesteps during which no ionization events occur (instantaneous value of the ionization rate
coefficient is zero) as a function of the average number of simulation particles for an applied reduced field of 50Td
(left) and 500 Td (right).

the electron distribution function). However, in this case the event splitting algorithm actually
reaches a zero fraction of the zero-rate timesteps for the considered numbers of simulation particles,
meaning that an ionization reaction occurs at each timestep in the simulation. Of course, it is not
feasible to use the high number of simulation particles required to achieve no timesteps with zero
ionization events except in model 0-dimensional simulations. However, a significant improvement

16



over the acceptance-rejection scheme can be observed in accurately modeling the ionization process
even for low particle counts. We emphasize that it is not an increased particle count from event
splitting that improves the accuracy of the simulations but the treatment of the collision process
itself. Recall that we perform merging operations to limit the maximum possible number of
particles in the simulation so the numbers of particles for the event splitting and acceptance-
rejection cases are in the same range.

Lastly, returning to Figs. 6 and Figs. 7, we should also note not only the difference in the
variance of the ionization rate coefficients, but also the differences in the electron number densities
themselves computed with the different codes. As evidenced by the right-hand side of Fig. 6 (case
of applied field of 500 Td), the differences in the number densities may reach up to 40%. In line
with previous DSMC studies on the role of variance reduction in reducing the error in unsteady
simulations [42], this points to another benefit of the event splitting scheme, namely, more accurate
time-resolved values of quantities of interest.

Summarizing the analysis, we conclude that the proposed event splitting scheme leads to a
significant improvement over the standard all-or-nothing acceptance-rejection scheme in terms
of accurately representing the rate of a trace collision event. For the considered test case, the
computational overhead of the scheme was evident only at high numbers of simulation particles,
and was still insignificant. Overall, depending on the value of the external electric field considered,
achieving the same level accuracy in the representation of the ionization rate coefficient using the
acceptance-rejection scheme would require from 16 to 200 times as many simulation particles. We
conclude that the computational benefit of the event splitting scheme increases as the process
being split becomes more and more rare. For more complicated flows this gives a way to decide
which processes can be treated using acceptance-rejection without a significant loss in accuracy.

3.2. 1-dimensional breakdown modeling

In this numerical test case, we simulate electric breakdown in an argon-filled gap between two
plates held at a constant voltage difference. The model assumes no external circuit, i.e. an infinite
power supply capable of holding the anode voltage at a fixed value, no matter the current density,
is available. In the present study, we assume a constant electric field throughout the domain,
and do not use a coupled particle-in-cell simulation. We seed the system with a small number
density (3.1×10−6 that of the density of the neutral argon gas) of electrons and ions in the cell
closest to the cathode in order to trigger breakdown when the voltage is sufficiently high. These
seed electrons can result from many processes including cosmic radiation and other sources of
photoemission from the electrode surface.

As electrons are accelerated across the gap, they ionize the argon atoms. The ions are accel-
erated towards the cathode and as they hit the cathode, they cause secondary emission. For the
purposes of the present simulation, we assume a constant secondary emission probability of 10%,
which is a reasonable approximation for low-energy Auger neutralization at a metal cathode sur-
face [43]. Thus, we can perform event splitting not only for the electron-neutral collisions (as
investigated in the 0-dimensional case), but also for the secondary-emission boundary conditions.
Therefore, we perform 4 different simulations: one that uses acceptance-rejection for both colli-
sions and the secondary emission boundary conditions, one that uses acceptance-rejection for the
electron-argon collisions and event splitting for the boundary conditions, one that uses event split-
ting for the electron-argon collisions and acceptance-rejection for the boundary conditions, and one
that uses event splitting for both the collisions and the secondary emission boundary conditions.

We take the background gas pressure to be 100 Torr and the gap width to be 30 μm. The
applied voltage is taken to be 450 V. A timestep of 5.18×10−15 s was used for the simulations,

17



and 200 spatial cells were used to discretize the simulation domain. The target particle numbers
(used in the merging algorithm) were taken to be 300 particles/cell for the argon neutrals, 450
particles/cell for the argon ions, and 900 particles/cell for the electrons.

In order to compare the level of noise of the different collision and boundary condition algo-
rithms, we consider the current density at the anode as the quantity of interest – breakdown is
indicated by an exponential rise in the current [7].

Figure 14: Anode current density as a function of time.

Figure 14 shows the anode current density j as a function of time. At the start of the simulation,
the current exhibits oscillatory behavior with a period roughly equal to the ion transit time —
the time it takes for an ion produced near the anode to accelerate and reach the cathode; for the
given gap width and voltage across the gap, this time is 1.2 ns. We see that the level of noise is
highest for the acceptance-rejection scheme, lower when boundary conditions are treated using the
event splitting algorithm, even lower when ionization reactions are treated using the event splitting
algorithm (and boundary conditions use acceptance-rejection), and is at its lowest when both the
collisions and boundary conditions are treated using the event splitting scheme.

It should be noted that the results of our numerical simulations show significantly lower average
numbers of electron and ion particles per cell in case acceptance-rejection is used for collisions
(“Acceptance-rejection” and “Event splitting for emission only” curves on Fig. 14). This can be
explained by the fact that due to the relatively low probability of ionization, few electron particles
are produced. An insufficient number of electron particles leads to fewer collision events, which
also contributes to a low particle count. In case acceptance-rejection is used to treat the emission
boundary condition as well (“Acceptance-rejection” curve on Fig. 14), the situation is further
exacerbated, since on average, only 1 in 10 ions hitting the cathode will produce an electron
particle. Thus, the differences in the level of noise in the anode current seen on Fig. 14 are not
only due to different levels of stochastic noise produced by the collision schemes, but also due
to differing average particle counts. The paper on octree-binning-based merging [24] proposes
a particle scheme to artificially increase the number of computational particles if too few are
present in a grid cell. In order to provide a more consistent comparison between the different
collision algorithms, we implemented a simple particle cloning scheme that increases the number
of particles in a cell by a factor of M (where M is an integer) by creating M − 1 copies of each
particle at the same location in physical space and velocity space, with a weight of 1/M of the
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original particle’s weight. The original particle’s weight is also set to 1/M -th of its initial value.
This cloning procedure is performed if the number of particles in a cell is less than 50.

Figure 15: Anode current density as a function of time. Simulations performed using particle cloning of electrons
and ions if particle counts in a cell became too low.

Figure 15 shows the anode current density as a function of time when particle cloning is used,
and acceptance-rejection is used either for all processes (collisions and cathode emission) or for
collisions only. We see that the level of noise is greatly reduced compared to Fig. 14 due to the
imposed minimum threshold on the number of ions and electrons per cell.
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Figure 16: Average number of particles per cell computed using different collision and boundary condition algo-
rithms. “A.R.” denotes the acceptance-rejection algorithm, “E.S. e.o.” denotes event splitting for emission only,
“E.S. c.o.” denotes event splitting for collisions only, ”Full E.S.” denotes event splitting for both collisions and
emission. ”+ clone” denotes simulations performed with particle cloning. Bars denote a range of one standard
deviation.

Fig. 16 shows the average number of particles per cell computed using different collision and
boundary condition algorithms. We see that when particle cloning is used in conjunction with
acceptance-rejection treatment of collisions (“A.-R. + clone” and “E.-S. e.o. + clone” test cases),
the average number of particles per cell is noticeably larger (and closer to the expected value) than
when no cloning is performed. Use of particle cloning increases the average number of particles in a
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cell, and as seen previously on Fig. 15, leads to a reduction in the stochastic noise. However, even in
case more complicated particle cloning algorithms are used (such as the one given in [24]), they do
not increase the accuracy of the simulation by themselves – it is only through the interaction of the
newly created particles with other particles and with surfaces that the fidelity of the simulations
is increased. Thus, another advantage of the event splitting algorithm is the reduced need for
artificial particle cloning, since one can take advantage of the branching in the physical processes
occurring in the flow (by splitting during collisions and gas-surface interactions) to maintain a
sufficient particle count.

In order to quantify the level of noise in the anode current density, we perform a linear regression
on the (log-scaled) computed anode current densities (after 16 ns have elapsed) in order to extract
the trendline. Then we calculate the root-mean-square-log-error (RMSLE) of the computed anode
current densities relative to the trend-line (we use RMSLE as a metric due to the order of magnitude
variations in the current density over time):

RMSLE(j) =

√∑
t

(
log10 j(t) − log10 j(t)

)2

Nt

. (11)

Here j(t) is the anode current density at time t, and the log10 j(t) is the linear regression estimate
of the logarithm of the anode current density at time t, given by:

log10 j(t) = A0 + A1t. (12)
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Figure 17: Computational time per step plotted against noise in the log-scaled anode current density. Bars denote
a range of plus-minus one standard deviation.

Figure 17 shows the average computational time per step against the noise in the anode current
density, as computed via Eqn. 11.

To provide a more detailed comparison of the cost-vs-accuracy, we ran additional simulations
with different average numbers of particles per cell, ranging from approximately 110 particles/cell
to 1450 particles/cell for the full event splitting simulations, from 330 particles/cell to 1360 par-
ticles/cell for the simulations that used event splitting for electron-neutral collisions, from 730
particles/cell to 1560 particles/cell for the simulations that used event splitting for secondary
electron emission, and from 400 particles/cell to 1570 particles/cell for the simulations that used
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acceptance-rejection for all collisional and boundary processes. We see that use of the event split-
ting scheme provides an reduction in the stochastic noise over the acceptance-rejection algorithm.
The greatest benefit is observed when event splitting is used for both the electron-neutral collisions
and boundary conditions. The gains in accuracy (over standard variable weight DSMC) obtained
when event splitting is used for either the electron-neutral collisions or for the secondary emission
process are similar. It should be also noted that for the given conditions (pressure of 100 Torr,
gap width of 30 μm, and a constant applied voltage of 450 V), the reduced electric field is equal
to 4660 Td. Due to the strong (and constant) field, the electrons are accelerated to a high speed,
and have a high temperature (reaching up to 35-40 eV near the anode). Therefore, a large number
of electron-neutral collisions will have a relatively high ionization probability, and the benefits of
the event splitting scheme are somewhat diminished. However, for different simulation conditions
such as a smaller applied voltage, or in gases with additional electron-collision processes which will
reduce the average electron temperature, the gains in accuracy obtained with the event splitting
scheme will be more significant.

In a general case, one can perform event splitting for specific processes in the flow, and perform
a similar cost-vs-error analysis in order to obtain insight into the most significant processes driving
the flow and which processes benefit most from application of the event splitting scheme.

4. Conclusions

We devised and tested a new DSMC collision scheme to improve the modeling of low-probability
collision events and applied it to an ionized argon flow accelerated by a constant electric field. We
investigated the behavior of the instantaneous ionization rate coefficient and the dependence of the
magnitude of the stochastic noise on the number of particles used in the simulation and the type
of collision scheme used. We show that the proposed event splitting scheme greatly reduces the
noise in the modeling of the ionization reactions, especially when the external applied field is low
and very few electrons have a sufficiently high energy to cause an ionization reaction. Achieving a
similar level of noise with the acceptance-rejection scheme would require a significant increase in
the number of simulation particles. Extending the scheme to modeling of secondary emission from
a cathode, we model a simulate a breakdown in a narrow 1-dimensional gap. We show that use
of event splitting for treatment of electron-neutral collisions and/or secondary emission boundary
conditions greatly improves the level of noise in the anode current compared to acceptance-rejection
sampling, and reduces the need for particle cloning.

Future work on the event splitting algorithm will consider its application to more complex flows,
and investigate the scaling of its computational cost with the number of processes considered. Possi-
ble extension of the scheme include (i) allowing for partial collisions (currently, acceptance-rejection
is still used to select or reject possible collision pairs), (ii) splitting based on certain collision pro-
cess groups (and not individual collision processes), (iii) applying event splitting to scattering laws
(e.g., diffuse boundary conditions, preferential scattering for electron-neutral collisions, etc.), and
(iv) combining the scheme with the fractional collision method developed in [20].
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