

SuCoHS

SUSTAINABLE & COST EFFICIENT HIGH-PERFORMANCE COMPOSITE STRUCTURES DEMANDING TEMPERATURE AND FIRE RESISTANCE

THERMOMECHANICAL TESTING OF CFRP STRUCTURES UNDER VARYING THERMAL CONDITIONS

Martin Liebisch German Aerospace Center (DLR) SAMPE Europe, 29 September, Baden

SuCoHS project, Grant Agreement N° 769118

Motivation

Potentials obtained from material behavior !!!

Sensitivity of thermal deformation to stability ???

Current state for structural design

The Thermex test facility

Coupled thermomechanical loading of structures up to component level

- 1m * 0.8m
 > 400 kN axial force
 > 1200°C thermal loading
 Active cooling possible
- Local or global heating to analyze heat transport mechanisms

Ourved or flat structures

Stiffened structures, sandwich, composite structures, Assemblies, ...

Thermex facility: Frontal view and top view

Test structure

Region	Layup	Thickness
Skin	[45/90/-45/0/0/-45/90/45] ₄	1.92mm
Stringer blade	[45/90/-45/0/0/-45/90/45] ₆	2.88mm
Quasiisotropic laminate stacking		

SUCOHS SUSTAINABLE & COST EFFICIENT HIGH-PERFORMANCE COMPOSITE STRUCTURES DEMANDING TEMPERATURE AND FIRE RESISTANCE

500

600

Tailcone panel (Aernnova Engineering)

Applied sensor systems

Global techniques

Thermography (Temperature)

Digital Image correlation (displacement, strain)

Local measurement

Fibre bragg grating (strain)

- Strain gauge (strain)
- Thermocouples (temperature)
- Heat flux sensor (heat flux)
- Displacement sensors

Axial force

Applied using PI32 (usable until 350°C)

Global optical measurement within an earlier test campaign

Local sensor positions prior to application

Test procedure and boundary conditions

EMANDING TEMPERATURE

AND FIRE RESISTANCE

Control TC

Test structure

Aperture

Axial loading

Results: RT behavior

SuCoHS STAINABLE & COST EFFICIENT IGH-PERFORMANCE COMPOSITE STRUCTURES

EMANDING TEMPERATURE

AND EIDE DESISTANCE

160

-1.5 -2.25 -3.00

1800

Results: Test campaign overview

Stiffness development: Testing performed up to 150KN

Settlement within clamping between test 012-015
 → Stiffness reduction: -1.5% prebuck., -0.7% postbuck.

- Damage progression, Increasing delamination from 036 onwards
- Solution Good repeatability of stiffness with relatively low scatter

Prebuckling Stiffness

 Test 011-036
 Structural stiffness

 Prebuckling
 156.3±5.6kN/mm (±3.6%)

 Postbuckling
 125.8±2.2kN/mm (±1.8%).

Structural Stiffness Scatter evaluated from repeated RT tests

Postbuckling Stiffness

Results: Variation of thermal boundary condition

Results: Structural collapse

- Testing at 23°C until 178kN
- Progressing delamination from previous tests
- Noises >170kN → crack progressing, delamination propagates between central skin fields

Destroyed test structure after removing axial displacement

Conclusion and outlook

Due to process-induced delamination, buckling developed smoothly

- Influence of material property temperature dependency could be reproduced as well as the dominance of properties in fiber direction
- Validation of numerical analyses is ongoing
- A second test is to be performed

Dipl.-Ing. Martin Liebisch

German Aerospace Center

Institute of Composite Structures and Adaptive Systems

Lilienthalplatz 7 38108 Braunschweig Germany

Telephone +49 531 295-2908 E-mail martin.liebisch@dlr.de Internet www.DLR.de/fa

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 769178.

www.sucohs-project.eu https://www.linkedin.com/company/sucohs-project/