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ABSTRACT:

We have developed a method for automatically detecting the sources of ice block falls at the Martian north polar scarps. Multi-
temporal red-filter High Resolution Imaging Science Experiment (HiRISE) images were processed by using the open source NASA
Ames Stereo Pipeline in combination with the USGS Integrated Software for Imagers and Spectrometers to produce 0.25 m resol-
ution images as well as a 1 m resolution DTM. The multi-temporal HiRISE images were firstly ortho-rectified by the DTM, and
then co-registered by using the Enhanced Correlation Coefficient Maximization (ECC) algorithm. We applied the change detection
method on the well-aligned sub-meter scale HiRISE images, which were taken in Mars Year 29 and Mars Year 30, to investigate
mass wasting at the scarp area centred at 85.0°N, 151.5°E. The idea of the change detection method is to identify changing shadow
patterns based on the grayscale difference between the images. The final results show that erosion events occurred at the full length
of this study’s scarp within one Mars Year. However, only the upper and lower part of the scarp show erosion activity, whereas the
intermediate parts seem inactive, and this correlates with the slope.

1. INTRODUCTION

Martian polar regions reveal important evidence of planetary
climate changes driven by changes in Mars’ obliquity and ec-
centricity (Ward and Rudy, 1991; Byrne and Murray, 2002).
From radar measurements it has been estimated that since the
end of the last ice age, the polar regions have accumulated
nearly 87,000 cubic kilometres of ice (Smith et al., 2016). At
the same time, evidence of mass wasting, flow and debris ac-
cumulation has also been discovered (Herkenhoff et al., 2007;
Hansen et al., 2011; Tesson et al., 2020).

Equatorward-facing steep scarps at the periphery of the North
Polar Layered Deposits (NPLD) are known to experience vari-
ous types of mass wasting, such as CO2 ice sublimation, ava-
lanche events, and ice block falls (Ivanov and Muhleman, 2000;
Russell et al., 2008; Fanara et al., 2020b). Thermoelastic mod-
elling indicates that greater extensional stresses in winter could
cause fracturing (Byrne et al., 2017). When the seasonal CO2

ice sublimates in spring, the force inside the ice layer is revealed
in the form of surface fracturing. This leads to ice block falls
that are playing a major role in active erosion.

Russell et al. (2007) have found abundant debris fans accumu-
lating at the Basal Unit (BU) outcrop due to mass wasting and
flow processes. Fanara et al. (2020a,b) have detected large num-
bers of recently fallen ice blocks at the foot of scarps by us-
ing machine learning and estimated a scarp retreat rate of ∼0.2
m/kyr. Herkenhoff et al. (2020) have also obtained the volume
of ice block falls through manually detecting newly appeared
blocks at the foot of the scarps and found a similar rate as Fan-
ara et al. (2020b), while Martynchuk et al. (2021) is using deep
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learning to extend the work of Fanara et al. (2020b) and map all
ice block falls of the whole north polar region through time.

However, when ice blocks detach from the steep scarps, they
may break into fine material, which is not large enough to be
visible in satellite images, so detailed records of the amount of
mass wasting are not yet complete. A better understanding of
the geological history of polar layered deposits is needed to re-
veal their complex climate record. Therefore, in this paper we
propose exploring the sources of these block falls to investig-
ate mass wasting. By combining the studies of ice block source
areas with the identification of fresh ice blocks themselves, we
can fully grasp the dynamic process of the ice block falls and
conduct a seasonality analysis of ice activity at the scarp. We
benefit from low-sun conditions in Mars’ polar areas, where
the surface morphology is revealed through cast shadows. Spe-
cifically, we search for changes in shadow patterns by using an
automatic change detection method on multi-temporal images.

2. STUDY AREA AND DATA

Mars Reconnaissance Orbiter (MRO) High Resolution Ima-
ging Science Experiment (HiRISE) images with scales of up to
∼0.25m/pixel have the potential to show distinguishable scarp
landforms and help identify small-scale changes (McEwen et
al., 2007). The study scarp with obvious fracturing features is
about 22 kilometres long, centred at 85.0°N, 151.5°E, and with
16 northern summertime HiRISE images covering it from Mars
Year 29 to Mars Year 34. Figure 1 is one HiRISE image show-
ing part of this scarp (the diagonal bright part) with a length of
∼7.5 km. The scarp has a steep slope up to 70°. The red arrow
points to the direction in which the slope descends. Below the
steep NPLD scarp is the sandier Basal Unit.
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Image name Resolution Date Ls Usage

PSP_009648_2650_RED 0.25m
2008-08-17

(MY29) 113.86° Before image

ESP_016650_2650_RED 0.25m
2010-02-13

(MY30) 51.31° Stereo Image 1

ESP_016716_2650_RED 0.25m
2010-02-19

(MY30) 53.58° Stereo Image 2

ESP_018905_2650_RED 0.25m
2010-08-08

(MY30) 130.02° After image

Table 1. The research data list. MY means Mars Year. Ls is the solar longitude.

Figure 1. Red-filter HiRISE image ESP_018905_2650 at
85.0°N, 151.5°E. The red arrow points to the direction in which

the slope descends. Three yellow boxes A, B, and C are the
validation areas. The location of our study area is marked as a
red box on the top right map, which is the Mars MGS MOLA

Global Color Shaded Relief (Credit: USGS/NASA).

HiRISE operates on a nearly sun-synchronous orbit, which
means the images are taken at the same local time of day,
providing good conditions for automatically detecting changes
in shadow patterns of the ice-fragments. For the change detec-
tion, we used imagery taken during the northern summertime,
so that the scarps were free of the seasonal CO2 ice that cov-
ers them during the winter. For computing the Digital Terrain
Model (DTM), we chose a stereo pair with similar acquisition
time and suitable stereo angle. Table 1 shows the data we used
in this study.

3. 3. METHODS AND EXPERIMENTS

3.1 Pre-processing

The pre-processing requires a very careful ortho-rectification
and co-registration to avoid artefacts in change detection. The

open-source NASA Ames Stereo Pipeline (ASP) (Beyer et al.,
2018) in combination with the USGS Integrated Software for
Imagers and Spectrometers (ISIS) are the auxiliary tools.

A high-quality Digital Terrain Model (DTM) is the key to ortho-
rectify HiRISE imagery. We produced a DTM with 1 m resolu-
tion by a series of processes on ASP. The flowchart of producing
the HiRISE DTM is shown in Figure 2. All the processing steps
refer to the Ames Stereo Pipeline Documentation.

Then, we used this 1 m DTM to ortho-rectify the “Before” HiR-
ISE image and the “After” HiRISE image (see the list in Table
1). In most cases, the HiRISE images were not sufficiently
aligned even after ortho-rectification. We performed a fine-
registration of the images in two steps. First, the normalized
cross-correlation was applied to find the approximate corres-
ponding relative position of the two images. Then, the images
were split into small tiles and co-registered separately by us-
ing the Enhanced Correlation Coefficient Maximization (ECC)
algorithm, which is robust against photometric distortions in
contrast and brightness, to provide shift and rotation correction
parameters (Evangelidis and Psarakis, 2008).

Figure 2. The Flowchart of computing the HiRISE DTM on
ASP.

3.2 Change Detection

We benefit from the low-sun conditions in Mars’ polar areas,
where the surface morphology is revealed through cast shad-
ows. The change detection is performed by shadow detec-
tion among the fractured ice-fragments. Specifically, the ice-
fragments have shadows, depending on their sizes and sunlight
incidence. When the ice-fragments fall, two phenomena may
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occur, that is, either the original shadows of the ice-fragments
disappear or their surrounding parts cast new shadows. Here,
we call these kinds of changes "areas of modified shadows". By
comparing the relative grayscale difference between the same
location of the two images, the areas of modified shadows can
be finally detected.

First of all, the multi-temporal images were normalized ra-
diometrically using the Wallis Filter (Zhang et al., 1999). The
Wallis Filter adjusts the brightness values of the original im-
age based on the mean and standard deviation of the reference
image. The formula is given by:

f ′(x,y) =
[
f(x,y) −mf

] sr
sf

+mr (1)

Where, f(x,y) is the intensity value of the original image at
(x, y) and f ′(x,y) is corresponding corrected value; mf and sf
are the mean value and the standard deviation of the original im-
age, respectively; mr and sr are the mean value and the stand-
ard deviation of the reference image, respectively.

Then, we subtracted the “Before” image from the corrected
“After” image and took the absolute value of the difference. Ba-
sically, any nonzero values of the difference image are flagged
as changes. However, due to the noises or radiance difference
of the images, the values below the threshold can be ignored.
We obtained a binary difference image by setting an empirical
threshold of 50:

Binary Image =

{
0, difference < 50
255, difference ≥ 50

(2)

The pixels corresponding to 255 on the binary image are those
areas, where change is suspected (the yellow, blue and red
marks in Figure 3c).

However, we encountered two kinds of false detections due to
specific issues. One is that the remnant white seasonal CO2 ice
mimics shadow patterns. As can be seen from the yellow areas
marked in figure 3c, the remnant CO2 ice covers some parts
of the scarp in the “After” image, while in the “Before” im-
age that scarp part is free of CO2 ice. So, the grayscale differ-
ence between the two images at these parts could be higher than
the threshold of 50 (Equation (1)). Our method removed such
false detection by comparing the grayscale deviation between
the suspected change area and its surrounding background.

The other issue is linked to imaging and illumination conditions
of the multi-temporal images, which may cause discrepancies in
the same shadow in the “Before” and “After” image. As can be
seen from the blue area marked in figure 3c, scale, translation or
rotation of the shadows can be detected as suspected changes.

The principle of misdetection elimination that we used is to per-
form transformation-invariant similarity comparison on shad-
ows. Shadow detection is a fundamental process. Here, we ap-
plied the Adaptive Gaussian Thresholding to detect the shadow
areas due to the obvious grayscale differences between the
shadow and its background. Adaptive thresholding determines
the threshold for the pixel based on its local neighbourhood.
Thus, it can handle the problem such as different lighting con-
ditions in different areas. The formula is given by:

dst(x,y) =

{
0, src(x,y) > T(x,y)

255, src(x,y) ≤ T(x,y)
(3)

Where, if the pixel value at (x, y) of the source image is less
than threshold T(xy), then it is deemed as shadow pixel. In the
binary result image dst(x,y), pixels with value of 255 are the de-
tected shadows. The threshold value T(xy) is a weighted mean
of the N×N neighbourhood of (x, y) minus a constant. For our
study area the suitable parameters are 25×25 neighbourhood
with the constant 10.

After we obtained the shadows of both the “Before” and “After”
images, we calculated the similarity of the corresponding shad-
ows by using the Hu Moments, which is invariant under scale,
translation and rotation (Hu, 1962). Image moments are often
used to characterize the shape of an object in an image, while
Hu Moments are a set of seven moment invariants calculated
by using central moments. The seven moments are calculated
as following:

h0 = η20 + η02

h1 = (η20 − η02)2 + 4η211

h2 = (η30 − 3η12)2 + (3η21 − η03)2

h3 = (η30 + η12)2 + (η21 + η03)2

h4 = (η30 − 3η12) (η30 + η12)
[
(η30 + η12)2

−3 (η21 + η03)2
]

+ (3η21 − η03) (η21 + η03)

∗
[
3 (η30 + η12)2 − (η21 + η03)2

]
h5 = (η20 − η02)

[
(η30 + η12)2 − (η21 + η03)2

]
+ 4η11 (η30 + η12) (η21 + η03)

h6 = (3η21 − η03) (η30 + η12)
[
(η30 + η12)2

−3 (η21 + η03)2
]
− (η30 − 3η12) (η21 + η03)

∗
[
(3η30 + η12)2 − (η21 + η03)2

]

(4)

where ηij =
µij

µ
(i+j)/2+1
00

µij =
∑

x

∑
y(x− x̄)i(y − ȳ)jf(x, y)

(i and j = 0, 1, 2 . . . )

And x = m10
m00

, y = m01
m00

Image moments capture information about the shape of a blob
in a binary image because they contain information about the
intensity f(x,y), as well as the position x and y of the pixel.
The pixel point (x, y) is the centroid of the image f(x,y), the
centroid moments µij are translation invariant, and the normal-
ized centroid moments ηij are scale invariant. Based on the
normalized centroid moments, the above seven moments are
invariant to image transformations.

The suspected changed areas with high similarity of the cor-
responding shadows are eliminated. Thus, the remaining red
parts shown in figure 3c are the real modified shadows, which
indicate that ice block falls originated there.

4. RESULTS AND VALIDATION

The final change detection result is visualised in Figure 4, where
one red dot corresponds to one detected change. In total, 440
areas of modified shadow were detected in the study scarp area.
The slope map computed from the 1 m resolution HiRISE DTM
is shown next to the result. It is interesting that only the upper
and lower part of the scarp show erosion activity, whereas the
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Figure 3. Detailed views of change detection process. (a) portion of the “Before” image, (b) portion of the “After” image, (c) change
detection: in yellow are the detections that are automatically eliminated as false detections due to seasonal CO2 ice; in blue are the
detections that are automatically eliminated as false detections caused by shadow deformation; in red are the final detections of the

method.

intermediate parts seem inactive. Our results show that the mass
wasting of the scarp correlates with its slope. The slopes of the
two active zones shown in Figure 4 are greater than 60°, while
the maximum slope of the middle inactive area is 40°.

Concerning evaluating the performance of our developed
method, we chose three parts in equal distances from the left
to the right of the scarp (the yellow boxes A, B and C shown in
Figure 2). Each part contains 4000×4000 pixels, which equals
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Figure 4. On the left is the change detection result (one red dot corresponds to one area of modified shadow). On the right is the
corresponding slope map, only showing slopes above 40°.

to a 1000×1000 m area. The results were evaluated by es-
tablishing a comparison with a manually produced map of the
actual changes. We counted the number of modified shadows
that were correctly detected (True Positives, TP), the number
of modified shadows that were falsely detected (False Posit-
ives, FP) and the number of modified shadows that were not
detected (False Negatives, FN). The evaluation is based on cal-
culating the True Positive Rate (TPR), the False Discovery Rate
(FDR), and the Quality of detection method (Q), with the fol-
lowing equations:

TPR =
TP

TP + FN

FDR =
FP

TP + FP

Q =
TP

TP + FP + FN

(5)

Table 2 shows that the number of false negatives is very small,
which means that our change detection method has the ability
to find the modified shadows. However, there are still some
falsely detected modified shadows. By checking the validation
results, we attribute this to the following points:

1. Severe image deformation at the boundary area causes
many false detections;

2. Differences in imaging or illumination conditions could
cause shadows to shift completely, and have no overlap
on the multi-temporal images. Therefore, the correspond-
ing shadow cannot be detected, and it is retained as the
changed area;

3. The intensity-based shadow detection is sensitive to image

distortion, noise and local variation, which brings uncer-
tainty to the similarity comparison.

Box TP FP FN

A 16 5 1

B 27 6 1

C 39 10 1

Box TPR FDR Q

A 94.1% 23.8% 72.7%

B 96.4% 18.2% 79.4%

C 97.5% 20.4% 78.0%

Table 2. The validation results

5. CONCLUSIONS AND OUTLOOK

In this paper, we present our recent research on detecting mor-
phological changes due to active erosion at the NPLD scarps
through time. The proposed change detection method can per-
form well in detecting the sources of ice block falls at the Mar-
tian north polar scarps. The influence of seasonal CO2 ice and
the difference in imaging and illumination conditions of the
multi-temporal images are considered as well. We have com-
pleted the change detection for a Martian year interval (between
MY29 and MY30). The results show that erosion events oc-
curred at the full length of this scarp, and the activity of ice
block falls correlates with the scarp slope. In the future, we will
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use our method to detect all sources of block falls at this scarp
through time, availability of HiRISE imagery permitting. We
will also probe into the flux and volume estimation for ongoing
mass wasting. Our work and the research of Martynchuk et al.
(2021) on block fall detection will be complementary with the
common goal of monitoring the scarps and comparing the tem-
poral and spatial variation of erosion to better understand the
related driving factors.
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