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Elastic Structure Preserving Impedance Control
for Nonlinearly Coupled Tendon-Driven Systems

George Jose Pollayil*, Graduate Student Member, IEEE , Xuming Meng*, Manuel Keppler,
Martin Pfanne, Antonio Bicchi, Fellow, IEEE , and Christian Ott, Senior Member, IEEE

Abstract— Traditionally, most of the nonlinear control
techniques for elastic robotic systems focused on achiev-
ing a desired closed-loop behavior by modifying heavily
the intrinsic properties of the plant. This is also the case
of elastic tendon-driven systems, where the highly nonlin-
ear couplings lead to several control challenges. Follow-
ing the current philosophy of exploiting the mechanical
compliance rather than fighting it, this letter proposes an
Elastic Structure Preserving impedance (ESPi) control for
systems with coupled elastic tendinous transmissions. Our
strategy achieves a globally asymptotically stable closed-
loop system that minimally shapes the intrinsic inertial and
elastic structure. It further allows to impose a desired link-
side impedance behavior. Simulations performed on the
tendon-driven index finger of the DLR robot David show
satisfactory results of link-side interaction behavior and
set-point regulation.

Index Terms— Robotics, control applications

I. INTRODUCTION

TAKING inspiration from nature, recent research dis-
played a focus on elastic and compliant design of robots.

Such a trend allowed to reach high levels of energy efficiency
and natural motions [1], [2]. Mechanical compliance has
greatly contributed to increase the robustness of robots while
interacting with the environment. For instance, the role of
such a property is crucial in robotic manipulation; it allows
to achieve robust grasps [3] while also aiding in coping with
the impacts and interactions of the robot with the surround-
ings during grasp acquisition or tactile exploration. Trying to
imitate how humans modulate hand compliance by controlling
tendons, several articulated tendon-driven elastic robotic hands
have been designed. The UB Hand III [4], the DLR David
Hand [5] (Fig. 1a), the Pisa/IIT SoftHand [6], and the CEA
dexterous hand [7] are some notable examples. Besides, cable-
driven mechanisms are employed also in the field of robotic
manipulators, e.g., [8]–[10]. On the one hand, tendon-driven
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Fig. 1. An example of a tendon-driven system: (a) DLR David Hand.
The joint coordinates q ∈ R4 for the index finger are shown. (b) The
routing of the index finger with coupled tendons. The directions of the
tendon forces ft ∈ R8 are shown.

systems are lightweight and compact, and feature high respon-
siveness. On the other hand, the control of such mechanisms
present unique challenges due to the elastic couplings between
joints caused by the routing and the nonlinear features of
tendon elasticity.

Typically, two control loops are used for achieving desired
joint motions and stiffness, i.e., an inner one for realizing
tendon force control and an outer one for imposing a desired
link behavior. A statically decoupling method for realizing
joint motion and stiffness variation was provided in [11].
Following the two-loop strategy, the authors in [12] proposed
a cascaded approach with careful consideration of tendon
tension constraints by solving an optimization problem. A
similar method was shown in [13], where a force control
law with an optimized tendon tension distribution algorithm
is derived. The guarantee of stability is not provided in the
aforementioned works. In a single-DoF case, [14] showed
the Lyapunov stability of the impedance control with tendon-
driven elastic mechanisms and adjustable linear springs. A
decentralized control for motion tracking was designed for
the CEA dexterous hand using a single step H∞ optimization
framework in [7]. An integrator backstepping design was
employed in [15] for antagonistically actuated joints to derive
an asymptotically stable control after performing an inertial
decoupling using partial feedback linearization. Some other
works focused also on the control of special types of tendon-
driven mechanisms: e.g. PD control design is studied for



underactuated tendon-driven mechanisms in [16] and trans-
missions with branching tendons in [17]. Notwithstanding the
effectiveness of the above works, all consist in canceling out
or modifying, by means of control, the intrinsic properties with
which the system is designed.

The problem of robustly controlling robots through a passive
design and minimal shaping of the dynamic structure was dis-
cussed in [18]–[20]. In particular, a perfect gravity cancellation
in order to allow the control of the robot without accounting
for the gravity bias was studied in [19]. Instead, [20] and [21]
proposed control laws for implementing a desired interaction
behavior, on motor or link side respectively, while preserving
the elastic structure. The concept of Elastic Structure Preserv-
ing (ESP) control was extended to bidirectional antagonistic
actuation in [22], [23]. Even though [20]- [23] address the
case of multi-DoF robots, the reduced elastic model employed
therein cannot be used to model tendon-driven systems: thus,
the ESP control cannot be applied straightforwardly to our
case.

The contributions of the present letter are the following:
• we extend the ESP framework to multi-DoF tendon-

driven systems with nonlinear mechanical couplings;
• we show that for such systems it is possible to achieve a

desired closed-loop dynamics with an added impedance
behavior on the link side while minimally modifying the
dynamics and the elastic coupling;

• our control law achieves regulation of the link position
to a desired value.

The validation is carried out in simulation on an elastically
coupled multi-DoF finger.

II. PROBLEM DEFINITION

In this section, we consider the following model [24], [25],
which can be applied to a wide variety of tendon-driven
mechanisms, e.g. [4], [5], [8], [9] and [10].

{
M(q)q̈ +C(q, q̇)q̇ + g(q) = ψ(q,θ) +ψext (1a)
Bθ̈ + τ (q,θ) = u , (1b)

where, q ∈ Rnq are the joint variables, θ ∈ Rnθ are the motor
positions, ψext ∈ Rnq are the external link-side torques, and
u ∈ Rnθ are the control inputs. Here, nq and nθ are the
degrees of freedom (DoF) and the degrees of actuation (DoA),
respectively. Moreover, M is the link inertia, C the matrix
with Coriolis and centrifugal terms. By using the Christoffel
symbols, we have that Ṁ(q)− 2C(q, q̇) is skew-symmetric.
The vector g denotes gravity torques, and B is the reflected
motor inertia matrix. In most tendon-driven mechanisms, each
tendon is pulled by one motor; in this work, we consider such
a case.

The nonlinear coupling between link-side (1a) and motor-
side dynamics (1b) is given by ψ(q,θ) and τ (q,θ), which are
the link-side and the motor-side elastic torques, respectively.
They depend on the tendon forces f t as follows

ψ(q,θ) = P Tf t(q,θ) (2)
τ (q,θ) = Ef t(q,θ), (3)

where P ∈ Rnθ×nq is the so called coupling matrix. The
matrix E ∈ Rnθ×nθ is constant and diagonal, contains the
values of the motor radii, and thus it is invertible. The force
profiles f t are typically highly nonlinear functions of the
tendon elongations ∆l. Moreover, (1a)-(1b) models a tendon-
driven system if f t > 0. This means that the tendons are taut.
Let Ue,j(∆lj) : R → R+ be the elastic potential function
associated with the jth tendon1, where j = 1, · · · , nθ. Then,
the corresponding tendon force is given by ft,j(∆lj) :=
∂Ue,j(∆lj)
∂∆lj

and satisfies the following assumption.

Assumption 1. The tendon elongations are of the form ∆l =
Eθ − Pq . Moreover, the tendon force ft,j(∆lj),∀j is C3

and strictly monotonously increasing w.r.t. ∆lj . Therefore, the
elastic potential function Ue,j(∆lj) is convex and radially
unbounded. Using the virtual work principle,

δUe(∆l) = δUe(q,θ) = δθT (Ef t)︸ ︷︷ ︸
:=τ

+δqT (−P Tf t)︸ ︷︷ ︸
:=−ψ

. (4)

Assumption 2. The coupling matrix P is constant, with nθ >
nq and has full rank, i.e., rank(P ) = nq .

Physical Motivation of the Assumptions: The expression of
the tendon elongation (cf. Sec. 6.4.2 in [25]) and the three
times continuous differentiability in Assumption 1 are com-
mon to many tendon-driven systems: for instance, [4] and [5].
Additionally, the monotonous increase of f t w.r.t. ∆l is a
standard property. Instead, the constant P in Assumption 2
can be realized with extra turns on the pulleys. Moreover, a
well-designed tendon network exhibits a coupling matrix with
full rank2 [25].

A schematic illustration of an example of (1a)-(1b) is shown
in Fig. 2a. Given the model (1a)-(1b), we have the following
control objectives:
(i) achieve a desired stiffness Kq and damping Dq behavior

on the link side;
(ii) achieve link regulation to a desired value qd, which

means that q → qd for t→ ∞;
(iii) minimally modify the dynamic properties, the original

coupling, and the elastic structure of the system.

III. DESIRED CLOSED-LOOP SYSTEM

To accomplish the goals stated in Sec. II, we aim to realize
the desired closed-loop dynamics





M(q)q̈ +C(q, q̇)q̇ = P Tf t(q,η)

−Kq(q − qd)−Dqq̇ +ψext
(5a)

Bη̈ +Ef t(q,η) = −Dηη̇ + τ p, (5b)

which is depicted in Fig. 2b. The matrices Kq , Dq and Dη

are symmetric, positive definite and bounded. Note that here

1In the following, subscript j is used for numbering tendons or motors, and
subscript i is used for joints.

2The condition on the dimensions of P is related to Caratheodory’s theorem
[25], which states that at least nq + 1 tendons are needed to actuate a tendon-
driven robot. In DLR David Hand, nθ = 2nq tendons are used for the thumb,
index and middle fingers; nθ < 2nq tendons for the ring and little fingers.
The routing of the index finger is shown in Fig. 1b.
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Fig. 2. (a): original system dynamics of the last two links in the index
finger of DLR David Hand (Fig. 1a). (b): closed-loop dynamics achieved
by implementing the proposed controller.

we introduced new virtual motor variables η to realize the
desired link-side behavior. This coordinate transformation will
be introduced in Sec. IV-A. Moreover, τ p = Ef tp is a feed-
forward motor torque term, where f tp ∈ Rnθ are the desired
tendon tensions, which should be chosen properly to avoid the
slack of the tendons.

In (5a)-(5b) the inertial properties and elastic couplings
are preserved and only the gravity term is canceled. Thus,
the desired interaction behavior is obtained by minimally
modifying the structure of the original system (1a)-(1b).

By defining the state vector z = [qT q̇T ηT η̇T ]T and
imposing ż = 0 and ψext = 0 on (5a)-(5b) we get

{
0 = P Tf t(q,η)−Kq(q − qd)
Ef t(q,η) = τ p.

(6)

If we choose f tp inside the nullspace N (P T ) of P T , i.e.
P Tf tp = P TE−1τ p = 0, the unique equilibrium of (5a)-
(5b) is

zeq = [qTd 0T ηTd 0T ]T . (7)

Here, ηd is the solution of f t(qd,ηd) = f tp . If (7) is
asymptotically stable, we achieve the control objective (ii).

IV. CONTROL DESIGN

In this section, we present the control design that allows
to achieve the desired dynamics (5a)-(5b). We first perform a
coordinate transformation of the motor variables from θ to η to
achieve the desired link-side behavior and subsequently design
the control law to realize the desired motor-side dynamics and
stabilize the system.

A. Coordinate Transformation
To achieve the desired link-side behavior, we impose the

equivalence of the nq equations (1a) and (5a)

P Tf t(q,θ)︸ ︷︷ ︸
ψ(q,θ)

= P Tf t(q,η)︸ ︷︷ ︸
ψ(q,η)

+ g(q)−Kq(q − qd)−Dqq̇︸ ︷︷ ︸
n(q,q̇,qd)

.

(8)
Note that (8) represents nq coordinate relations. As nθ > nq ,
(8) does not determine a unique coordinate transformation
(CT) and we have to introduce another nθ − nq relations

NTf t(q,η)︸ ︷︷ ︸
ψN (q,η)

=NTf t(q,θ)︸ ︷︷ ︸
ψN (q,θ)

, (9)

where N ∈ Rnθ×(nθ−nq) is a basis of N (P T ). Equation (9)
represents nθ − nq independent relations thanks to Assump-
tion 2. Hence, putting together (8) and (9), we get a system
of nθ nonlinear equations

ψ(q,η)−ψ(q,θ) + n(q, q̇, qd) = 0

ψN (q,η)−ψN (q,θ) = 0.
︸ ︷︷ ︸

F (q,q̇,qd,θ,η)=0

(10)

Proposition 1. The system (10) represents a unique coordinate
transformation from (q,θ) to (q,η).

Proof. We make use of the Implicit Function Theorem. Let
(q0, q̇0,θ0,η0)

3 be a generic solution to (10) and let

(a) F be at least C1,
(b) det(∂F∂η ) ̸= 0 and det(∂F∂θ ) ̸= 0,

in the solution point. Then, in a neighborhood of the solution,
∀(q, q̇,θ) there exists a unique η such that F = 0, and
∀(q, q̇,η) there exists a unique θ such that F = 0. This
means that, if conditions (a) and (b) are met for all admissible
(q, q̇,θ,η), (10) is a unique CT from θ to η globally.

Condition (a) requires that ψ, ψN and n are C1 functions.
Assuming q and q̇ continuous, verifying the continuity of n
is trivial, and ψ and ψN are C1 thanks to Assumption 1.

As ∂F
∂θ = −∂F

∂η |η=θ, to verify condition (b) we can limit to
check if det(∂F∂η ) ̸= 0. Using (2), (9), (10) and the property
of the determinant of a product, condition (b) becomes

det

(
∂F

∂η

)
= det

([
P T

NT

])
det

(
∂f t(q,η)

∂η

)
̸= 0 . (11)

The first determinant is always non-zero by virtue of Assump-
tion 2 and due to the row space of P T being orthogonal to
N (P T ). The second one is also non-zero thanks to Assump-
tion 1. Thus, also condition (b) is always fulfilled.

To find the relations between θ̇, θ̈ and η̇, η̈, differentiate
(10) with respect to time to get

θ̇ = A(q,θ,η)η̇ + a(q, q̇, q̈, qd,θ,η) , (12)

where

A =

[
∂ψθ

∂θ

∂ψNθ

∂θ

]−1



∂ψη

∂η

∂ψNη

∂η


 ; (13)

a =

[
∂ψθ

∂θ

∂ψNθ

∂θ

]−1





∂ψη

∂q − ∂ψθ

∂q

∂ψNη

∂q − ∂ψNθ

∂q


 q̇ +

[
ṅ

0

]
 . (14)

For easing notation, we have written ψθ = ψ(q,θ), ψη =
ψ(q,η), ψNθ = ψN (q,θ) and ψNη = ψN (q,η). The
inversion in (13)-(14) is guaranteed thanks to condition (b)
in the proof of Proposition 1. Differentiating (12) again, we
get the original motor accelerations expressed in η

θ̈ = Aη̈ + Ȧη̇ + ȧ. (15)

3As we are in the regulation case, qd is fixed.



B. Control Law
Applying the CT to (1a), the link-side dynamics becomes

(5a). Substituting (15) into (1b), we have BAη̈ + BȦη̇ +
Bȧ+Ef t(q,θ) = u. Applying the control law

u = BȦη̇ +Bȧ+Ef t(q,θ)

+BAB−1(−Ef t(q,η)−Dηη̇ + τ p).
(16)

to cancel unwanted terms, and multiplying both sides by
B(BA)−1, we obtain the desired dynamics (5a)-(5b). For
further understanding, and for a block diagram of the ESP
concept, refer [20], which treats the case of elastic robots with
nθ = nq .

V. STABILITY AND PASSIVITY ANALYSES

A. Stability Analysis
To analyze the stability properties of (7), consider the

function V = T + Uq + Ūe, where

T (q, q̇, η̇) =
1

2
q̇TM(q)q̇ +

1

2
η̇TBη̇ ; (17)

Uq(q) =
1

2
(q − qd)TKq(q − qd) ; (18)

Ūe(q,η) = Ue(q,η)− (Eη − Pq)Tf tp︸ ︷︷ ︸
Up=−∆l(q,η)T ftp

. (19)

Here, T is the virtual kinetic energy and Uq and Up are the
potential energies in (5a)-(5b): Uq due to the link-side spring
and Up due to τ p = Ef tp . By virtue of Assumption 1 and
(4) and as f tp ∈ N (P T ),

(
∂Ūe
∂q

)T
= −P Tf t(q,η) +����*

0
P Tf tp ; (20)

(
∂Ūe
∂η

)T
= Ef t(q,η)−Ef tp . (21)

Proposition 2. The equilibrium point (7) of the closed-loop
system (5a)-(5b) is globally asymptotically stable (GAS) in
absence of the external torques ψext

4.

Proof. We employ the Global Invariant Set Theorem
(Theorem 3.5 in [26]). Note that V is a scalar function with
continuous first partial derivatives. Moreover, as Ue is radially
unbounded (Assumption 1), so is also V . Differentiating V
w.r.t. time, substituting (20)-(21), q̈ from (5a) and η̈ from
(5b), and due to the skew-symmetry of Ṁ(q)− 2C(q, q̇),

V̇ =− q̇TC(q, q̇)q̇ +
1

2
q̇TṀ(q)q̇

− q̇TDqq̇ − η̇TDηη̇ + q̇Tψext

= − q̇TDqq̇ − η̇TDηη̇ + q̇Tψext .

(22)

Substituting ψext = 0 in (22) makes V̇ negative semi-definite.
Consider the set R = {z ∈ R2nq+2nθ |V̇ (z) = 0} . To find the
largest invariant set in R, notice that for any solution z(t) be-
longing to R, we have that q̇ ≡ 0, η̇ ≡ 0 =⇒ q̈ ≡ 0, η̈ ≡ 0.

4Showing the stability of the equilibrium (7) of (5a)-(5b) is sufficient to
prove the stability of the corresponding one in the original coordinates. Indeed,
the equilibrium in q and θ can be obtained using (10) and (12).

Considering (5a) and (5b), we can conclude that z(t) ≡ zeq
is the only solution that can remain in R. Knowing that the
equilibrium point (7) is the largest invariant set in R concludes
the proof.

B. Passivity Analysis
From Proposition 2, it follows that the scalar term Up in V

is bounded since q, η and f tp are bounded. Therefore, there
exists a constant c ∈ R : S = V + c is positive semi-definite.
Thus, we choose S as storage function.

Proposition 3. The closed-loop system (5a)-(5b) is an output-
strict passive (OSP) map from the external link-side torques
ψext to the velocities q̇.

Proof. Differentiating S w.r.t. time and following analogous
steps as done for V̇ in the proof of Proposition 2 we get

Ṡ = −q̇TDqq̇ − η̇TDηη̇ + q̇Tψext . (23)

Thanks to the positive definiteness of Dq , there exists ϵ > 0
such that Ṡ ≤ q̇Tψext − ϵq̇T q̇.

VI. VALIDATION

In this section, we perform a validation of the proposed
control method in simulation using the tendon-driven index
finger of the DLR David Hand [5]. As shown in Fig. 1b, the
index finger has 4 DoF, and 8 DoA with nonlinear tendon
coupling. The dynamic and elastic parameters in (1a)-(1b) are
taken from the real robot. The simulations are performed in
MATLAB & SIMULINK using a variable-step Runge-Kutta45
solver. The design of Dq and Dη is done by using modal
damping factors ξq and ξη as in Eq. (85) in [20]. The
derivatives of the dynamic matrices are computed using the
strategies in [27]. Then, q̈ and q(3) are obtained through
model-based calculations5, which require an estimation of the
external torques. Furthermore, (10) is solved numerically using
fmincon interior-point algorithm. In order to include the
effect of sensor noise, we add zero-mean band-limited white
noise with 1kHz sampling rate to qi and θj , which fits to our
practical case. Thus, the noise will propagate to the velocity,
acceleration and jerk as well. The noise variances at q̈i and
q
(3)
i are ca. 1 rad/s2 and 103 rad/s3, respectively. Two tests

are carried out: one for regulation to qd and another assessing
the effective achievement of the commanded stiffness Kq .

A. Regulation
The first test shows the regulation behavior. The ref-

erence joint value is changed at time t = 1 s from
q0 = 0deg (open finger) to qd = [0, 40, 60, 40]T deg (semi-
closed finger); see Fig. 4. At t = 4 s, a constant ψext =
[−0.4,−0.25,−0.15,−0.05]Nm is applied to each link. The
aim is to simulate the finger closing and an interaction with the
external environment. Due to the small link inertia compared

5The link acceleration q̈ = M−1(ψ + ψext − Cq̇ − g) and the jerk
q(3) =M−1(ψ̇ + ψ̇ext − Ṁq̈ − Ċq̇ −Cq̈ − ġ).
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Fig. 3. The results of regulation behavior when the modal damping
factors ξηj = 0.2 and ξηj = 1 for the ESPi and ξθj = 1 for the CS
controller. The rows from top to bottom show the regulation errors q̃ =
q−qd, the joint velocities q̇ and the tendon forces ft(q, θ). At t = 1 s
and t = 4 s, qd and ψext are changed, respectively. Higher-frequency
oscillations in tendon forces are present in CS controller (bottom plot of
the third column).

Fig. 4. Finger motions during regulation: (a) ESPi ξηj = 0.2 and (b)
ESPi ξηj = 1. The timestamps correspond to the time axis in Fig. 3.

to motor inertia, changing ξqi will have little effect on the
damping. Therefore, we consider two different damping set-
tings, where the link-side damping factor is always ξqi = 0.6,
while the motor-side damping is chosen as ξηj = 0.2 or
ξηj = 1. The commanded stiffness is chosen near to the
mean value of the intrinsic joint stiffness and is Kq =
diag(3.5, 2.5, 1, 0.5)Nm/rad. Furthermore, for all tendons,
the initial and the desired pretension are ftp,j = 40N,∀j
(about one third of the maximum ftj for the DLR David
Hand), which is inside the N (P T ). We also compare our
method with the controller with cascaded structure (CS) pro-
posed in [12] as it has similar control objectives as ours.
For the CS controller, we use the same Kq . We implement
the same modal damping design for Dq as we did in ESPi
controller. The inner-loop gain Kτ (cf. Eq.(10) in [12]) is
chosen such that the regulation error q̃ = q−qd in t ∈ [1, 4] s
is similar. To make the two controllers comparable, we add
also a damping term on the motor side.

The results are displayed in Fig. 3. By comparing the results
of ESPi controller in first and second columns, for ξηj = 1,
there is no overshoot (see first row) and the peak velocities
(second row) are smaller than when ξηj = 0.2. Moreover, ∀j,
the actual tendon force ft,j(q1, · · · , q4, θj) fulfills f t > 0,
varies less with higher damping and converges to the desired
pretension ftp,j . The corresponding motions of the finger are
displayed in Fig. 4; notice the absence of oscillations for
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Fig. 5. External torques ψext vs. the link-side errors q̃ = q− qd. The
colored lines represent the external torques with different commanded
Kqi in Nm/rad. The dashed black lines are the commanded stiffness
values. The achieved stiffness, approximated by ∆ψext,i

∆qi
is reported in

the top left.

ξηj = 1. When t ∈ [1, 4] s, q̃ converges to zero. Instead, from
t = 4 s, Fig. 3 shows the disturbance rejection behavior. The
links show the expected transient behavior and converge to the
shifted equilibrium q⋆ satisfying Kq(q

⋆−qd) = ψext, which
evaluates to q⋆ = [−6.55,−5.73,−8.59,−5.73] deg. Both
the ESPi (second column) and CS controllers (third column)
achieve similar link-side regulation behavior. Observe that q̇ in
CS controller has higher-frequency oscillations in the transient
phase, which are mainly caused by tendon oscillations (third
row), which could be rather harmful; they can drastically
reduce the lifetime and lead to the damage of the tendons [28].
However, the variation of ft,j at t = 1s in ESPi controller
is larger than the ones in CS. Both the controllers show
satisfactory disturbance rejection and robustness to sensor
noise.

B. Interaction Behavior

The second test consists in validating the achieving of
the desired stiffness during interaction: while the finger is
commanded to hold a desired qd, we apply sine waves as
external torques ψext and record the resulting link-side errors
q̃ = q−qd. The achieved stiffness is approximated by ∆ψext,i

∆q̃i
,

i.e., the slope of a linear regression of ψext,i versus q̃i. We
employed the following parameters: ξqi = 0.6, ξηj = 1 and the
same previous qd and Kq . The external torques ψext had the
amplitudes [0.8, 0.5, 0.3, 0.1]TNm as they are the maximum
bearable joint torque values. The sine waves had a frequency
of 1Hz to simulate a typical human interaction behavior. The
desired pretension is the same as before.

The results are shown in Fig. 5. The achieved stiffness is
near to the commanded. It can be seen from Fig. 5 that the
measured data do not fully lie on the commanded stiffness
(dashed black lines). This is due to q̇ and q̈ not reaching
zero during the application of ψext except for the points
with maximum amplitude. Hence, the transient dynamics is
reflected in ellipse-like shapes.



VII. CONCLUSIONS

This letter extended the Elastic Structure Preserving
impedance control concept, first introduced for non-redundant
elastic robots in [20], [21], to tendon-driven systems featuring
nonlinear elastic coupling with constant coupling matrix and
with monotonously increasing tendon-force profiles. The re-
sulting controller achieves globally asymptotically stable set-
point regulation and simultaneously imposes a desired link-
side impedance and tendon pretension. Moreover, the proven
output-strict passivity allows also to claim L2 stability (The-
orem 6.5 in [29]). The underlying idea evolves introducing
a change of motor coordinates that encodes the desired link-
side impedance behavior. Notably, the resulting closed loop
preserves the inertial properties and only minimally shapes
the elastic structure due to the added link-side impedance. This
minimal shaping is expected to produce favorable results re-
garding the controller’s energy efficiency and robustness. The
evaluation was carried out in simulation on a tendon-driven
finger with elastic couplings demonstrating a satisfactory set-
point regulation behavior and robustness against external dis-
turbances and sensor noise. The results further show that the
desired link impedance is successfully implemented. In the
control design and in simulation, we did not consider static
or viscous friction. However, if a suitable friction model or
observer is available, compensation is possible on both the link
and motor sides. Without proper compensation, static friction
would create a steady-state error during regulation and the
viscous one would cause more damping in the transient. On a
real robot, the implementation requires sensing motor positions
and estimating joint positions from tendon elongations, which
can be measured through magnetic sensors. A measure or
estimation of the external torques is also needed. Future work
would include an experimental validation of the conservation
of the elastic structure and extension to the case of non-
constant coupling matrix.
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