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Abstract

Porous media with complex microstructures are often used as electrodes

in lithium-ion batteries (LIBs) and in the other (electro-)chemical systems

with heterogeneous reactions. In the battery context, important aspects of

their behavior during charge and discharge can be described by homoge-

nized models based on porous electrode theory (like a widely used DFN

model). These models use a number of intuitive assumptions that allow ne-

glecting a detailed microstructure description; these assumptions have been

partially confirmed using rigorous mathematical homogenization procedu-

res. Microstructure-resolving simulation results have been published recently

that hint to the existence of spatially localized fluctuations of overpotential

and concentration in porous electrodes that can not be seen in DFN. Proper

account of such fluctuations may be important for the phenomena strongly
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affected by the concentrations and potentials locally (like various aging pro-

cesses). Here, we present the results of a new mathematical framework utili-

zing perturbation theory with small parameters that allow accurate standard

homogenization of LIBs, but also introduces extensions beyond the standard

theory. It will be shown theoretically how the fluctuations in question oc-

cur, how to estimate them based on cell characteristics, and to demonstrate

the existence of well-defined trends and laws. Numerical simulation results

are presented that agree with the main theoretical findings. Current, non-

spherical particle shape, particle contacts and OCV slope appear to be the

main factors affecting the scale of the local fluctuations. Based on the theory,

no physically meaningful homogenization limit exists that sets these fluctua-

tions to zero, which explains why they can be clearly seen in microstructure

resolving simulations but not in DFN. The findings presented in this paper

are decisive for the development of models extending DFN, preserving its

computational robustness and yet fully utilizing all the necessary informati-

on about microstructure to capture structure induced local fluctuations.
Keywords: lithium-ion battery, microstructure, homogenization, battery

degradation, transport equation analysis

1. Introduction

The growing importance of electrochemical energy storage devices spurs

scientific research aimed at accurate prediction of their properties and their

optimization. They can be effectively understood as multiscale hierarchical

systems [1, 2]. To predict the functioning of the most widespread current

technology in this domain, lithium-ion batteries (LIBs), one has to take into
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account a variety of phenomena starting from the ones on the atomistic scale

up to the level of electronic control management systems, all of the levels

being important for the understanding of battery capacity, power, life cycle

and safety limitations. To achieve computational efficiency and robustness of

the description, one has to make use of scale separation to determine a few

properly averaged parameters on a lower scale which can be transferred to

the next larger scale, discarding a huge amount of fine-scale information. E.g.

the exact details of the ion free energy landscape in the electrode resolved on

the atomic scale are not needed to describe the averaged transport properties

of a porous electrode model.

To effectively utilize active material and improve the power density of

the batteries, porous electrodes with very complex, stochastic microstructu-

res are used thereby introducing spatial length scales characterizing features

of the electrode microstructure as e.g. thickness, particle scale or scale of

sub-structures of particles. As a consequence, in the hierarchical multiscale

modeling a natural scale separation emerges: while the battery dynamics on

the scale of few nanometers and above can be satisfactorily described by a

set of equations for the dynamics of continuum fields (which we will define

in our context as “microscopic” models), an electrode on the scale of several

particles resembles a homogeneous composite material, in which transport

and laws for reactions can be upscaled, neglecting non-essential microscopic

details (this will be called below as “macroscopic” scale). All the necessary

macroscopic parameters in this context are effective parameters, which do

not only depend on material properties but also on geometrical properties

of the microstructure. Following the logic of multiscale modeling, they can
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be extracted from the corresponding microscopic model. A computational

advantage of not resolving small geometrical features is self-evident. In elec-

trochemical engineering, the approaches based on such upscaling ideas can

be traced back to the porous electrode theory by Newman and coworkers [3].

They gave rise to a class of models, the basic and widely accepted one being

those of Doyle, Fuller and Newman (DFN) [4, 5, 6, 7]. Over the years, the

upscaling concept at the model’s foundation was supplemented by various

ideas, aiming at the incorporation of multiple phenomena in the electrode,

like thermal, mechanical deformation, degradation reactions, phase transiti-

ons, and so on [8, 9, 10, 11, 12, 13, 14, 15].

To make the multiscale modeling in LIBs consistent, it is desirable to

formulate the upscaling rules between the levels as rigorously as possible, so

that one can clearly understand how the parameters are defined and transfer-

red between the levels. Despite the simplicity of the ideas at the root of the

porous electrode theory, some of the assumptions are not straightforwardly

testable and justifiable, and it can make the transition to this model in the

context of the hierarchical approach a methodological bottleneck. A body of

research started to emerge that addresses the details of microscopic soluti-

ons that can not be accurately reproduced with the help of the homogenized

porous electrode theory-based models.

Latz and Zausch studied the problem of relation between DFN and the

corresponding microscopic transport theory with the help of numerical mo-

deling [2]. In particular, they looked into how accurately the former can

reproduce the thermal properties coming from the local distribution of heat

spots in the latter. As a byproduct of this analysis, they discovered that the
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distribution of overpotential in the electrode obtained from the microsco-

pic simulation is quantitatively and qualitatively different from the one from

DFN. Namely, the overpotential exhibits seemingly chaotic strong spatial va-

riation on the microstructure particle scale; at the same time, the running

average along the through-plane direction of the electrodes agrees well with

the DFN results.

We will refer to this type of cell physical quantity variation on the microstructure-

resolving scale as to local fluctuations. In this paper, we aim at developing a

theory of such fluctuations. The results of Latz and Zausch hint that they are

closely linked to the problem of the relation between the DFN-type cell mo-

dels and their microstructure-resolving continuous media counterparts, and

it can be seen from the following arguments. The formal volume averaging

procedure is the main mathematical instrument used to derive the former

from the latter. Researchers used homogenization theory, a mathematical

framework to describe the upscaling of differential equation problems with

scale separation, to prove the correctness of the volume averaging use in the

electrochemical modeling, i.e. that deviations from the averaged fields really

disappear from the resulting DFN limit [16, 17, 18, 19, 20]. But upon closer

inspection, it can be shown that homogenization can not be applied to the

lithium mass transport in the active material on the time scales typical for

battery dynamics, in contrast to the other processes. In DFN, one uses the

effective spherical particle representation to capture these phenomena as an

alternative to the exact solution of the mass transport equation in complex

geometry. Due to the resulting internal geometric symmetry, an interface va-

riation of any physical quantity on the scale of one particle is always zero.
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The pronounced overpotential fluctuations from [2] are exactly this type of

fluctuations, and the link between them and the accurate transition between

the models is thus established. The fluctuations should be as much noticeable

as the deviation of the DFN solution from the microscopic model solution.

At the same time, the representation of the microstructure as a collection

of effective spherical particles of finite size is important for the model’s vali-

dity. It allows DFN to reproduce important cell properties, such as capacity

decrease at high C-rates and its connection to the particle size. It would not

be so if the ion diffusion in the solid phase was accurately represented by

a purely homogenized volume-averaged process since this would imply that

particle size as a parameter had to be absent from the homogenized mo-

del. To the best of our knowledge, no rigorous mathematical derivation or

explanation of the spherical particle approximation has been given.

In the following, we will present a theoretical approach, in which the

transition from a microscopic to a macroscopic cell description is closely

linked to the local fluctuations. We start with the equations constituting a

microstructure-resolving model and then outline how the introduction of a

number of approximations will lead to a somewhat simpler model. These

approximations constitute a stricter set of conditions than the ones usually

employed in the homogenization analysis of porous cell electrodes but are

still correct for real microstructures. Through this, we will end up with a

media representation as a sum of separate particles, whose dynamics can be

evaluated mathematically independently of one another; the representation is

very close to the DFN picture but will generalize their model to independent

particles of non-spherical shape. We will, in addition, show that the non-
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spherical shape is a major cause of the observed overpotential fluctuations.

A further linearization approximation of the equations allows us to extract

more analytical results about the particle-scale fluctuations and to quantify

how far the true microstructure-resolving solution on this level deviates from

the idealized spherical geometry.

Importantly, while outlining these steps, we will indicate a number of use-

ful results about the local fluctuation behaviour. To this end, we will closer

analyse the equations for the perturbation terms in our ansatz. A part of

these equations is identical to the ones that appear in the homogenization

procedure, but are usually discarded in the battery literature, aiming at the

limit of fully homogenized solution. In the context of the fluctuation theory,

the perturbation solutions are important on their own right since they con-

stitute a part of a difference between the microscopic description and DFN

and may thus include the local fluctuations. In total, it is not rare that elec-

trodes consist only of about 10-20 particles per electrode’s thickness, and the

scale separation may not always accurately hold in electrochemical systems,

thus making the understanding of the perturbation solutions valuable for the

theory.

Our approach allows to identify the parameters of the microstructure

and of the cell dynamics that are most critical for determining the local

fluctuation dynamics and scale. A number of heuristic rules and approximate

formulas can be proposed that allow estimating the scale and the behaviour

of the local fluctuations without utilizing computer simulations.

As an important insight, our approach demonstrates that there are local

fluctuations which are not small compared to DFN and therefore are part
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of the zeroth-order solution in our perturbation theory. Thus we prove, rigo-

rously, that DFN is not an exact limit of microscopic continuous transport

models of LIBs. Overall, the approach opens a possibility for developing a

class of models that modify DFN while preserving its basic efficiency, yet

incorporating the local fluctuations.

The paper is organised as follows. The material is split into two main

sections, one for the theory and one for the numerical simulation results.

The theoretical section 2 first reviews the microstructure-resolving conti-

nuous model that we use as a reference, to which one compares our results,

both theoretically and numerically. Here we also outline the homogenization-

based DFN counterpart of this model. The next subsections consist of the

presentation of our core new results about the transition between the mi-

croscopic description and its homogenized approximation together with the

new theoretical insights about the local fluctuations derived from them. Sec-

tion 3 contains numerical tests aiming to illustrate and support the results

from section 2. Some additional elements of the theory are also presented

here, that are easier to understand directly in the context of the simulation

results.

2. Theory

The microscopic model of lithium-ion battery dynamics that we will use

in this paper is derived based on the requirements of thermodynamic consis-

tency [21, 2]. This model treats cell as a microstructure whose 3D details are

fully resolved. It is the reference system in the context of the current research.

Solutions obtained with other models are compared to it. The corresponding
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DFN model based on porous electrode theory will also be reviewed.

2.1. Transport model and porous electrode theory

The cell consists of four phases: electrolyte, cathode and anode active

material, conductive material and current collector. Electrical double layer is

not resolved. Lithium inside the electrolyte phase is given by the concentra-

tion ce and the electrochemical potential φe and inside the an active material

phase by the concentration cs and the electrical potential Φs. The conductive

material and current collector contain no lithium ions and their state is dis-

cribed only by the potential Φs. The system evolution obeys the equations

of mass balance and charge neutrality:

∂ce
∂t

= −~∇ ~Ne,
∂cs
∂t

= −~∇ ~Ns,

0 = −~∇~je, 0 = −~∇~js, (1)

where each equation is solved in the phase in which the corresponding varia-

bles are defined. ~Ne,s is the lithium ion flux and ~je,s is the electric current.

The model stipulates their dependence on the system state:

~je = −κe~∇φe − κe
1− t+
F

∂µe
∂ce

~∇ce,

~js = −σs~∇Φs,

~Ne = −De
~∇ce + t+

F
~je,

~Ns = −Ds
~∇cs. (2)

κe is the electrical conductivity of the electrolyte, σs is the electrical conduc-

tivity of either the conductive material or the active material, Di denotes the

9



lithium ion diffusion coefficient in the phase i, t+ is the transference number

and µe is the lithium chemical potential.

To solve the model, one has to add boundary conditions between the

phases. For the interfaces between electrolyte and active material phase the

normal flux and the normal current are continuous and depend on the rate

of intercalation reaction:

~js ·~nse = ~je ·~nse = i0,

~Ns ·~nse = ~Ne ·~nse = i0
F
. (3)

For the interfaces between electrolyte and conductive material or current

collector we set the normal flux and current to zero. The two conditions on

the boundary between the active material and conductive material or current

collector are: continous electric potential and zero lithium ion normal flux.

For the current i0 one can use different expressions based on the type of the

reactions and the interfaces one considers. For the lithium (de-)intercalation

from the electrolyte into the anode particle we will employ the symmetric

Butler-Volmer formula [2, 22]:

i0 = 2i00

√
cecs(cmaxs − cs) sinh

(
F

2RT η
)
, (4)

although this particular choice is not critical for the resultst of the paper. η

is the reaction overpotential:

η = Φs + 1
F
µs − φe = Φs − U0 − φe, (5)

where we introduced the open circuit potential (OCV) U0. The expression

after the second equal sign is correct if one measures µe relative to metallic
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lithium. Another type of interface reaction that we will utilize is the lithium

intercalation from the electrolyte into the cathode. The reaction current is

calculated according to the formula

i0 = 2k sinh
(

F

2RT η
)
, (6)

This Butler-Volmer modification does not depend on the ion concentration

in the cathode and is suitable for half-cell simulations that we ran for this

paper. In this setting the ion concentration in the cathode is not tracked to

remove a redundant complexity, hence the formula (6).

The model above allows one to study the electrochemical processes on

the scale starting from few nanometers, as long as continuous medium ass-

umption is applicable. Its use for numerical simulation of macroscopic cells

becomes however computationally very expensive if one resolves fine details

of microstructure. As an alternative, the porous electrode theory was develo-

ped by Newman and coworkers, which resulted in the Doyle-Fuller-Newman

(DFN) model [16, 17, 18, 19]. This ansatz treats porous electrode as macros-

copic homogeneous medium. The exact mathematical formulation depends

on the underlying microscopic systems and can be found in the referred li-

terature. We will describe and later refer to the variant compatible with the

microscopic model from the equations (1, 2, 3). The state variables ce, φe
and Φs are averaged over macroscopic space regions of the electrode (re-

presentative control volumes) and the transport equations for these averaged

variables are the modified versions of the equations of the microscopic model.

For example, the mass balance equation in the electrolyte is

∂εce
∂t

= −~∇
(
−εDeff

e
~∇ce + t+

F
~je

)
+ 1
F
ai0. (7)
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ε is the microstructure porosity. a and i0 are the specific surface area of

the active material in the electrode and the intercalation reaction current

from the active material into the electrolyte respectively. The source term

represents the volume averaging of the ions moving into the electrolyte. The

equations imply that the formulas for the fluxes and the currents are identical

to (2), but with the effective transport parameters (Deff
e ,...) on the micros-

copic scale that are usually not identical to their microscopic counterparts.

The use of the averaging procedure for the equations can be justified with

different level of mathematical rigour [16, 17, 18, 19, 20].

The only equation that is not subjected to averaging in this model is

the mass balance equation for the lithium ion concentration in the active

material, and this fact, as we stressed in the introduction, is important for

the understanding of the paper results. Diffusion occurs on the length scale

of active material particles but the time scale of diffusion in these particles is

comparable with transport processes on cell scale. Therefore the diffusion in

the particle can not be represented by a process in the homogenized media on

macro scale. To incorporate the effects of the diffusion in the active material

into the model, the complex spatial distribution of diffusion processes in

the ensemble of active particles in the control volume is substituted by one

effective spherical particle whose size depends on the porosity and the specific

surface area. The spherical symmetry of this representative particle allows

reducing the equation to one spatial dimension. The resulting reaction current

on the particle surface is substituted into the averaged equations of the type of

(7) to make the system closed. We will write down both the microscopic mass

balance equation in the active material and its counterpart for the effective
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particle in the porous electrode theory with the corresponding boundary

conditions for use as a reference below. The former is

∂cs
∂t

= ~∇(Ds
~∇cs),

Ds
∂cs
∂n

= − i0
F

on the interface (8)

and the one-dimensional version for the effective particle is

∂cs
∂t

= Ds

r2
∂

∂r

(
r2∂cs
∂r

)
,

Ds
∂cs
∂r

= − i0
F

at r = R,

Ds
∂cs
∂r

= 0 at r = 0. (9)

2.2. Origins of the local fluctuations in the electrode

Latz and Zausch [2] made an extensive numerical comparison of a micros-

copic cell model with the corresponding porous electrode theory model. The

model they used is a modified version of the one based on equations (1-3)

with additional terms that represent the coupling with temperature gradi-

ents and are based on non-equilibrium thermodynamics. The main focus of

the comparison was to investigate the differences between thermal behavior

predictions of both models, in particular the role of the localized thermal hot

spots that are averaged out in the porous electrode theory. It was demonstra-

ted that on the microstructure scale the temperature gradients contribution

is negligible, so the results of [2] hold for the model presented above as well.

One crucial observation of this numerical study was, that the overpotential

exhibits considerable fluctuations around its running average, yet this run-

ning average agrees well with the curve obtained from the porous electrode
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theory simulation. The latter can not, by definition, capture the localized

spatial fluctuations because the theory deals only with the spatially avera-

ged quantities. Yet, the observed local fluctuations of the overpotential can

have serious practical as well as theoretical implications for the development

of macroscopic cell models. A most relevant implication of fluctuations of the

overpotential might be the occurrence of localized side reaction, as e.g. lithi-

um plating, which would not be captured by the macroscopic model. A subtle

theoretical consequence follows from the observation that contrary to linear

processes, spatial averaging of nonlinear processes involving local potentials

and concentrations is not the same as nonlinear processes under averaged

potentials and concentrations. As an example for the latter, one can think of

any interfacial reaction that binds lithium ions and leads to battery degra-

dation through SEI growth. If the local environment varies between different

locations on an active material particle the amount of consumed lithium can

vary as well leading to inhomogeneous SEI. Other examples are localized

electrochemical reactions which are initiated only below or above specific va-

lues of the electrochemical potential which are not reached homogeneously

across the interface. A straightforward attempt to represent these processes

in the porous electrode theory by looking at the reaction condition on the

surface of the effective spherical particle may lead to biased predictions. Any

macroscopic expression theoretically derived based on the microscopic theory

has to take into account the distribution of the local fluctuations in the mi-

crostructure of the electrodes. The objective of this subsection is to provide

a theoretical framework for such description.

The reason why the local spatial distribution of the system variables, such
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as overpotential, differs from the smooth prediction of the porous electrode

theory lies in the complexity of the microstructure. Figure 1 schematically

contrasts the situation in a real microstructure with the representation of

this microstructure in the porous electrode theory. We can run a thought

experiment in which we transform the latter into the former in a few steps,

introducing more realistic structural details to the idealized DFN represen-

tation step by step, looking into the changes of the cell dynamics solution

that come with it. This transformation is represented in figure 1 when one

moves from subfigure C to subfigure A. We have to pay special attention

to the quantities that clearly distinguish the porous electrode theory (DFN)

solution from the one in the microscopic model. Variation of the variables on

the particle-electrolyte interface is one such class of quantities.

In the porous electrode theory (represented by subfigure C of figure 1),

the effective particle is put into homogeneous electrolyte media and electric

field (in respective phases), disconnected from the other particles. In the first

step of the thought experiment (moving to subfigure B), we introduce one

change into this idealized system by transforming its shape from spherical

to an arbitrary one. The dynamics of the electrolyte and the electric field is

kept the same and holds them homogeneous. The ion density in the particle

cs is not constrained and allowed to change in accordance with the diffusion

equation. After some time, a region in figure 1, subfigure B with higher inter-

face curvature will typically have higher ion concentration on average than a

more flat region. It can be understood if one starts to charge the particle from

a state with homogeneous ion density. In such a state the reaction current

is the same over the whole electrolyte-particle interface. The average Li ion
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density growth rate is then proportional to the surface-to-volume ratio which

is locally higher in regions with higher curvature, and this difference will pro-

duce a concentration differential. After a period of time, this concentration

differential will stop to grow and stabilize due to the diffusion exchange bet-

ween regions with different concentrations and the self-consistent adaption

of the reaction current, thus reaching a steady state. The emergence of stable

differences in interface concentrations on the scale of one particle is a clear

step away from the assumptions of the porous electrode theory and DFN

model where the active material interface is always strictly homogeneous. In-

homogeneous concentration distributions across the interface of the particle

will lead to inhomogeneous overpotential distributions via the change in local

OCV (see equation (5)) as well.

If one neglects any further differences between the real microstructure

environment and the homogenized porous electrode picture as e.g. ion con-

centration gradients in the electrolyte across the particle size, one obtains

basically a modification of the original porous electrode theory, but with the

effective particle having an arbitrary shape. In case the control volume con-

tains particles of different shapes, one has to solve the problem for all the

particle types or to choose a representative sample of the particle sizes, simi-

lar to the way DFN model is generalized by using particle size distributions

[23]. The individual diffusion equations for the particles may be solved using,

for example, Butler-Volmer expression (4) as boundary conditions with ce,

φe and Φs obtained from the homogenized transport equations of the type of

(7). The total current through the interface of all the particles will, in turn,

enter these transport equations as a term ∑
niIi, with ni being the density of
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the i’s particle class and Ii - the total current through the particle’s interface.

To emphasise the close analogy of this model to the DFN model by Newman

and the colleagues, we call this ansatz eDFN (extended DFN).

eDFN simplifies the theoretical analysis considerably. In this framework,

the difference between the microstructure-resolving model and DFN model

is reduced to the difference between transport in a spherical effective particle

and in a particles of another geometrical shape. The problem’s geometrical

domain represents only one particle in the microstructure.

To close the gap between the real microstructure and the porous electro-

de theory, we return to the thought experiment. We have to add real spatial

distribution of the fields ce(~r), φe(~r) and Φs(~r) and possible ion exchange bet-

ween different particles. These features are shown in figure 1, subsection A.

From the perspective of the cs dynamics, all these changes can be mathema-

tically understood as modifications in the boundary conditions of equation

(8). For example, if one assumes that i0 behaves according to formulas (4)

and (5) then variations in ce(~r), φe(~r) and Φs(~r) induce variations in i0. Simi-

larly, one can think about introducing an interparticle contact as going from

i0 = 0 in the contact’s location there to a finite i0. Naturally, any variation of

i0 will produce a variation of cs. When this variation is added to the eDFN

solution we come to the exact solution of the microscopic model. To estimate

the scale of the difference that comes from it and to support the intuitive

cell dynamic picture developed here with mathematics, one needs results of

a more rigorous analysis supported with numerical experiments that will be

given in the following sections.
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2.3. Local fluctuations in the electrode: mathematical theory overview

So far we have outlined how the transition from the homogenized DFN

model to the microstructure resolved model can be captured as a change of

the shape of the simulation domain and of the boundary conditions for a

diffusion equation, and we have seen how it can lead to localized fluctuations

of system variables that are not observed in the porous electrode theory. To

obtain a more quantitative description, we will now outline a systematic ma-

thematical approach to derive the laws governing the local fluctuations in the

electrodes, using homogenization theory, perturbation ansatz and asymptotic

analysis of partial differential equations (PDE). The details of the derivation

will be published separately since we concentrate here on the general struc-

ture of the theory and the most important new results. We also will not cover

the topic of how exactly and under which conditions the microscopic model

fully converges to DFN model, because this question, however important on

its own right, is not directly relevant to our goal of understanding the local

fluctuations in porous electrodes on a particle scale.

To this end, we will proceed as follows. First, we will identify the small

dimensionless parameters that characterize an electrode, then we will de-

monstrate how it will lead to a simplified equation that correspond to the

zeroth-order approximation relative to these parameters. These equations

correspond to eDFN model. Then we will introduce further simplifications

through making eDFN linearized. For this latter model, we will show which

parameters influence the scale of local fluctuations and how, and why the

assumptions that we make while deriving the model are justifiable. This is

a move in the direction opposite to the one in section 2.2, where we turned
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DFN model into the microscopic model by adding features incrementally. In

figure 1, it means moving in the direction from subfigure A to subfigure C.

We begin with the small parameter identification. We propose that the

ratio of typical microstructure length scale to typical macroscopic length scale

is one such parameter. The typical microstructure length is of the order of

active material particles size L. The macroscopic length scale L0 is the one on

which variation of either one of quantities φe, Φs or ce is of the order of their

average values. This length depends inversely on their gradients and does not

necessary correspond to the electrode thickness, the later rather serves as a

physics-motivated lower bound of the former, because otherwise regions of

lithium depletion in the electrolyte occur. We assume that no realistic cell

works under such conditions. As a result, we can assume that the parameter

δ1 = L

L0
(10)

is indeed small when the electrode’s thickness contains multiple active ma-

terial particles.

Another small parameter is the ratio of the interparticle interface surface

area to the total surface area of the particles in the microstructure:

δ2 = Sinterparticle
S

. (11)

The assumption that the parameter is small means that the microstructure

domain corresponding to the active material can be reasonably split into

weakly connected subdomains-particles.

To proceed with the argument, we propose that a perturbation ansatz is

applicable and that a solution of the microscopic model (1-3) can be resolved
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into power series of δ1 and δ2:

φe = φ(0)
e + φ(1)

e + ...,

ce = c(0)
e + c(1)

e + ...,

Φs = Φ(0)
s + Φ(1)

s + ...,

cs = c(0)
s + c(1)

s + ..., (12)

where the quantities with index 0 correspond to the zeroth-order terms and

the quantities with index 1 are linear with respect to δ1 and δ2.

The expansion of φe, Φs and ce into power series of δ1 is covered in the

homogenization theory, the field of mathematics that describes how one can

scale up differential equations in the systems with scale separation either in

space or time or both. The spatial scale separation holds when δ1 is small and

the problem time scale is sufficiently large. The details of this framework’s

application to Li-Ion cells are described in [18, 19, 20]. Here, the authors

mathematically demonstrated that the equations of the DFN model can be

rigorously derived in the limit δ1 → 0. If one does not consider the δ2 part

of the expansion for a while, it means that φ(0)
e , Φ(0)

s and c(0)
e from the series

(12) are the solutions of the corresponding homogenized DFN equations.

Li concentration in active material cs is a special case. For homogeniza-

tion to be applicable, the time scales of the processes in the microstructure

should be smaller than the characteristic problem time. Their ratio should,

strictly speaking, be used as an additional small parameter in the expansion

(12), we will not do it to spare additional notations. The time scale separa-

tion typically does not hold for the lithium transport in the active material

phase. As a consequence, the homogenized mass transport equation for cs
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will actually not be accurate when δ1 → 0. This fact was demonstrated using

numerical simulation in [20]. As a result, the accurate PDE problem for c(0)
s

is still (8). As we saw in sections 2.1 and 2.2, DFN bypass this caveat of

not-homogenized Li transport by substituting the microstructure complexity

with that of the effective spherical particle problem (9), making the model

more intuitive and computationally robust, yet less accurate, and eliminating

any surface fluctuations on the way.

From this point we will outline our novel results that go beyond the stan-

dard homogenization procedure. We have developed a proper perturbation

ansatz with both parameters δ1 and δ2 kept small but finite.

The functional form of the equations for φ(0)
e , Φ(0)

s and c(0)
e is still kept

to be the homogenized transport equations from DFN model. c(0)
s remains

a solution of (8) as well, with minor change in the boundary conditions

that do not affect the further results. The PDE problems for φ(1)
e , Φ(1)

s and

c(1)
e in our theory are identical to the auxiliary cell problems used in the

homogenization theory (see [19, 18, 20] for the details). In the case of c(1)
s , an

important observation simplifies the problem. Normally, in the schemes using

perturbation technique, zeroth-order problems are solved separately and then

their solutions are used as parameters for first-order perturbation problems

and so on. The later can not be generally split further into sub-problems.It

would mean that the PDEs for φ(1)
e , Φ(1)

s , c(1)
e and c(1)

s are coupled with each

other. In our case, homogenization theory shows that the equations for φ(1)
e ,

Φ(1)
s and c(1)

e are decoupled and do not include c(1)
s . Hence, the problem for

c(1)
s can be consistently solved with φ(1)

e , Φ(1)
s and c(1)

e just as parameters, not
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variables. The resulting PDE for c(1)
s is

∂c(1)
s

∂t
= ~∇(Ds

~∇c(1)
s ),

Ds
∂c(1)

s

∂n
= 1
F

−∂i0
(
φ(0)
e ,Φ(0)

s , c(0)
e , c(0)

s

)
∂cs

c(1)
s

−
∂i0

(
φ(0)
e ,Φ(0)

s , c(0)
e , c(0)

s

)
∂φe

φ(1)
e −

−
∂i0

(
φ(0)
e ,Φ(0)

s , c(0)
e , c(0)

s

)
∂Φs

Φ(1)
s −

−
∂i0

(
φ(0)
e ,Φ(0)

s , c(0)
e , c(0)

s

)
∂ce

c(1)
e −

−iip) on the interface. (13)

The term iip represents the possible inter-particle current, it does not de-

pend on c(1)
s . The decoupling of φ(1)

e , Φ(1)
s , c(1)

e from c(1)
s also implies that the

terms
∂i0

(
φ

(0)
e ,Φ(0)

s ,c
(0)
e ,c

(0)
s

)
∂φe

φ(1)
e ,

∂i0

(
φ

(0)
e ,Φ(0)

s ,c
(0)
e ,c

(0)
s

)
∂Φs

Φ(1)
s ,

∂i0

(
φ

(0)
e ,Φ(0)

s ,c
(0)
e ,c

(0)
s

)
∂ce

c(1)
e do

not depend on c(1)
s , neither explicitly nor implicitly. The problem (13) is de-

fined on the domains corresponding to all the particles in the system indivi-

dually.

In the rest of the paper, we will mostly investigate the properties of c(0)
s .

Both c(0)
s and c(1)

s can contribute to the surface fluctuations, which is the

main topic of this paper, and the respective contributions will be compered

at the section’s end.

Setting δ1 and δ2 to zero, the problem (8) for every active material par-

ticle combined with the homogenized equations for potential and electrolyte

concentration constitute eDFN model as defined in the previous section. The

condition δ1 = 0 is the limit of absolute length scale separation and is equi-
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valent to the fields Φs, ce and cs being homogeneous on the particle scale.

δ2 = 0 is equivalent to preventing any exchange of lithium between particles.

To extract further useful information from eDFN model, we will linearize

the concentration dependence of the exchange reaction current: i0 = α+βc(0)
s .

The accuracy of such an approximation will be briefly discussed at the end

of the section. The solution of the resulting linear non-homogeneous PDE

problem in an active material particle

∂c(0)
s

∂t
= ~∇(Ds

~∇c(0)
s ),

Ds
∂c(0)

s

∂n
= − 1

F

(
α + βc(0)

s

)
on the interface, (14)

can then be used to solve for the fluctuations c(1)
s (equation (13)).

Equation (14) has a number of useful mathematical properties. If one

assumes that β is independent of time and non-negative, and α depends on

time such that constant total current is ensured (i.e. galavanostatic char-

ge/discharge for every individual particle), one can show that the problem

has an asymptotic solution of the following form for t→ +∞:

c(0)
s ' C0 −

i0tS

FV
+ ∆cs (15)

where i0 is the average current, which is constant, and S and V denote

surface area and volume of the particle respectively. The terms C0−i0tS/FV

represent the overall charge level of the particle changing linearly with time

(in this paper, we define the ion current directed from the particle to be

positive, consistent with our definition of Butler-Volmer expression and the

overpotential). They do not depend on coordinates. The term ∆cs, to the

contrary, depends on coordinates, but is independent of time. The possibility
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of such split is the defining property of the asymptotic solution. One may

notice that the separation of the solution into the coordinate-dependent and

time-dependent parts is not unique: a constant can be added to one part and

be subtracted from the other. We remove this degree of freedom by setting

the volume average of ∆cs to be zero:∫
∆csdV = 0. (16)

In plain English, the asymptotic solution is a sum of the overall level of

particle lithiation plus a stationary geometric profile of the concentration

gradients.

The results that we present further are derived as the properties of ∆cs.

By definition, this coordinate-dependent paprt contains all the information

about the local spatial fluctuations, which are the main object of interest

in this paper. First, some notes should be made regarding its relation to

the general solution of (14). When a cell undergoes charge-discharge under

various protocols, the total current running through every particle is not

constant in general even when the current through the whole cell is constant.

There is also no reason to expect β to be constant. However, the general

solution gravitates toward the stationary solution, and we make a conjecture

that, for our purposes, the former can be approximated by the latter with

β = β(t) and I = I(t). When β and i0 change slow enough, the exact solution

changes adiabatically with the stationary solution. The asymptotic approach

toward the stationary solution has the time scale equal to the diffusion time

of the problem, the analysis of the numerical simulations whose results will

be presented in below in the text suggest that quite often for the distribution

of cs along the surface the equilibration happens even faster. A reliable rule of
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thumb is that the higher current/C-rate is, the further away are the profiles

of c(0)
s and of ∆cs.

Having said this, we narrow down our analysis to the properties of the

stationary solution. The dimension analysis allow to write the dependence of

∆cs on coordinates as follows:

∆cs(~x) = i0L

FDs

f

(
~x/L,

βL

FDs

)
. (17)

Here, L is a typical linear size of the particle. If β and Ds are not constant

one has to use the corresponding averages. Properly defined, function f(...)

is dimensionless and depends only on the shape of the particle. Based on

(17), it can be observed that any homogeneous functional of degree 1 over

∆cs(~x) can also be written in specific form. One such functional is a standard

deviation of ∆cs(~x) on the particle surface:

δc(0)
s |S ≡

(∫ dS

S

(
∆cs −∆cs|S

)2
)1/2

= |i0|L
FDs

f1

(
βL

FDs

)
,

∆cs|S ≡
∫ dS

S
∆cs, (18)

where f1(...) is another dimensionless shape-dependent function. The expres-

sion for δc(0)
s |S is extremely relevant for understanding how the surface fluc-

tuations of cs behave. In a spherical fully isotropic particle δc(0)
s |S ≡ 0 hence

f1(...) ≡ 0.

The form (17) of the solution’s presentation naturally leads to a conclu-

sion that the expressions |i0|L/FDs and βL/FDs are two main parameters

that characterize the dynamics of the particle’s lithium concentration gradi-

ents and contrast them with those of the other particles. Let us have a closer

look at these parameters. |i0|L/FDs has the dimension of concentration and
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can be equivalently rewritten as cm|i0|/icr, where cm is the maximal possi-

ble concentration of lithium in the active material under consideration and

icr = FDscm/L is an estimate of the critical current density above which the

transport limitation blocks charge or discharge. So, under save cell operation

regime, maximum |i0|L/FDs ∼ cm.

For the second parameter, which is dimensionless, we introduce a notation

ρ = βL/FDs. (19)

Its meaning will become clear when we first look at the asymptotic cases of

(17) and (18) at ρ→ 0 and ρ→ +∞. We have shown that when ρ→ 0

δc(0)
s |S ' γ1

|i0|L
FDs

, (20)

and when ρ→ +∞

δc(0)
s |S ' γ2

|i0|L
FDsρ

= γ2
|i0|
β
, (21)

where γ1 and γ2 are the dimensionless numbers characteristic of the partic-

le’s shape. The comparison of the formulas (20) and (21) demonstrates that

variation of concentration on the surface tends to decrease at least when ρ

becomes sufficiently big. Numerical tests (see the next section) demonstrate

that for spheroids this trend actually holds for almost all the values of ρ.

Notoriously, both asymptotic limits depend either on β or on Ds but not on

their combination.

Is it simply a coincidence? Let us return to the thought experiment from

the previous section, when we considered charging an active material particle

of a non-spherical shape starting from a homogeneous lithium distribution,

in homogeneous electrolyte and without gradients in electric potentials in the
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vicinity. Two forces were mentioned that smooth the buildup of the gradients

between the different regions of the particle: dependence of the intercalation

current on lithium concentration and diffusion between regions with diffe-

rent concentration. In the context of PDE problem (14) these two factors

are represented exactly by the respective parameters β and Ds. We hypo-

thesised that a stationary gradient profile would appear in which these two

factors are in a dynamic equilibrium with the factor of local surface curva-

ture difference that makes the local concentration values move away from

one another. Closer look at the formulas (20) and (21) reveals exactly such

phenomena: in both the concentration variation inversely depends on β or

Ds, thus justifying the observation that those factors indeed suppress the

variation of cs on the surface. At this point, the two presented pictures i.e.

the mathematical route from the microscopic model up to DFN model and

the qualitative description of generalizing DFN to the exact microstructure

and electrolyte description meet each other.

In this context, parameter ρ = βL/FDs can be understood as a ratio

of the relative contributions of the factors β or Ds to the local fluctuati-

ons. Small ρ can be thought as corresponding to a fast diffusion regime:

the local inhomogeneities are smoothed out by intensive diffusion before any

dependence of the intercalation current on lithium concentration becomes

important. Mathematically, β disappears from (20). Inversely, big ρ is a slow

diffusion case: the local feedback of the growing cs on the reaction current i0
suppresses the concentration gradient buildup before the diffusion flux starts

to play any role. To reflect it, no dependence on Ds in (21) appears.

Those are the main mathematical features of the theory that one needs
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to understand the numerical results of the following section. Here, we still

have to add a few useful comments. First, the question of accuracy when

one substitutes the problem (8) with its linear counterpart (14): it can be

demonstrated that the implicit perturbation series, that we get by dropping

the nonlinear part of i0(cs), do not generally lead to secular perturbation

terms, i.e. the terms that, being small at one moment, may grow unrestrained

later.

Second, we return again to the first-order perturbation solution c(1)
s . The

mathematical forms of the equations (13) and (14) are identical (which fol-

lows from the fact that, as it was emphasized, in the complete close model,

c(1)
s influences only the terms in which it is explicitly included). Using the

same theory, we come to similar laws governing the influence of, for example,

homogenized gradient of electrocheimical potential on the local fluctuations

of cs on the particle interface:

δc(1)
s |S '

L ∂i0
∂φe
δφe|S

FDs

f2 (ρ) ∼ L|i0|δ1

FDs

f2 (ρ) . (22)

or of the interparticle Li exchange current ip:

δc(1)
s |S '

Lδ2|ip|
FDs

f3 (ρ) . (23)

δφe|S is a standard deviation of φe on the particle’s surface, defined in the

same manner as δc(0)
s |S in formula (18). Similarity to (18) is easy to observe.

We introduced new dimensionless functions fi(...) that are not identical to

f1(...) from (18). They do not generally become zero for spherical isotropic

particles, for example. Yet, the asymptotic behaviour with respect to ρ follows

the same trends like (20) and (21).
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We explicitly included the parameters δ1 and δ2 into (22) and (23), to

compare these formulas with (18). All the fluctuations of cs due to the first-

order perturbation terms become zero in the limit δ1, δ2 → 0, contrary to

equation (18), where the formula do not contain δ1 or δ2. In plain English,

this important observation states that, even in the case of an electrolyte

with an extremely fast electric and mass transport, local fluctuations of cs
on active material-electrolyte interface do not generally become zero. Surface

fluctuations of φe, Φs and ce appear only in the first-order perturbation terms

and become zero when δ1 → 0. Despite the contributions to cs from the first-

order perturbation terms being generally small at small but finite δ1 and

δ2, they can still be comparable to δc(0)
s |S when the microstructure is built

of spherical or almost spherical particles, for which function f1(...) in the

expression (18) is zero or very small. As we will see in the next section, in a

more general case and for the parameters typical for lithium-ion electrodes,

the contribution from c(0)
s is significantly more pronounced. One can not

also exclude the possibility that c(1)
s can play a more visible role in complex

electrodes containing regions with very high tortuosity.

Finally, an additional connection can be established between the formulas

above and the physical characteristics of electrodes. For this, we adopt the

specific form of the i0(cs) law - Butler-Volmer formula (4). It can be shown

then, that when a particle undergoes galvanostatic charge/discharge β is

roughly proportional to the slope of OCV curve, with the exceptions of the

regions near the edges of the SOC range where the pre-exponential terms in

(4) have singularity. When it holds, the asymptotic formulas (20) and (21)
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can be rewritten in terms of the OCV slope δU0/δcs:

δc(0)
s |S ∼ const (24)

when |δU0/δcs| → 0 and

δc(0)
s |S ∼

1
F
RT
|δU0/δcs|

(25)

when |δU0/δcs| → +∞. The next section will demonstrate numerically that

the inverse dependence between δc(0)
s |S and δU0/δcs holds not only asympto-

tically but with finite values of the OCV slope. The zeroth-order contribution

to overpotential under the same assumptions has exactly the opposite depen-

dence on δU0/δcs: when |δU0/δcs| → 0

δη(0)|S ∼ |δU0/δcs|, (26)

and when |δU0/δcs| → +∞

δη(0)|S ∼ const. (27)

In case of the first-order perturbation with finite but small δ1 and δ2, no

similar clear monotonous dependence of δη(1)|S on |δU0/δcs| or β can be

theoretically justified on the same level of generality.

3. Numerical simulation results and discussion

3.1. Numerical simulation methods

We use the finite volume implementation of the microscopic model in the

software package BEST (Battery and Electrochemistry Simulation Tool [24].

Besides this, we will use isolated one-particle finite volume simulations. They

are implemented using Scipy Python packages.
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3.2. Simulation results and discussion

From the analysis in the previous sections we saw that out of the four

variables that describe the state of the cell in the microscopic model, the

surface fluctuations of cs are the ones that may not become negligibly small

even when particle and scale separation conditions hold (δ1, δ2 � 1). More

specifically, we draw the following conclusions: (a) the scale of these fluctua-

tions is mainly defined by the shape of the particle, total current through the

surface and slope of the reaction current dependence on cs, (b) the fluctuati-

ons’ dependence on these quantities follows some specific laws (formulas (20)

and (21)), (c) there is no significant influence from nonhomogeneous distri-

bution of electrolyte lithium concentration and of electric potential. Having

to introduce a number of assumptions in the derivation, one has to utilize

numerical simulation tests to find out, to which extent these theoretical fin-

dings apply to real cells and within the corresponding parameter range. This

is the objective of this section.’
We begin with the numerical simulations of the PDE problem (14). Our

goal is to obtain the dependence of the surface cs fluctuation scale on the

particle’s shape and on parameter ρ. We solve the problem (14) on different

spheroid particles, each characterized by its aspect ratio ε. The main axis

length L is always kept equal to 10 µm, lithium diffusion coefficient Ds is

10−10 cm2 s−1, and these two quantities are used in the definition of ρ ac-

cording to (19). For the boundary condition, we keep the current density

fixed and equal ĩ0 = −2 · 10−4A/cm2 (”−” sign in our convention means that

lithium goes into the particle) at a certain point on the surface ~x0. Then,
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everywhere else the current i0 should be calculated as

i0 = ĩ0 + β(cs − cs(~x0)) (28)

to fit into the class of linear boundary conditions of (14). We use a heuristic

rule to choose mesh resolution for every specific simulation run. The rule will

be explained later, because for this an additional analysis of the solution is

needed, which will be given below, after the results are presented.

The parameters have been chosen to closely represent graphite being char-

ged with the current close to the critical one. Following the methods we used

in the theoretical analysis, we look to compare the concentration profiles of

the stationary solutions that emerge after a period of time. With graphite-

like OCV curve and Butler-Volmer formula, direct tracking of the relation

between cs variation and parameter ρ (or β) is hard, which motivates to

choose the artificial kinetic law (28). To ensure that the transient processes

have ended, we let the simulation run for roughly two diffusion times L2/D,

after which the stationarity of the profiles was checked. Figure 2 demonstra-

tes the examples of the concentration profiles. Figures 3 and 4 display the

dependence of the total variation (maximum minus minimum) of the lithium

ion concentration on the surface of the particles against ε and ρ.

Figure 4 demonstrates the behaviour of concentration variation that agrees

with the trend predicted by formulas (20) and (21): it monotonously decrea-

ses when ρ becomes big. As one can see, for spheroids this dependence holds

not only when ρ→∞ but effectively for all values of ρ, as it was indicated in

section 2.3. In figure 3, the variation decreases with ε→ 1 that corresponds

to spherical particle shape. The behaviour near ε = 0 demonstrates a peculia-

rity. Below ε = 0.2 the trend depends on ρ: for ρ > 5 the variation increases
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with ε, for ρ < 1 it decreases. We argue that it can be explained through

the properties of the base PDE problem (14) in the following way. Spheroids

with small ε are close to one-dimensional systems (like the particle at the

bottom of figure 2), and the corresponding solution can be approximated by

the solution of a one-dimensional equation obtained by averaging of the pro-

blem (14) with the boundary condition current (28) over the cross sections

perpendicular to the main axis. The resulting one-dimension equation is
∂cs
∂t

= ∂

∂x

(
Ds

∂cs
∂x

)
− l(x)
FS(x)

(
ĩ0 + β(cs − cs(x0))

)
. (29)

S(x) is the surface area of the cross section, l(x) is the length of its contour.

Both of the parameters are assumed to depend on x based on the exact shape

they are calculated from. For a specific case of ratio l(x)/S(x) and Ds being

independent of x an analytical solution can be written down, including the

stationary solution. Parameter ε̃ = SL/l is close to the aspect ratio ε of

our simulation problem, and a more detailed analysis can be carried out for

the cases ε̃ � ρ and ε̃ � ρ even when l(x)/S(x) and Ds depend on x. In

particular, when ε̃ � ρ, the variation of the stationary solution is mainly

present near the edges of quasi-one dimensional particle, penetrating on the

length scale ∆l ∼
√
DS/lβ = L

√
ε̃/ρ. The cs variation itself scales with ε̃

as (ε̃/ρ)0.5. This trend corresponds qualitatively to the points on the graph

of figure 3 with ε < 0.2 and ρ > 5. The exact quantitative agreement with

the law (ε̃/ρ)0.5 may not hold, at least because the approximation or quasi-

one dimensional body may not be valid at edges or due to some numerical

artifacts. We find, however, the combination of the simulation data with such

heuristic mathematical analysis lead to a solid conclusion that squeezing

particles do not lead to bigger overall surface fluctuations of cs, and the
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general rule, that the further particle shape is away from isotropic spherical,

the more pronounced the fluctuations are, does not hold for ρ� ε.

The concentration distribution snapshot on the right side of figure 2 cor-

responds exactly to the case ρ� ε. One can notice that, indeed, most of the

variation is localized near the edges of the particle, producing a type of skin

effect. The emergence of an additional length scale ∆l may affect the quality

of the solution in the finite volume method. This observation returns us to

the rules for choosing mesh resolution for the problem (14) whose descrip-

tion was postponed. They should incorporate the knowledge about the new

length scale. For this research, we choose the mesh resolution in such way

that the particle length has at least 40 control volumes (CVs) and ∆l for the

maximal possible ρ has at least 3 CVs.

Now, we have demonstrated that the numerical simulation results agree

with the part of the theory reflected in conjecture (b) from the beginning of

the section, for cell models in which parameter ρ can be set and controlled

manually. In cells with real parameters, such explicit test is harder due to the

information about the parameters being hidden in the dynamics and them

being entangled with each other. Nevertheless, a qualitative analysis is still

possible. For this, we will analyse a full microstructure-resolving simulation.

Then, to test the prediction that influence of non-homogeneous electrolyte

on the cs fluctuations scale is negligible (conjecture (b) and formula (22)),

we will compare the microstructure-resolving simulation with a number of

reference simulations.

In this simulation, a numerical model of the electrode is build from sphe-

roid particles with aspect ratio 0.5 that are connected by small conductive
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non-intercalating material beams along the major axes. These complexes are

bound to a current collector with another conductive material beam. The

electrode is built out of 3 × 3 = 9 such complexes, each having 3 particles,

and is a periodic system of 27 individual particles (see figure 5, the conduc-

tive material is not shown). We ran galvanostatic charge simulation within a

half-cell setup using the the microscopic model (equations 1-3). The dimen-

sions of the cell are 34.5 µm×17.25 µm×17.25 µm, the spheroid’s main axis

size is 10 µm and the diameter of the conductive material bridges connecting

the spheroids is 0.5 µm. The physical parameters of the cell’s components

are listed in Table 1. The chemical potential of the electrolyte lithium is cal-

culated according to the ideal solution theory. The OCV vs. SOC function

is

U0(SOC) =0.6379 + 0.5416 · exp(−305.5309 · SOC)+

+ 0.044 · tanh(−(SOC− 0.1958)/0.1088)−

− 0.1978 · tanh((SOC− 1.0571)/0.0854)−

− 0.6875 · tanh((SOC + 0.0117)/0.0529)−

− 0.0175 · tanh((SOC− 0.5692)/0.0875) (30)

The separator consists of pure electrolyte. The parameters for the active

material particles are chosen to be close to the ones of graphite, the conduc-

tivity of the bridges σ(additive) is set to be high enough, so they don’t play

any dynamical role other then to provide electric contact. The side walls of

the simulation box have periodic boundary conditions.

As a first reference system, we did a charge simulation of one particle with

the same geometrical, physical parameters and mesh discretization in eDFN
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framework, i.e. with homogeneous φe, Φs and ce. To imitate the galvanostatic

constraint on the original cell, we set the current through our particle to be

the total current through the original cell divided by the number of particles,

i.e. 27.

One can visually examine in a concentration snapshot in figure 5 that

the lithium profile in different particles evoleves almost in unison, indirectly

justifying the use of one-particle eDFN model. Figure 6 shows the evolution

of the total variation of the surface lithium concentration and overpotenti-

al. It demonstrates a good quantitative agreement with the results of the

eDFN simulation. We plotted the OCV slope evolution in the same figure

below. The comparison of the curves confirms the conjecture from the end

of the previous section about the inverse dependence between the amplitude

of concentration variation and the slope of OCV (equations (24) and (25)).

Similarly, the overpotential variation evolution follows the trend based on

equations (26) and (27): the overpotential spread is higher when the OCV

slope is steeper. In both figures a slight deviation between the eDFN’s and

the microstructure theory curves can be seen closer to the end of the charge.

It may be due to the fact that the behavior of the current function i0 from

the boundary conditions between the phases becomes strongly nonlinear near

the SOC points 0% and 100%, due to singularities in either OCV or in the

preexponential term of Butler-Volmer formula: it may lead to the situation

when many of the assumptions, that we made in the previous section to ju-

stify the use of eDFN model and of the homogenization theory, break, and

the conclusions we derived from them may stop being valid too.

According to the definitions of the section 2.3, the first one-particle refe-
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rence system represents the zeroth-order solution c(0)
s . It means a comparison

with the exact microstructure solution will allow us to estimate the scale

of c(1)
s and its contribution to the surface fluctuations. One of the ways to

demonstrate the difference is to look at the surface cs variation on different

particles from the electrode in figure 5. In the electrode, we separately ana-

lyzed 3 layers of particles lying on top of each other. We tracked the total

surface variations of cs in each of those layers. There are two factors that

make the layers not equivalent to each other: the slight variation of ce, φe
and Φs from layer to layer and the different way in which the conductive

material is connected to the particles. The first layer is connected only from

one side while the remaining two from both, at the same time the variati-

ons of the ion concentration in the electrolyte and the potentials in principle

can be different for all the layers. In figure 6, the evolution of total surface

variation of cs and of overpotential η respectively are presented, for the ex-

act microstructure simulation, integral and for each of 3 layers, and for the

reference system. All the curves agree with each other qualitatively. Espe-

cially noticeable is the fact that the total variations for the two closest to

the current collector layers are very close, almost indistinguishable. These

two layers geometrically are the exact copies of each other, each bound to

two conductive bridges above and below. The only thing that differentiates

these two layers during the charge is the local variation of the fields ce, φe
and Φs. In our theoretical framework, the contribution of such variation is

represented by the formulas like (22). Our basic theoretical analysis left the

question open how small the first-order perturbation contribution to the sur-

face fluctuations within the parameter range of real cells is, and the data in
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figure 6 provides a numerics-backed answer. The clear monotonous behavior

of ∆η with OCV slope mentioned above can be understood as a necessary

condition and thus hint for the small role of the first-order perturbation, as

follows from the theoretical results (comments about δη(1)|S after formulas

(26) and (27)).

To further investigate the correctness of the negligible nonhomogeneous

electrolyte role assumption, a second reference system’s charge was simulated.

This cell has all the geometry and the parameters of the original, except for

Ds and κe, which are multiplied by 100. If one neglects the nonlinearities of

flux and current laws 2, it effectively makes all the gradients in electrolyte

roughly 100 times smaller, or, following the way we defined small parameter

δ1, makes the latter 100 smaller too. According to the formula (22), the

contribution of the gradients to the surface fluctuations should decrease by

factor 100 as well. It is indeed what we observe qualitatively in figure 7 where

the total variation evolution again split into layer contributions, but for the

second reference system. With the same general scale, the contributions of

two lower layers became even more indistinguishable.

Next, we simulated a third reference system, whose difference from the

original is that the frontal parts of the spheroid particles of the first layer

are covered with plugs made of the same conductive material as the bridges

connecting the particles (figure 8). There, the particles of all 3 layers are

absolutely geometrically identical. Figure 9 with the evaluations of all the

layers’ surface variations demonstrates that, as it can be predicted in our

theory, all these variations are almost identical.

Finally, we produced a fourth reference system electrode in which, simi-
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larly to the one in figure 8, all the particle are equivalent with each other in

terms of their shape and their interface with the electrolyte, but the particle

orientation relative the cell throughput direction is different (see the char-

ge snapshot in figure 10). Here, it is achieved as well with the symmetrical

addition of the conductive additive. Again, visually all the individual partic-

le concentration profiles are very similar, as one would expect. One has to

note that the particles are not equivalent in this sense to the ones in figure

8 because the connection of the conductive bridges happens in another lo-

cation on the surface. We expect the difference between the fluctuations in

these two systems to be similar to the difference between the front and the

back layers in figure 6, where it is due to similar variation in the conductive

material-active material interface. Indeed, this similarity can be observed in

figure 11, where we compare the surface concentration variations of the elec-

trodes from figure 8 and 10). We plotted the comparison of two fluctuation

measures: standard deviation from equation ( 18) and total variation. The

relative difference between total variations is bigger because this measure

is more sensitive to the local differences near extreme concentration values,

whereas, in the standard deviation, their scale is compensated by a small

share of the surface area on which they occur.

To sum up, the numerical experiments supported the conjecture (c) in

which we stated that, for electrolytes, microstructure geometry and active

materials typical for real cells, the contribution of nonhomogeneous fields ce,

φe and Φs associated with the first-order perturbation c(1)
s in our theory, is

small enough to justify dropping it from the future surface fluctuation model

development. The zeroth-order contributions to the fluctuations are coupled
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only to the solution of the homogenized DFN equations making the whole

model more computationally robust and intuitive. We do not exclude, howe-

ver, that for more complicated microstructures, possibly with big tortuosity,

c(1)
s play a more visible role. Yet, in our opinion, keeping only c(0)

s will still

remain a good approximation. We also observed that the geometrical factor

next in importance to the particle shape in terms of the influence on the

fluctuation scale is the structure of the (conductive) additive material/active

material interface.

To deepen the connection between our new analysis and the existing

research, we want to discuss how our results are related to the ones in [2],

which served as a starting point for the investigation in this paper. The

local fluctuations of overpotential observed in the simulation results there

may lead a reader to the conclusion that they follow a certain stochastic

law. The microstructure in [2] is build of the particles of the same geometry,

but connected to each other in a random manner. Our analysis so far, both

theoretical and numerical, suggests that, to the contrary, fluctuation profiles

of all similar particles should be similar and evolve in a deterministic manner.

We think, that the visual randomness of the data in [2] is rather a sort

of visual illusion: the noisy image is a result of the superposition of quite

deterministic single-particle contributions, with only the particle positions

and orientations being random.

To demonstrate this, we ran a simulation of a half-cell with the parameters

in Table 1, but with a different geometry (figure 12): the electrode is made of

the same spheroid particles as our initial electrode model, but the locations

of the particles are defined according to a random rule. Conductive material
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bridges connect the particles. Figures 13 and 14 demonstrate the projections

of the concentration and the overpotential fields on the particle interfaces

in the middle of the charging process for the cells in figure 5 and figure

12 respectively. In the former, the profiles from different particle layers are

clearly distinguishable, while in the latter they overlap producing a slightly

more chaotic pattern. When one looks at the 3D concentration snapshot in

figure 12, one sees, however, the same dynamics as in the simulations above:

the particles with the same geometry evolve essentially in unison.

4. Conclusions

The main subject of this paper is the theory of particle scale-localized

spatial fluctuations of physical quantities (ion concentrations and potentials)

in electrode microstructures. This type of fluctuations was observed in the

numerical simulations based on a microstructure-resolving model [2], parti-

cularly in the form of overpotential fluctuations. Interestingly, it was also

demonstrated in [2] that a running average of the fluctuating results agrees

as expected very well with the homogenized DFN model whereas all overpo-

tential fluctuations around the DFN mean vanish upon averaging. It turns

out that the decisive difference between DFN and microscopic models is due

to the inherent geometric symmetry of the former (effective spherical particle

as an active material model). Yet, non-uniform distribution of local physi-

cal variables on the electrolyte-active material interface may influence the

properties of a battery as a whole, since e.g. the initiation of degradation

processes will critically depend explicitly on the local interface environment.

This is the very nature of electrochemical reactions, which cannot be ful-
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ly captured by a global, homogenized cell description. Our extension of the

DFN-type models aims for keeping their computational efficiency but captu-

ring microstructure induced local fluctuations of electrochemically relevant

quantities approximately.

In order to identify the origin of the observed fluctuations, we are ap-

proaching the problem step by step from a mathematical point of view, ri-

gorously tracing the transition from microstructure based models to DFN

through introduction and testing of well defined mathematical approxima-

tions. The first approximation is a requirement of spatial scale separation

between the particle and the macroscopic electrode scale i.e. parameter δ1

in our notation should be small. This is the standard starting point of ho-

mogenization theories[18, 19, 20], but it turns out that the approach breaks

for mass transport in the active materials. To extend the standard approach

and in order to test quantitatively the importance of inter-particle contacts,

we proceeded further by considering a representation of the electrode as a

sum of independent particles in homogenized electrolyte and electric field but

allowing contact as perturbations. To quantify the accuracy of this model,

we introduced a new parameter δ2 as a ratio of inter-particle interface sur-

face area with ion transport to the total surface area of the particles. The

requirement that δ2 is small is the second approximation that we impose on

the initial microscopic cell model. The resulting mathematical framework for

cases when δ1, δ2 → 0 can be seen as an extension and a further refinement

of the classical homogenization ansatz, in which only δ1 → 0 holds.

While earlier theories were mostly interested in fully homogenized soluti-

ons as such, we investigated the possible contributions of first-order correc-
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tions with respect to δ1 and δ2 to the numerically observed fluctuations. An

important result, that manifests itself partially in formulas (22) and (23),

states that the contribution of these first-order corrections to the local fluc-

tuations are in most situations negligible as long as δ1, δ2 � 1. The circum-

stances under which the corrections become important can also be studied

theoretically in our framework. As the main finding, we could show that the

evolution of the fluctuation profile does not depend significantly on details

of mass and electric transport in electrolyte, as e.g diffusion coefficient, etc.

This theoretical conjecture was supported by the numerical comparison bet-

ween microscopic model simulations of electrodes with graphite-like parame-

ters and artificial one particle-system mimicking an absolutely homogeneous

electrolyte with constant electric potentials in both phases.

After having thus estimated the role of non-homogeneity of the electro-

lyte and of the electric field in the cell state evolution in general and of

their contribution to the fluctuations around averaged homogenized fields,

we analyzed in more detail the zeroth-order solution, which is built as a sum

of the solutions of independent particles. The fluctuations that one obtains

from there depend only on non-isotropic properties of the individual particles

(like non-spherical shape), one of the main factors missing in previous ups-

caling procedures. To obtain further analytical results, the relation between

reaction currents and lithium concentration in the active material (equation

(14), boundary conditions) was linearized. The resulting simplified mathema-

tical analysis allowed us to identify the main parameters of charge-discharge

dynamics that define the scale of fluctuations: average reaction current and

slope of the dependence of exchange current on lithium concentration. Using
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asymptotic analysis together with numerical experiments, we could identify

quantitative trends between the size of local fluctuations and these parame-

ters.

As the main conclusion of our mathematical upscaling procedure from

microscopic model to DFN model, we find that the anisotropy-related inter-

face variations of lithium concentration (and of the quantities that directly

depend on it, like OCV, overpotential) do not disappear in the limit of full

homogenization and small particle contact (δ1 = 0, δ2 = 0), and we do not see

any rigorous procedure based on realistic assumptions about cell dynamics to

eliminate these variations to make basic DFN model an exact homogenizati-

on limit of microstructure-resolving cell models. To extend computationally

effective and intuitive DFN to incorporate processes and phenomena in which

the localized fluctuations play a significant role, one has to utilize additio-

nal heuristic or rigorous mathematical arguments, which is part of ongoing

research.
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Table 1: Parameter set used in the microstructure simulation

Parameters/units Value

c
(initial)
s /mol/cm3 2.639 · 10−3

c
(max)
s /mol/cm3 2.4681 · 10−2

Ds/cm
2s−1 10−10

σs/S/cm 1.0

σ(additive)/S/cm 10.0

c
(initial)
e /mol/cm3 1.2 · 10−3

t+/1 0.39989

ke/S/cm 0.02

De/cm
2s−1 1.622 · 10−6

Current density,A/cm2 2.4 · 10−3

i00/A/cm
2.5mol−1.5 0.002
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A B C
Figure 1: Schematic representation of different porous electrode models. Colors denote Li

distribution. Subfigure A represents the microscopic model (1, 2), with local concentration

and potential gradients allowed everywhere, and particle connections possible. Subfigure

B is the eDFN model. Subfigure C is the electrode representation in the Newman model,

with effective spherical particle
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concentration mol/cm3                         

concentration mol/cm3                         

Figure 2: Concentration profiles for eDFN model. ρ = 10 for both particles, the particle

above corresponds to the case ε = 0.5, the one below - to the case ε = 0.2.
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Figure 3: Total variation (maximum minus minimum) of the surface concentration as a

function of the spheroid aspect ratio ε for different values of parameter ρ (see the text).
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Figure 4: Total variation (maximum minus minimum) of the surface concentration as a

function of ρ (see the text, proportional to the slope of the current reaction vs cs) for

different spheroid particle geometries (aspect ratio ε).
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Figure 5: Lithium spatial distribution in the electrodes in the basic microscopic theory

based simulation.
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Figure 6: Evolution of the total variation (maximum minus minimum) of the concentration

∆c and the overpotential ∆η. The basic microscopic theory based simulation is compared

to the eDFN simulation (the first refence system in the text). For the former, the results

for separate electrode layers (defined in the text) are plotted too. The evolution of the

OCV slope calculated at the surface-averaged values of concentrations and potentials is

plotted below.
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Figure 7: Evolution of the quantities from figure 6 when the basic microscopic theory based

simulation is substituted with the one with all transport pararmeters multiplied by 100

(the second reference system in the text).
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mol/cm3                     

Figure 8: A snapshot of the lithium concentration evolution in the third reference system

from the text, with dark red control volumes added, that represent the conductive material.

To the right are 9 small conductive material plugs that differentiate this system from the

basic one.
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Figure 9: Evolution of the total variation (maximum minus minimum) of the concentration

∆c and the overpotential ∆η in the second reference system from the text. The results for

separate electrode layers (defined in the text) are plotted.
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Figure 10: A snapshot of the lithium concentration evolution in the fourth reference system

from the text, with dark red control volumes added, that represent the conductive material.

The particle orientation is different from the other electrodes considered in the text.
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Figure 11: Evolution of the standard surface deviation (above) and the total variation

(below) of the concentration cs for the reference electrode systems from figure 8 (electrode

1) and figure 10 (electrode 2). The current density in the electrode 2 simulation is modified

to keep the C-rates of both cases the same.
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Figure 12: A snapshot of the lithium concentration evolution in the electrode microstruc-

ture built of the randomly located particles of strictly same geometrical shape. Dark red

control volumes added, that represent the conductive material ensuring electric connecti-

vity.
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Figure 13: Projections of the concentration c and the overpotential η fields on the particle

interfaces in the middle of the charging process for the electrode in figure 5.
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Figure 14: Projections of the concentration c and the overpotential η fields on the particle

interfaces in the middle of the charging process for the electrode in figure 12.
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