
Enhancing Term-Based Document Retrieval
by Word Embedding and Transformer Models

Farzana, Sheikh Mastura
Matriculation number: 3276883

25 November, 2021

A thesis submitted in partial fulfillment for the
degree of Master of Science

Institute of Computer Science

Supervisors:

Dr. Andreas Hamm, German Aerospace Center(DLR)
Md. Rashad Al Hasan Rony, University of Bonn

Examiners:

Prof. Dr. Jens Lehmann, University of Bonn
Dr. Andreas Hamm, German Aerospace Center(DLR)

INSTITUT FÜR INFORMATIK RHEINISCHE
FRIEDRICH-WILHELMS-UNIVERSITÄT BONN

 Rheinische

 Friedrich-Wilhelms-

 Universität Bonn

Erklärung über das selbständige Verfassen einer Abschlussar-
beit/ Declaration of Authorship

Titel der Arbeit/Title:

………

………

………

Hiermit versichere ich, ____________________, ____________________,
 Name / name, Vorname / first name

dass ich die Arbeit – bei einer Gruppenarbeit meinen entsprechend ge-

kennzeichneten Anteil der Arbeit – selbständig verfasst und keine anderen als

die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich ge-

macht habe.

………………………………………… Bonn, den …………………………..
Unterschrift/signature date

universität bonn  Institut für Informatik  53012 Bonn Vorsitzender des Prüfungsaus-

schusses

Prof. Dr. Thomas Kesselheim

Prüfungsausschuss

Informatik

 Prüfungsamt:

Judith König

Tel.: 0228/73-4418

Fax : 0228/73-4788

pa@informatik.uni-bonn.de

Postanschrift: 53115 Bonn

Endenicher Allee 19a

www.informatik.uni-bonn.de

Enhancing Term-Based Document Retrieval

by Word Embedding and Transformer Models

Farzana Sheikh Mastura

24.11.2021

i

Acknowledgements

I would like to begin by extending utmost gratitude to my men-

tor, supervisor and one of the examiners, Dr. Andreas Hamm (In-

stitute of Software Technology, Intelligent and Distributed Systems,

German Aerospace Center(DLR)) for his continuous guidance, un-

wavering support and critical feedback in every part and aspect of

this thesis.

I am grateful to Md. Rashad Al Hasan Rony (University of Bonn,

Fraunhofer IAIS), my second supervisor, for his assistance with the

thesis defense and for his valuable advice on the thesis report.

I wish to thank Prof. Dr. Jens Lehmann (University of Bonn,

Fraunhofer IAIS) for agreeing to become the primary examiner of

this thesis.

I am thankful Dr. Mark Azzam (Head of the Department, Think

Tank, DLR) for giving me the opportunity of conducting my graduate

thesis at DLR and for his valuable insights in the initial phase.

I am grateful to Mr. Andreas Schreiber (Head of the Department,

Institute of Software Technology, Intelligent and Distributed Sys-

tems, DLR) for allowing me to continue my work in his department.

I would like to thank my friend, Ms. Aniqa Zaida Khanom for her

help in making the cover page of this report.

Lastly, I am ever grateful to my Mother (Ms. Farhana Yesmin)

and my late Grandmother (Mrs. Morium Khatun) for believing in me

throughout my life.

ii

i

Abstract

Document retrieval implies the process of obtaining most relevant

documents based on some query from a large corpus of documents.

Traditional document retrieval methods focus on the existence and/or

non-existence of the query in a particular document to assess rele-

vance of the document to the query terms. However, this approach

does not guarantee relevance. For example, a document can be con-

textually relevant to some query without containing the exact query

words or the document might contain the query term and still be

about some completely different topic. Hence arises the need of con-

text aware document retrieval systems. In this thesis, we focus on

enhancing document retrieval methods in order to capture the con-

textual relevance of a document to a certain query. The primary

components used to achieve our goals are word embedding models

and transformer based pre-trained natural language models (details

follow in later sections). Here, we have proposed three different ap-

proaches for enhancing document retrieval methods. We use three

different datasets to evaluate our models and compare the results

with classical document retrieval models. Our first method, zero-

shot learning with transformer based pre-trained NLP models has

the best scores. However, it is computationally very expensive. On

the other hand, the proposed similarity score based relevance rank-

ing method successfully surpasses the performance of traditional re-

trieval methods on multiple performance metrics. At the same time,

it is significantly faster and robust. Our third approach, similarity

score based logistic regression also performs better than the tradi-

tional models, however, on the basis of recall scores, the similarity

score based relevance ranking model performs better.

iii

Contents

Declaration of Authorship i

Acknowledgements ii

Abstract iii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 1

1.3 Contribution . 2

1.4 Report Organization . 3

2 Related Work 3

3 Background 6

3.1 Natural Language Processing 7

3.2 Document Retrieval . 7

3.3 Okapi-BM25 . 8

3.4 Word Embedding . 9

3.4.1 Word2Vec . 10

3.4.1.1 Common Bag of Words 11

3.4.1.2 Skip Gram 11

3.4.2 fastText . 12

3.4.2.1 Sub-word Generation 13

3.4.2.2 Skip Gram with Negative Sampling . . . 13

3.4.3 ConceptNet Numberbatch 14

3.5 Transformer Models . 14

3.5.1 Autoencoder . 15

3.5.2 Transformer . 16

3.5.2.1 Encoder Stack 16

3.5.2.2 Decoder Stack 17

3.5.2.3 Attention Mechanism 18

iv

3.5.3 Transformer Based Pre-trained NLP Models . . . 18

3.5.3.1 BERT . 19

3.5.3.2 RoBERTa 20

3.5.3.3 DeBERTa 21

3.5.3.4 SqueezeBERT 22

3.5.3.5 BART . 22

3.5.3.6 BART-Yahoo 24

3.5.3.7 DistilBART 24

3.6 Dense Passage Retrieval 25

4 Methodology 26

4.1 Dataset . 26

4.2 Dataset Description . 26

4.3 Data Pre-processing . 28

4.4 Similarity Score Calculation 30

4.5 Similarity Score Based Relevance Ranking 31

4.6 Similarity Score Based Logistic Regression 34

4.7 Zero-shot Learning with Transformer based pre-tarined

NLP Models . 34

5 Experiments 36

5.1 Evaluation Metrics . 36

5.2 Model Setup and Results 39

5.2.1 Keyword Search 39

5.2.2 Okapi-BM25 . 40

5.2.3 Dense Passage Retrieval 42

5.2.4 Zero-shot Learning with Transformer based pre-

trained NLP Models 43

5.2.5 Similarity Score Based Relevance Ranking . . . 49

5.2.5.1 Relevance Ranking - ENX Dataset 51

5.2.5.2 Relevance Ranking - ESR Dataset 54

5.2.5.3 Relevance Ranking - ENV Dataset 57

5.2.6 Similarity Score Based Logistic Regression 61

v

5.2.6.1 Logistic Regression - ENX Dataset . . . 61

5.2.6.2 Logistic Regression - ESR Dataset . . . 64

5.2.6.3 Logistic Regression - ENV Dataset . . . 66

6 Discussion 68

7 Conclusion and Future Work 70

Appendix 72

List of Figures 75

List of Tables 76

Bibliography 77

vi

1 Introduction

1.1 Motivation

The objective of document retrieval is to find documents that are

most relevant to a certain query (information need) from within a

large corpus of unstructured texts. In this thesis we focus on map-

ping unlabeled documents to the right subjects where we concen-

trate on the contextual (semantic) content of the documents.

The well established methods in the context of document retrieval

usually uses Boolean combination of keyword searches and rank-

ing functions based on Bag-of-words vector models such as TF-IDF

[36, 27] or Okapi-BM25 [41]. However, estimating relevance of a doc-

ument based on the existence and non existence of particular terms

is not optimal for the following reasons:

1. Some documents might not contain a term but some semanti-

cally close word which is not contained in the query.

2. Some terms might be good indicators but no guarantee for rel-

evance.

Some of the possible solutions would be to use some related terms

along with the search term and use Boolean search with ‘logical OR’

to retrieve documents that does not contain the search term but are

relevant. Alternative approach is doing a BM25 ranking using the

actual term along with its related terms. Lastly, using a subject

dependent supervised learning, this option is not viable at all as

there will not be sufficient training data for all the subjects we want

to deal with.

1.2 Problem Statement

In the context of subsection 1.1, the main problems of classical

document retrieval techniques we want to address are,

1

1. Inability to retrieve documents that are contextually relevant

but do not contain the search term.

2. Inability to assess relevance of documents that contain the search

term.

In this thesis, we begin with assessing the viability of simple Key-

word Search as well as Okapi-BM25 ranking. Then we move on to

assess the performance of pre-trained transformer models for zero-

shot classification, which can be used for document retrieval. Lastly,

we use word embedding models to gather similarity scores between

words of a document and search terms and use that score for doc-

ument ranking using two different approaches. The results from all

the mentioned methods has been discussed in section 5.

1.3 Contribution

The main contributions in this thesis are as follows:

1. Comparative study on transformer based different pre-trained

and fine-tuned NLP models for document retrieval using zero-

shot classification.

2. Brief study on the effect of different Hypothesis sentences used

in the classification pipe-line of zero-shot classifiers.

3. A novel relevance ranking scheme using word embedding based

similarity scores for keyword based document retrieval. Addi-

tional study on performance of different word embedding mod-

els.

4. Regression based document ranking method using similarity

scores acquired from combinations of several word embedding

approaches.

2

1.4 Report Organization

The thesis is organised in the following sections:

• Motivation and Problem statement. (Introduction) (section 1)

• Related work regarding relevance ranking and zero-shot learn-

ing. (Related Work) (section 2)

• Discussion on methods and models used in this project. (Back-

ground) (section 3)

• Elaboration on the datasets, data pre-processing and research

methodologies used. (Methodology) (section 4)

• Model setup and related results. (Experiments) (section 5)

• Comparative summary of all results from different approaches.

(Discussion) (section 6)

• Conclusion and suggested future work related to the thesis.

(Conclusion) (section 7)

All the scripts related to this thesis can be found at https://

github.com/SheikhMasturaFarzana/Master-Thesis.

2 Related Work

Document retrieval is an integral part of information storage and

efficient information retrieval. Different document retrieval methods

have been around for decades. Some of the earliest approaches of

document retrieval are based on full text search. The approach im-

plies that a certain query term is searched amongst all the available

documents and the documents containing the query is retrieved.

However, in 1986 Blair et al. argued that regardless of the apparent

advantages of full text search, the effectiveness of the approach is

quite poor [2].

3

https://github.com/SheikhMasturaFarzana/Master-Thesis
https://github.com/SheikhMasturaFarzana/Master-Thesis

In 1995 Chen et al. proposed a knowledge based fuzzy infor-

mation retrieval method [7]. They based the concept on weighted

queries and weighted interval queries to retrieve documents using

transitive closure of concept matrices. The concept matrices contain

a set of concepts and relevance value of those concepts to a set of

documents. The user desired documents related to some concept � 9

is assigned a strength value and the query is assigned a weight in

accordance with concept � 9 hence producing a weighted query. This

fuzzy information retrieval method is capable of handling uncertain

information unlike its predecessors.

The Probabilistic Relevance Framework (PRF) was conceptualised

in the 1980s by Robertson et al [42, 41]. They came up with a the-

oretical framework for probabilistic models and can be used for in-

formation retrieval. PRF became the basis of many probabilistic rel-

evance ranking models for information retrieval including the well

know BM25 ranking model. PRF aims to estimate the probability of

relevance of a document against some query. The BM25 document

retrieval method ranks documents based on the appearance and fre-

quency of a query term in each document of a corpus (details follow

later subsection 3.3.)

Information retrieval functions based on the assumption of the

existence and non-existence of a certain query term in a document,

are not capable of extracting documents that are contextually rel-

evant to the query but do not contain the query word itself. One

possible solution in this direction is query expansion. In 2017, Liu

et al presented their work for the enhancement of word embedding

similarity measures using fuzzy query expansion rules [34]. Along-

side the original query term, they also considered the C>? − : similar

words of query @ from the word vector embedding space (generated

using Word2Vec) using cosine similarity as the similarity measure.

They later use fuzzy rules to re-weight the expanded queries based

on the weight of the original query.

4

Qiu et al. proposed a word embedding based fuzzy information

retrieval approach [39]. Instead of relying on query term frequency in

a document, their model depends on word embedding model to cal-

culate the similarity between each query term against each word in a

document. Based on the similarity scores they assign a membership

score to each document for some query and present the documents

with higher scores as the retrieved documents.

We can comprehend from the above works that both relevance

ranking and word similarity measurement based information rank-

ing models can be useful for successful document retrieval. How-

ever, these techniques are not always capable of capturing the whole

context of a document for a specific query. A combination of rele-

vance ranking model and word embedding based similarity scores

offers the possibility of handling the problem of retrieving contextu-

ally relevant documents. In later sections we have described our pro-

posed models in this direction and compare our results with some

of the established traditional document retrieval models.

One other interesting approach towards efficient document re-

trieval can be zero shot learning. Zero shot learning methods are

capable of classifying classes that the model has not encountered

during training. In 2013, Elhoseiny et al. proposed a zero shot

learning method for image classification using textual description

[12]. They adapted a regression model to classify new data based

on the learned classification. Additionally, they also explored knowl-

edge transfer from textual to visual domain.

In 2020, Shaheen et al. presented their work on large scale

document classification using transformer models such as BERT,

RoBERTa, XLNet etc [44]. With the combination of these classifier

models along with strategies such as generative pre-training, grad-

ual unfreezing and discriminative learning, they were able to out-

perform then state-of-the art models on two different datasets. In

the same year, Pelicon et al. published their paper on cross-lingual

5

sentiment classification using zero-shot learning. The authors used

an intermediate training step to improve the BERT model to get bet-

ter input representations for sentiment classification. This improved

model was tested by them in the cross-lingual zero-shot classifica-

tion task without further training in the target language. The model

was able to achieve improved results on both monolingual and cross-

lingual sentiment classification task.

Adhikari et al. showed that their model DocBERT, based on a

pre-trained BERT model (transformer based NLP model) is capable

of reaching state-of-the-art performance on different models [1]. Al-

though it can be argued that BERT has some drawbacks in this

context such as a document can be larger than the BERT input

size. However, their paper was the first indication that transformer

based pre-trained can be successfully used for document retrieval.

The PatentBERT model, proposed by Lee et al. is also based on

the BERT model and is fine tuned to classify patent data [32]. The

model is capable of surpassing state-of-the-art approaches in the

same task.

It is evident that the transformer based models are powerful and

capable of handling various NLP related problems including docu-

ment retrieval. The combination of transformer based NLP models

and zero-shot learning is the most promising approach for classi-

fying large number of un-annotated text and has the the potential

capacity of relevant document retrieval without the need of further

training. In later sections, we experiment with zero-shot learning

based document document retrieval approach with different trans-

former based pre-trained NLP models.

3 Background

In this section we explain the theoretical background of the com-

putational architectures as well as algorithms used in this project.

6

We begin with discussing Natural Language Processing, document

retrieval and move on to elaborate the mechanism of BM25, Word

Embedding Models, Transformer Models and Dense Passage Re-

trieval (DPR),.

3.1 Natural Language Processing

Natural Language Processing (NLP) is a combined sub-field of

Computer Science, Artificial Intelligence (AI) and Linguistic. The

main goal of NLP is to automatically process, analyze and repre-

sent natural languages otherwise known as naturally evolved lan-

guages. In the present era of data, a large part of it consists of

highly unstructured textual and audio data containing human lan-

guage. The ability of properly processing these data will make trend

analysis, different types of forecasting and interaction with artifi-

cially intelligent entities (eg. smart assistants, self-driving cars etc.

) much easier. Some of the main challenges in NLP are, Natural

Language Inference (NLI), Natural Language Understanding (NLU),

Speech Recognition, Text Classification etc.

3.2 Document Retrieval

Document retrieval is a branch of information retrieval and by

extension natural language processing, that aims at retrieving doc-

uments based on some query from a corpus of mainly unstructured

texts. The main tasks of a document retrieval system are, identify-

ing the documents that match a certain query, evaluate the results

and rank them according to relevance. Form based retrieval focuses

on finding text that contain specific syntactic features such as ex-

act query sub-strings. The other form of document retrieval focuses

on content of a document and focuses on semantic properties. In

our project we explore possible improvements of the content based

document retrieval approach.

7

3.3 Okapi-BM25

BM25 or Best Matching25 algorithm is a ranking function based

on probabilistic retrieval framework (PRF) developed in the 1980s

[41]. BM25 is a bag-of-terms retrieval method. Bag-of-term model

regards multiplicity of words in a sentence but does not consider

order of word appearance or grammar. There are several versions of

the method with small differences in parameters. One of the notable

instances of the function is explained with Equation 1. Given a query

&, containing keywords @1, ..., @= the BM25 score of a document � is

(2>A4(�,&) =
=∑
8=1

��� (@8)
5 (@8, �) (: + 1)

5 (@8, �) + : (1 − 1 + 1(|� |0E63;
))

(1)

In Equation 1,

• ��� or Inverse Document Frequency indicates presence of a query

across the whole data corpus in consideration.

��� (@8) = ln(# − =(@8) + 0.5
=(@8) + 0.5

+ 1) (2)

– # is the total number of documents.

– =(@8) is the number of documents containing keyword @8.

• 5 (@8, �) is the term frequency of @8 in document �.

• |� | is the length of the document and 0E63; is the average length

of documents in the document corpus.

• : is the saturation to avoid rewarding higher term frequency

limitlessly.

• 1 is the length normalization term in order to keep into consid-

eration that a certain query is more likely to appear in a longer

document. Higher values of 1 makes it harder for term occur-

rences to weigh high.

8

3.4 Word Embedding

Word embedding is the representation of words in the form of

real-valued vectors in multi-dimensional space. Although word em-

bedding has been around for a while, semantic word embedding is

a rather contemporary method. Semantic word embedding methods

encode the meaning of the word in a way that the words that are sim-

ilar in meaning are closer to each other in the vector space. Some

of the popular techniques of producing word embedding are, dimen-

sionality reduction, neural networks etc. Figure 1 shows an exam-

ple of a 300 dimensional word embedding produced with the a pre-

trained fastText embedding model projected onto two dimensional

plane using tSNE [47]. In the figure we can observe that words with

similar context such as ‘atmospheric’ and ‘tropospheric’ are closer

together and words such as ‘resolution’ and ‘instrument’ that have

no contextual similarity are quite far apart.

Figure 1: Word embedding visualization

Through word embedding human languages are made compre-

9

hensible to computers. Collobert et al. were the first to show the

utility of pre-trained word embedding models in downstream tasks

[9]. At present, for many NLP tasks such as text translation, recom-

mendation systems and text similarity calculation, word embedding

is a requirement in order to process the data further. Word em-

bedding has enabled machine learning and deep learning models to

employ vectors which are more efficient for neural networks to per-

ceive rather than direct textual data. Here we discuss about three of

the most prominent and recent pre-trained word embedding models

available.

3.4.1 Word2Vec

Word2Vec learns distributed word associations using neural net-

works from a large text corpus. For a long time words have been

regarded as atomic units without any notion of similarity amongst

them, because it allowed simplicity and that simple models can per-

form well with bigger data corpus. However, for many NLP tasks

such as automatic speech recognition, larger corpus is simply not

available. Milkov et. al introduced two simple log-linear models for

calculating continuous vector representations [37] which is the basis

of Word2Vec. The model was developed with the idea that contextu-

ally similar words have similar meaning and should therefore have

similar vector representations [20]. Word2Vec eliminates the need of

requiring large annotated dataset for NLP tasks as it is capable of

mapping a target word to its context words without the need of la-

beling. It uses a (shallow) neural net to train a mapping from unique

words of a corpus vocabulary to an N-dimensional real vector space.

Word2Vec exists in two versions depending on the training objective:

Continuous Bag Of Words (CBOW) and Skip Gram (Figure 2). CBOW

is faster and has slightly better performance on words that appear

frequently while Skip Gram works better with infrequent words com-

pared to CBOW [18].

10

3.4.1.1 Common Bag of Words In CBOW method, each target

word is predicted by taking into account the surrounded context

words. It is essentially a feed-forward neural network consisting

of three layers, input layer, projection layer and output layer. The

output is not influenced by the order of the context words. If we

consider a simple sentence, Apples, eggs andmilk are good for health,

with a context window of size 2, the labeled training data will consist

the following pairs (‘context word’, ‘target word’) : ([Apples, and, milk],

eggs), ([Apples, eggs, milk, are], and), ([eggs, and, are, good], milk) and

so on. The model will then try to predict the target word from the

context words. Figure 2a shows a primitive architecture of CBOW

model.

3.4.1.2 Skip Gram Skip Gram has a neural network architecture

similar to CBOW. The main difference is skip gram uses the current

word to predict the surrounding context words within the context

window. Considering the same sample sentence as CBOW, Apples,

eggs and milk are good for health and a context window of size 2, for

the target word milk its neighboring words are eggs, and, are, good.

The input and target word pairs would be (eggs, milk), (and, milk),

(are, milk), (good, milk). Since the proximity of context words to the

target word does not have any effect, all four context words will have

same priority. Figure 2b depicts the basic Skip-Gram architecture.

11

(a) CBOW (b) Skip Gram

Figure 2: Neural Network architectures of Word2Vec

3.4.2 fastText

fastText is a word embedding and text classification library. The

algorithm behind fastText is based on two publications from Face-

book AI research teams [3, 28]. fastText is a significant improvement

over Word2Vec in that it takes the morphological structure of words

into account.Word morphology is significant when a single word has

a large number of morphological forms, each of which might oc-

cur rarely. Word2Vec on the other hand produces embedding for

each unique work without considering their morphology. fastText

resolves the morphology issue by regarding each word as an aggre-

gation of its sub-words, which are treated as the character n-grams

of the base word. Then the word’s vector is the sum of all vectors

of its component characters’ n-grams. This process allows fastText

to support out-of-vocabulary words. The process of sub-word gen-

eration and skip gram with negative sampling is explained in the

following sections.

12

3.4.2.1 Sub-word Generation If we consider Apple as an exam-

ple word, character n-grams of length 3 is generated by sliding a win-

dow of 3 characters from the start to the end of the word. The result-

ing n-grams are <Ap, app, ppl, ple, le>, where the angular brackets

denote beginning and ending of a single word. Producing character

n-grams is useful in order for the model to understand prefixes, suf-

fixes and shorter words within a word. Hashing is used to bound the

memory requirements. fastText learns total ‘b’ embeddings where ‘b’

denotes the bucket size, which represents the array size allocated

for all the character n-grams. The original paper used a bucket of a

size of 2 million [3].

3.4.2.2 Skip Gram with Negative Sampling Negative sampling

refers to using Sigmoid function to learn the differentiation between

actual context words (positive) and false context words (negative)

sampled from a noise distribution. Hence, words vectors are not

needed to be learned by predicting context words of a target word.

For example, in the sentence The apple is red, if the target word

is apple and the context window is 1, the context words are, The,

is. Embedding for the target word is calculated by taking a sum

of vectors for the character n-grams and the whole word itself. For

the context words, their word vector are taken from the embedding

table without adding the character n-grams. Negative samples are

drawn randomly with probability proportioned to the square root of

the uni-gram frequency. For each positive context word, k random

negative words are sampled where k is a hyper-parameter and can

be tuned empirically. Sigmoid function is applie don the dot product

between the target word and positive context words. Based on the

loss, embedding vectors are updated with Stochastic Gradient De-

scent optimizer to bring actual context words (Sigmoid output close

to 1) closer to the center word but increase distance to the negative

samples (Sigmoid output close to 0). Figure 3 shows the process of

producing embedding vectors where the negative context word sam-

13

ples are Moon, Air.

Figure 3: Skip Gram with Negative Sampling

3.4.3 ConceptNet Numberbatch

ConceptNet is a semantic network that provides different compu-

tations with word meaning including word embedding [46]. Concept-

Net itself is a knowledge graph that connects natural language enti-

ties with weighted and labeled edges. In addition to its own knowl-

edge about words, ConceptNet also represents links between various

knowledge resources such as WordNet, Wiktionary, OpenCyc, and

DBPedia.

A retrofitting approach is applied to combine ConceptNet with

distributed semantically produced word embeddings (Word2Vec) per-

forms better than distributional semantics alone. Numberbatch has

better performance because it benefits from the semi-structured com-

mon sense knowledge from ConceptNet. Numberbatch is a combi-

nation of ConceptNet, Word2Vec, GloVe and OpenSubtitles [46]. The

ConceptNet Numberbatch outperforms pre-trained word embedding

models such as Word2Vec, GloVe, fastText on word similarity tasks.

3.5 Transformer Models

The Transformer architecture was first proposed in the paper

Attention Is All You Need [48]. The transformer network is capa-

ble of solving sequence-to-sequence tasks with easier handling of

long-range dependencies compared to Recurrent Neural Networks.

14

Python’s Hugging Face library provides a selection of pre-trained

models that have transformer networks in the core and are capable

of various Natural Language Understanding (NLU) and Natural Lan-

guage Generation (NLG) tasks [51]. In this project we employ some of

these pre-trained models for zero-shot classification. In chapter sub-

section 4.7 we explain the process of how we have used the models

for document retrieval. In this subsection, we first discuss the au-

toencoder and transformer architectures as part of preambles and

move on to explain details of the specific pre-trained transformer

models we have selected for our project.

3.5.1 Autoencoder

Autoencoder is a type of neural network that is able to encode and

compress data in an unsupervised way then learns to reconstruct

the input data from the compressed version with minimum error.

The idea of Autoencoder has been around for many years [31, 4,

23]. In 2016, Ian Goodfellow comprehensively explained the basic

structure and different variations of autoencoders in his book[17].

Figure 4: Simple Autoencoder

An autoencoder has two parts, the encoder side and the decoder

side. Encoder function (5 (G)) encodes input G into compressed rep-

resentation ℎ. Afterwards, decoder function 6(ℎ) decodes ℎ to a close

representation (G′) of input G. An autoencoder is intentionally re-

15

stricted from learning to copy input to output by adding ‘noise’ to

the data which enables them to copy only approximately, resulting

in the model learning important features of the input data.

3.5.2 Transformer

Transformers were proposed as a neural network model that is

capable of processing sequential data (eg: natural language) for NLP

tasks. However, transformer models employ attention mechanism to

weigh the importance of each part of the input sequence. Whereas

its predecessors such as Recurrent Neural Networks, long short-

term memory [24] and gated recurrent neural networks [8] took into

account the symbol position of input and output data. This hinders

parallelization and becomes critical for processing longer sequences.

Since, transformer takes into account the context of each word in a

sequence, it does not need to maintain order which in turn reduces

training time by allowing parallelization [48].

3.5.2.1 Encoder Stack Figure 5 shows the original transformer

diagram depicted by the authors. The left portion of the diagram

shows the encoder stack which consists of 6 identical layers. Each

layer consists of two major components: a self-attention mechanism

(explained in a later paragraph) and a feed-forward neural network.

The sub layers have a residual connection around them followed by

layer normalization. The output encodings are finally passed to the

next encoder stack as its input, as well as the decoders. The first

encoder stack takes positional information and embeddings of the

input sequence as its input instead of encodings.

16

Figure 5: Transformer Architecture [48]

3.5.2.2 Decoder Stack In Figure 5 the right side shows the de-

coder stack. Similar to the encoder side, it also has 6 identical lay-

ers. Each layer consists of the following three sub-layers, the self-

attention mechanism, a feed-forward neural network and a multi-

head attention mechanism that applies multi head attention on the

output received from encoder stack. Similar to the encoder stack,

The sub layers have a residual connection around them followed by

layer normalization. The self-attention sub-layer also encompasses

a masking scheme along with the output embeddings being shifted

right by one position to ensure that the prediction for a certain posi-

17

tion depends only on the knowledge of outputs from previous posi-

tions.

3.5.2.3 Attention Mechanism The authors of the original trans-

former paper have described attention mechanism as such, An at-

tention function can be described as mapping a query and a set of

key-value pairs to an output, where the query, keys, values, and out-

put are all vectors. The output is computed as a weighted sum of the

values, where the weight assigned to each value is computed by com-

patibility function of the query with the corresponding key. [48].

The transformer architecture has two different types of attention

mechanism, scaled dot product attention and multi head attention.

The input for the scaled dot product attention has 3 components,

queries and keys (dim 3:), and values (dim 3E). The dot product is

then calculated by dividing the query by all the keys and diving the

result by
√
3: , afterwards softmax function is applied to get the final

weights of the values.

For the case of multi head attention, the authors argued that is

is beneficial to project the queries (dim 3:), keys (dim 3:) and values

(dim 3E) linearly ℎ times with different, learned projection of dimen-

sions which is also linear. Afterwards, attention function can be

applied in parallel to these components to get output values of dim

3E. Which are then concatenated and projected to get the final val-

ues. With multi head attention it is possible to process information

from different subspaces at different postions in parallel.

3.5.3 Transformer Based Pre-trained NLP Models

The python Hugging Face library has a large number of pre-

trained models based on transformer architecture that are capable

of various downstream NLP tasks. For our project we have selected 7

of these models and employed them for document retrieval task. In

this section we briefly discuss the architecture and training of these

18

models.

3.5.3.1 BERT BERT (Bidirectional Encoder Representations from

Transformers) is a popular transformer based context aware lan-

guage representation model used to solve several language process-

ing tasks. Opposed to directional models, which reads the text input

sequentially (left-to-right or right-to-left), BERT encoder reads the

entire sequence of words at once. It is an advantage for tasks where

information about later tokens are available while processing earlier

tokens.

The multi-layer bidirectional model has the original transformer

network at its core. It pre-trains deep bidirectional models from

unlabeled input text by accounting both left and right context in all

layers [11]. It was pre-trained with the following objectives, Masked

Language Model and Next Sentence Prediction.

• Masked Language Model (MLM): The general assumption in the

context of sequential models is that a bidirectional model would

perform better than either left-to-right or right-to-left as well

as simple integration of both. However, the bidirectional mod-

els poses the problem that a specific token of the input would

have the context of itself and would be able to predict the tar-

get word with this knowledge. To avoid this issue, in the MLM

issue some percentage of the input is masked during training

[49]. In order to avoid conflict between pre-training and fine-

tuning the authors of BERT chose 15% token positions at ran-

dom and amongst these tokens 80% of the time are replaced

with a mask, 10% of the time is replaced with a random token

and 10% of the time remain unchanged.

• Next Sentence Prediction (NSP): NSP is the basis of many other

NLP tasks such as language inference, question answering and

so on. BERT was trained for binary next sentence prediction

task in order to make it capable of doing sentence prediction

19

tasks. In the training data, half of the time the target sentence

of a sentence pair is actually the sentence trailing the initial

sentence and rest of the time it is replaced with a random sen-

tence. The authors of BERT show that training towards NSP is

helpful for sentence prediction tasks [11].

The pre-trained model can be easily fine-tuned by adding one

extra output layer to produce models for several downstream NLP

tasks such as text classification, question answering etc. In our

task we use the Hugging Face bert-base-uncased model which has

12 - transformer blocks, 768 - hidden size, 12 - self-attention heads,

110" parameters and is trained on lower-cased English text [11].

3.5.3.2 RoBERTa RoBERTa (Robustly Optimized BERT Pretrain-

ing Approach) [35] as the name suggests is a study on the impact

of hyperparameter choices on the original BERT model [11]. The

authors of RoBERTa show that the original BERT model was under-

trained and the improved version (RoBERTa) with slightly different

design choices exceeds initial performance. Modifications on the

original BERT architecture are as follows:

• Exclusion of the Next Sentence Prediction (NSP) objective.

• Increase of batch size, data and training time.

• Increase of sequence length.

• Dynamic change of the input text masking pattern.

The mentioned changes led to improved performance on down-

stream tasks and the new model (RoBERTa) was proven to be com-

petitive with previously published similar approaches. In our project

we use the RoBERTa-large-mnli version of the model which is fine-

tuned on the MultiNLI dataset [10]. It has 24 transformer layers,

1024 hidden size, 16 attention heads and 355" parameters

20

3.5.3.3 DeBERTa DeBERTa [22] (Decoding-enhanced BERT with

disentangled attention) uses disentangled attention mechanism and

an enhanced masked decoder to improve the original BERT [11] and

RoBERTa [35] models. In addition, fine-tuning was done using a

virtual adversarial training method to improve model generalization.

Here we briefly explain the disentangled attention mechanism and

the enhanced masked encoder approach.

• Disentangled Attention Mechanism: In BERT encoder architec-

ture, the input word vector is calculated as sum of the word’s

embedding and its position embedding. However, in DeBERTa

model, each input word is represented using two separate vec-

tors, one for the word content embedding and one for the word

position embedding. For each word the attentions weights are

calculated using disentangled metrics from their content and

position. Therefore, the attention weight of word pairs get equal

contribution from both content and relative position of each

word.

• Enhanced Mask Encoder: The enhanced mask encoder is in-

corporated in the architecture to account for the absolute po-

sition of a word in a sentence. Using disentangled attention

mechanism context and relative position of a word is consid-

ered however, syntactic roles of a word is more dependent on

the absolute position of the word in a sentence. Enhanced

mask encoder adds absolute word position embedding before

the Softmax layer, from there the decoder predicts the target

words based on the context and position embedding.

According to the authors the enhanced DeBERTa model perform

better on downstream NLG and NLU tasks compared to original

BERT or RoBERTa model [22](refer to original paper for detailed re-

sults). In our experiment we use the deberta-base model has 12

transformer layers and attention heads, hidden size 768 and ap-

proximately 140" parameters.

21

3.5.3.4 SqueezeBERT SqueezeBERT [25] is an improved version

of the BERT [11] architecture that replaces computationally expen-

sive self attention layers with grouped convolutions. The resulting

model runs 4.3G faster than the original BERT model.

Inside the BERT encoder blocks, there is a self attention layer

which accommodates multiple separate position -wise-fully-connected

(PFC) layers. PFC layers generate the position wise activation vectors

for feature embedding. In the paper, the authors of SqueezeBERT

point out that upto 88.3% of the network latency. Furthermore, they

observe that the Fully Connected layers in the BERT encoder can be

considered as special case of non-grouped 1D convolution and the

PFC layers’ operation is same as a :4A=4;B8I4 = 1 convolution. Hence,

the networks behavior and numerical features remain same while

significantly decreasing run time.

3.5.3.5 BART The BART (Bidirectional and Auto-Regressive Trans-

former) proposed in 2019 is a denoising autoencoder model with

standard transformer network at its core [33]. BART performs well

on sentence generation as well as text comprehension tasks how-

ever, it can also be used for sentence classification the in the same

way as other pre-trained transformer models. In the original paper,

the authors have pointed out that, amongst many noising strategies,

both shuffling the original sentence in random order and a infilling

scheme (arbitrary spans of sentence masked with single mask to-

ken) work best. The transformer based machine translation model

leverages BERT [48] and GPT (Generative Pre-trained Transformer)

[40] models for training.

The BART auto-regressive model uses BERT for encoding to ben-

efit from its bidirectional encoder. However, the authors of BART

pointed out that, BERT is not a good model for sentence generation

as it predicts masked tokens randomly.

22

Figure 6: BERT Encoder [33]

On the other hand GPT has a left-to-right decoder and predicts

tokens auto-regressively, making it useful for text generation. The

drawback here is that GPT cannot learn bidirectional interactions

because tokens have only leftward context.

Figure 7: GPT Decoder [33]

The encoder input and decoder output are not required to be

aligned which allows for random noise transformations. In the BART

model, input sentence is corrupted by adding mask symbols as re-

placement for text spans and then it is fed to the bidirectional en-

coder (BERT). The target output is predicted by an auto-regressive

decoder (GPT) from previous un-altered tokens and encoder output.

Figure 8: BART Architecture [33]

23

In Figure 8, original input is ‘A B C D E’, the span C, D is masked,

at the same time an extra masked token is inserted before B. Hence,

the input of the encoder becomes A _ B _ E.

In our experiment we use the bert-large-mnli [33] model, a BART-

large base architecture that has been fine=tuned on the Multi-Genre

Natural Language Inference (MultiNLI) dataset [50]. The model has

an additional 2 layer classification head and 1" parameters.

3.5.3.6 BART-Yahoo In this version of BART, the bert-large-mnli

[33] model has been further finetuned on the Yahoo Answers topic

classification dataset [10]. Since the model has been fine-tuned on

topic classification dataset, it presumably performs well on zero-shot

classification tasks. Hence, we chose the model as one of our pre-

trained transformer models for our document retrieval task.

3.5.3.7 DistilBART DistilBART [38] is the distilled or student ver-

sion of the bert-large-mnli [33] model that used the No Teacher Dis-

tillation [45] approach. No Teacher Distillation is a ‘shrink and fine-

tune’ (SFT) technique which is simply reducing the teacher model to

a student model by copying parameters.

As an example, the authors described that, for a student BART

with 3 layers of decoder, they copy full decoder layers, 0,60=311 from

the original BART model. The encoder layers are copied entirely

without exclusion. They also argue that, during ties, any of the

layers can be arbitrarily chosen meaning instead of copying layer 6,

layer 5 would work equally well. When only a single decoder layer is

needed for the student mode, layer 1 is chosen.

According to the DistilBART paper, the student model performs

better when initialized with Direct Knowledge Distillation (KD) as

the student model tries to match the probability distribution of the

teacher model over next target words by reducing KL-divergence [30,

43].

We chose the pre-trained distilbart-mnli-12-3 model along with

24

the bart-large-mnli in order to observe the performance of a smaller

version of bart-large model on downstream zero-shot classification

task.

3.6 Dense Passage Retrieval

DPR or Dense Passage Retrieval is a retrieval method implemented

using only dense representation where a simple dual encoder is used

for the embedding of passages and questions to be learned [29]. The

authors argue that the dense, latent semantic encoding based re-

triever is able to capture useful context of a text that is not possible

using a inverted index based retrieval approach. DPR uses the BERT

[11] pre-trained model along with a dual-encoder architecture [5].

The model is trained on mini-batches question and passage (an-

swers) pairs. The authors observe that optimizing the embedding for

maximizing inner products of question and relevant passage vectors,

with the objective of comparing all question-passage pairs in a single

batch gives better results. Additionally, they conclude that by only

fine-tuning input text encoders on existing QA pairs can significantly

outperform the standard BM25 model [41].

DPR uses two BERT models for encoding, one for passage vector

encoding from the passages (answers) and the other one encodes

questions into a question vector. Later during inference, the passage

encoder is applied to all the passages and indexed using FAISS [26]

which is a library for clustering dense vectors and similarity search

tasks. In our project we use the Haystack [21] implementation of

DPR using FAISS.

25

4 Methodology

4.1 Dataset

This thesis strives to enhance document retrieval for finding the-

matically relevant documents (where themes are expressed using

keywords or some other form of query. The datasets used in this

project are unstructured and diverse in content. However, all these

datasets contain parts of text from scientific publications that are

in some way mapped towards keywords or labels. This allows us

to perform similar experiments on the datasets and evaluate the re-

sults using same metrics. There are in total 3 primary datasets. We

have selected the datasets based on their relevance to the task, each

of these datsets provide some advantages over other datasets.

4.2 Dataset Description

Here we discuss the source and content of our primary datasets.

• ENX Dataset : This dataset has been scraped from the en-

gineering pre-print server engrXiv [14]. The corpus contains

1237 documents from various engineering backgrounds such

as ‘Biotechnology’, ‘Aerospace’, ‘Computer Science’ etc. The

scraped data was processed and formatted in a way that can be

easily used. Afterwards, each document has the following list of

attributes, ‘_key’, ‘_id’, ‘rev’, ‘id’, ‘title’, ‘authors’, ‘abstract’, ‘doi’,

‘date’, ‘disciplines’, ‘tags’, ‘type_key’, ‘origin’, ‘link’ and ‘search-

text’. The useful features for our purpose are ‘_key’, ‘title’, ‘ab-

stract’, ‘disciplines’ and ‘searchtext’ (combination of ‘title’ and

‘abstract’). The disciplines attribute contains the thematic la-

bels which can be used for measuring the success of retrieval

methods. A relational data-frame has been produced mapping

each discipline to a list of corresponding documents (example:

Chemical = Chemical Engineering + Chemical Kinetics + Other

26

Chemical Engineering.)

The raw dataset has 113 unique disciplines which were later

reduced to 80 by combining similar disciplines.

• ESR Dataset : ESR or Explicit Semantic Ranking dataset was

curated for the paper Explicit Semantic Ranking for Academic

Search via Knowledge Graph Embedding [52]. The raw dataset

contains query log, relevance judgments, candidate documents

(from Semantic Scholar) as well as ranking lists. We are us-

ing the candidate documents and query log for our experiment.

There are 100 different query terms mostly related to com-

puter science such as ‘Deep Learning’, ‘Part of speech tags’,

‘Convolutional neural networks’ etc. and 3251 corresponding

documents. Each document contains the following attributes

‘doc_no’, ‘title’ and ‘paperAbstract’. To maintain uniformity

‘doc_no’ has been changed to ‘_key’ and ‘searchtext’ has been

produced combining ‘title’ and ‘paperAbstract’. The main ad-

vantage of the ESR dataset over the ENX dataset is that, the

mapping between queries and documents has been done by ex-

perts which makes it more reliable.

• EU-ENV Dataset : It is a corpus of 1463 documents scrapped

from the Science for Environment Policy News site [16]. The ar-

ticles are mainly oriented towards environmental themes such

as ‘Climate change’, ‘Biodiversity’, ‘chemical’ etc. Each docu-

ment contains ‘key’, ‘link’, ‘title’, ‘abstract’, ‘text’, ‘date’, ‘theme’,

‘source’ and ‘contact’. We only use the fields ‘key’, ‘theme’ and

‘text’ for our experiments. There are also lists of documents

(keys) for all thematic tags which are concerned with that tag

and in total there are 31 unique tags. The headers ‘key’, ‘text’

and ‘theme’ has been changed into ‘_key’, ‘searchtext’ and ‘query’

respectively. Similar to the ENV dataset, the tags to document

mapping of EU-ENV Dataset has been done by the editors who

27

collected the articles for the website. At the same time each

query in this dataset is mapped to a larger number of docu-

ments compared to ESR or ENX dataset, which makes per-

forming some of our experiments easier (explained in chapter

x).

• Others : We have used a corpus of scraped text from the ELIB

publications of DLR [13] for some preliminary evaluations of

relevance ranking models (further explanation on chapter x).

The corpus contains ‘abstracts’ from nearly 18000 documents

published on the DLR Electronic Library (ELIB).

4.3 Data Pre-processing

Data pre-processing is a crucial part of data centric projects. The

goal of pre-processing step is to bring uniformity amongst different

datasets as well as reduce redundancy from the raw data. Textual

data pre-processing is a fairly straight forward process and has a

well established set of techniques. We have followed the methods

adapted by the authors of these Topic Discovery papers [19] with

some changes.

Figure 9: Text pre-processing pipeline

Figure 9 illustrates the steps followed to prepare the raw data for

experiments. Below are the explanations of the process:

• Tokenization : Raw text (concatenation of several sentences)

is lower-cased and punctuation marks are removed. Then the

strings are tokenized. We have used custom SpaCy tokenizer in

order to not remove ‘hyphens’. Our experiments show that word

embedding models like fastText work better with hyphenated

28

words (eg. non-standard) rather than pair of words (eg. non

standard).

• Non-ASCII Strings Removal : We remove all special characters

as well as non-English letters.

• Stop-words Removal : We have used the default stop-word list

from available with SpaCy. It has the largest (326 words) list of

stop-words in comparison with similar text processing libraries.

• Short Words Removal : We remove all words that are less than

2 characters long.

• Lemmatization : Lemmatization is the technique to convert

words to its contextually relevant base form. Hence same words

can have different lemma depending on the context they have

in a sentence. We removed redundancy by grouping different

inflected forms of words into their base form using lemmatiza-

tion.

• Re-join Tokens : Since the transformer models accept sentence

as input, in our processed datasets we keep the text input as a

single space separated string of tokens retrieved after the pre-

processing steps.

Here is a sample raw text along with the processed version.

Raw Text : Semantic parsing has been a topic of great interest to

researchers for a very long time. The drawback of these approaches

was that the systems were specific domain dependant [3]. Some

improved methods that take into consideration semantic aspects in-

stead of only syntactic information are proposed in some publica-

tions [5, 6, 7]. In recent years neural sequence-to-sequence mod-

els have been proposed to deal with semantic parsing [1,8]. These

systems have overcome the need for extensive feature engineering.

Some sophisticated ideas to improve the outcome of these models

are data augmentation [9] and transfer learning [10].

29

Processed text: semantic parse topic great interest researcher

long time drawback approach system specific domain dependant im-

prove method consideration semantic aspect instead syntactic infor-

mation propose publication recent year neural sequence-to-sequence

model propose deal semantic parsing system overcome need exten-

sive feature engineering sophisticated idea improve outcome model

data augmentation transfer learning

4.4 Similarity Score Calculation

In our proposed similarity based relevance ranking and logistic

regression methods we require the similarity scores between two

terms. In our case, the first term is individual words from docu-

ments and the second term is the keyword we use to retrieve doc-

uments. The similarity score is calculated as cosine similarity be-

tween the embedding vectors of the two terms. The idea behind the

approach is that, word that are closer in the vector space are ex-

pected to be similar in meaning and have higher similarity score.

Euclidean distance metric accounts the magnitude of the vectors as

well as distance. Similarity score between two word vectors will then

depend on their length and frequency along with their orientation.

However, angular distance metrics such as cosine similarity depends

only on the orientation of the words and provides more accurate se-

mantic similarity scores between common and uncommon, frequent

and less frequent words.

• Cosine Score: It is the cosine of the angle between two vectors,

that gives the angular distance between the vectors. The for-

mula to calculate the cosine distance of two vectors, � and � is

as follows,

cos(\) = � · �
‖�‖‖�‖ =

∑=
8=1 �8�8√∑=

8=1 �
2
8

√∑=
8=1 �

2
8

(3)

Cosine is 1 at \ = 0 and −1 at \ = 180, hence for exactly same

30

words the similarity score is highest and for opposite words

having opposite vectors it will be lowest.

In this thesis we use 4 different word embedding models to cal-

culate the word vectors. They are as follows:

• Pre-trained fastText model ft-en-cc [15].

• fastText model trained on some data from the ELIB repository of

DLR. We trained different embedding models on this data with

different parameter values and chose the elib_model_s_100_e_5_w_5

model, denoted as , it is on 100 dimension with a window size

of 5 and epoch 5.

• ConceptNet Numberbatch embedding model version one. Since

the model is not capable of handling out-of-vocabulary words,

we do a gradual removal of suffix characters and search for

vectors for out-of-vocabulary words until a single character is

left. The model is denoted as nb_vec henceforth.

• ConceptNet Numberbatch embedding model version two. In-

stead of gradual removal of suffix characters when out-of-vocabulary

words are encountered, we instead use ft-en-cc to get the em-

bedding vector of the out-of-vocabulary words. The model is

denoted as nb_vec_ft henceforth.

4.5 Similarity Score Based Relevance Ranking

In this section, we explain our proposed novel relevance ranking

method for term based retrieval of documents that are contextually

related to the term regardless of the existence or non-existence of

the term in the document. At its core the relevance ranking method

has a complex relevance ranking equation which returns the rank-

ing of a document corresponding to a specific term. Although, the

equation is inspired from the Okapi-BM25 ranking approach, it has

31

many differing components. In the next part we have explained the

relevance ranking equation along with its different components.

'(C) = � (C)
∑
8

� (F8, C)� (F8), (F8) (4)

Here,

• F8 indicates a specific word in a document and C indicates the

search term in consideration.

• is an overall normalization constant which is chosen in order

to keep the maximum of '(C) at 1.

• � (F, C) is based on the embedding cosine similarity of F and C

(B8<(F, C)).

– � (F, C) is 0 for word pairs having similarity scores below a

certain threshold (this threshold is denoted as st hence-

forth), 1 for identical words and between 0 − 1 for some

semantic relevance between the words.

– We chose the following equation for � (F, C) where \ is a

threshold.

� (F, C) = @(B8<(F, C) − \2)
(1 − \)2

+ 1
@

(5)

• , (F) is a function that is related to the frequency of F in the

document.

– We use the following expression for F(F),

, (F) = G(:F + 1)
G + :F

(6)

and

G =
2>D=C8

(1 − 1F) + 1F ∗ 0F
(7)

– , (F) integrates length normalization, 1F and saturation,

:F.

32

– 0F is the total number of words in document 8 divided by

the average number of words in all documents of the set.

• � (F) is a function that measures the significance of F within

the document.

– We have used the posIDfRank method proposed by Hamm

et al. to calculate these values [19].

– The method combines the following: voting based on lo-

cal word neighborhood associations; a weighting according

to the absolute position in the text; counter balancing the

influence of unspecific words by the inverse document fre-

quency.

• � (C) rewards situations where words that are semantically some-

what related to C cover a big portion of the document.

– We use the following expression for � (C),

� (C) = G(:2 + 1)
G + :2

(8)

and

G =
2>D=C8

(1 − 12) + 12 ∗ 02
(9)

– � (C) integrates length normalization, 12 and saturation, :2.

– 02 is the number of unique words in document 8 divided by

the average number of unique words in all documents of

the set.

In total there are 7 parameters (\, @, 1F, :F, 12, :2 and BC) can be

used for fitting to the labeled datasets.) in the relevance ranking

equation that can has been tuned to successfully rank the relevance

of a document against a particular term. After many experiments we

set @ = 3
4 , 1F = 0.1, :F = 2, 12 = 0.4 and :2 = 2. In subsubsection 5.2.5

we show how different values of \ and BC influence the relevance

ranking score.

33

4.6 Similarity Score Based Logistic Regression

It is possible to use the similarity scores between the words in a

document and keywords as features for a regression model to predict

class probability. In our task, for each dataset, we gather similar-

ity scores each word in a document with individual keywords. We

have then processed these scores into 10 equidistant weighted his-

togram bins based on value. For the implementation of the weighted

bins, whenever a word has a similarity with the keyword within the

bin, instead of adding 1, we add the PIdfrank value of the word.

In this way, words have more impact on the count if they are im-

portant words. Normalisation is done in a way that the weighted

bin counts add up to 1 for each document. For each embedding

model we then have a single dataframe containing 10 features apart

from document key and label. For each dataset, apart from the 4

original dataframes from the 4 embedding models, we also create 4

other combinations of these dataframes by horizontally concatenat-

ing dataframes. Lastly, we apply logistic regression on the data to

predict the document class. We use a 70 − 30 train-test split for the

data. The 4 dataframes that are produced in combination of different

dataframes are as follows:

• ft_elib : ft_en_cc + elib_model_s_100_e_5_w_5

• ft_nb : ft_en_cc + nb_vec

• ft_nb_ft : ft_en_cc + nb_vec_ft

• ft_nb_elib : ft_en_cc + nb_vec + elib_model_s_100_e_5_w_5

4.7 Zero-shot Learning with Transformer based pre-

tarined NLP Models

Zero-shot learning, in the context of our task, is a classification

strategy where the task is to predict classes that had not been in-

cluded in the training. Natural Language Inference (NLI) is one of the

34

possible strategies for zero-shot learning. Example: The premise ‘It

is snowing’ entails the hypothesis ‘The temperature is below 10°C’.

The premise ‘Today is the 29th of February’ contradicts the hypoth-

esis ‘It is the year 2021’. In the examples the relation between the

sentence pairs can be inferred from the context. In subsection 3.5

we have explained the core Transformer architecture and discussed

about the transformer based NLP models we use in this thesis.

The pre-trained transformer models available on the Hugging Face

library are trained with many different objectives, some of these

models can be used for downstream classification tasks. We employ

the Hugging Face classifier pipeline for this purpose. The compo-

nents of the classifier pipeline are:

• A language model (eg: bert-base-uncased) and a tokenizer.

• The text in to be classified, termed as premise. For our case

this is the content of the document.

• A list of hypothesis, possible classes for the text. We use the

list of keywords respective to each dataset as hypothesis.

• A hypothesis template, the default template is : this example is

.

• A Boolean parameter, when set it allows to compute entailment

probability score of a document for multiple possible classes.

The classifier pipeline returns the entailment probability of each

class from the hypothesis, we choose the class with the highest prob-

ability as the predicted class for the document.

subsubsection 3.5.3 contains the list of pre-trained NLP models

we use for the zero-shot learning task. Along with the pre-trained

models, we have also fine-tuned 2 other models. We have fine-tuned

the bert-base-uncased model with the help of the Trainer class from

the Hugging Face transformers module.

35

• BERT-ENX : We considered 50% of the ENX data and did a

70 − 30 train-test split on it to fine-tune the bert-base-uncased

model. Later, we make a subset corresponding to the keywords

we used for ENX from the unused 50% data and use that during

testing.

• BERT-ESR : We considered 30% of the ESR data and did a

70 − 30 train-test split on it to fine-tune the bert-base-uncased

model. Similar to BERT-ENX, we make a subset corresponding

to the keywords we used for ESR from the unused 70% data

and use that during testing.

The Trainer Class requires a specially formatted NLI dataset. There-

fore, we converted the data subsets used for fine-tuning accordingly.

We set the document content as ’premise’ and convert the keywords

from single words to full sentences (eg. This is a document about

chemicals.) to be the ’hypothesis’. Lastly, for each document only its

true hypothesis is labeled as entailment and rest of the four hypoth-

esis are labeled as contradiction.

5 Experiments

5.1 Evaluation Metrics

All the documents from the three datasets are mapped to a cer-

tain keyword or in other words have pre-assigned class label. In our

different experiments, we essentially try to predict a class label for

the documents. Therefore, evaluation metrics for classification tasks

has been adapted as the evaluation metric. In this thesis, we use the

standard metrics, precision, recall and F1 score. We have also used

weighted average precision and weighted average recall to evaluate

some results. Since, some of our data sub-classes are imbalanced,

we do not use accuracy as it will not be an accurate reflection of

36

the results. Before we proceed with the explanation of the evalu-

ation metrics, we describe the confusion metrics terminology (see

Figure 10).

Figure 10: Confusion Matrix

• True Positive (TP) : For a specific class (keyword), the true label

of a document and the predicted label of the document both are

positive (1), successful prediction.

• True Negative (TN) : For a specific class (keyword), the true label

of a document and the predicted label of the document both are

negative (0), successful prediction.

• False Positive (FP) : For a specific class (keyword), the true label

of a document is negative (0) but the predicted label is positive

(1), false prediction.

• False Negative (FN) : For a specific class (keyword), the true

label of a document is positive (1) but the predicted class is

negative (0), false prediction.

We can now define our evaluation metrics using these terminolo-

gies.

• Precision : For a specific keyword, it is the ratio between cor-

rectly predicted observations and all predicted observations.

%A428B8>= =
)%

)% + �% (10)

37

• Recall : For a specific keyword, recall calculates the ratio be-

tween correctly predicted observations and all true observa-

tions. Recall is also known as sensitivity.

'420;; =
)%

)% + �# (11)

• F1 Score : It is a combination (harmonic mean) of Precision

and Recall that takes into account both false positive and false

negative. F1 Score is a good metric for imbalanced classes.

�1_(2>A4 =
2 ∗ (%A428B8>= ∗ '420;;)
%A428B8>= + '420;; (12)

• Weighted Average Precision : In our experiments we have

used a set of keywords, we compile results using only one of

these keywords at a time. We can evaluate that result using

standard Precision and Recall. However, we also try to assess

the quality of the accumulated results on all keywords. The

Weighted Average Precision is the method we use to achieve

that. At first precision is calculated for each query separately

then we calculate the weighted average, weights are propor-

tional to the total number of documents related to the queries

being used.

%A428B8>=F0 =

∑
@ �@ ∗ %@∑

@ �@

(13)

Here, �@ is the number of documents mapped to query @ and

%3 is the Precision calculated for query @.

• Weighted Average Recall : We calculate Weighted Average Re-

call in a similar manner as Weighted Average Precision. At first

recall is calculated for each query separately then we calcu-

late the weighted average, weights are proportional to the total

number of documents related to the queries being used.

'420;;F0 =

∑
@ �@ ∗ '@∑

@ �@

(14)

38

Here, �@ is the number of documents mapped to query @ and

'3 is the Recall calculated for query @.

•

Weighted Average F1 Score : We calculate the weighted average

F1 score with the same formula as standard F1 score with weighted

average precision and recall values.

�1_(2>A4F0 =
2 ∗ (%A428B8>=F0 ∗ '420;;F0)
%A428B8>=F0 + '420;;F0

(15)

5.2 Model Setup and Results

For our experiments, we chose 3 sets of 5 keywords correspond-

ing to each of our datasets. These are the queries we use to evaluate

our models along with the benchmarks. Table 1 shows the list of

keywords used for each dataset.

Table 1: List of keywords for each dataset.

Dataset q1 q2 q3 q4 q5

ENX biomedical combustion computer aerospace chemical

ESR deep question computer information crypto-

learning answering vision geometry graphy

ENV energy biodiversity soil agriculture chemicals

In the following subsections we discuss the approach and results

of the different experiments that have been conducted.

5.2.1 Keyword Search

Keyword search refers to explicitly looking for a keyword in a set

of documents. A certain document or text is retrieved only if the

query term exists in the document. Keyword search in our experi-

ment has been implemented by simply using Python’s ‘in’ command.

39

We calculate precision, recall and f1-score on each individual key-

words and use the values to subsequently calculate the weighted

average precision, recall and f1-score.

Table 2: Keyword Search Evaluation

Dataset precisionwa recallwa f1-scorewa

ENX 0.73 0.14 0.23

ESR 0.96 0.68 0.79

ENV 0.72 0.59 0.65

Table 2 contains the Weighted Average Precision and Weighted

Average Recall. We can observe that the recall score is much lower

compared to precision score, this is due to the fact that with keyword

search we only extracted documents that contained the keywords.

However, there were other relevant documents in the corpus that

do not explicitly contain the keyword but is contextually associated

with it. Hence, we can draw the conclusion that in order to retrieve

documents that are contextually associated to the keyword but do

not contain the keyword explicitly explicit keyword search is not very

useful.

5.2.2 Okapi-BM25

We have explained in subsection 3.3 the principles behind the

Okapi-BM25 algorithm. It is an important benchmark in relevance

ranking tasks related to academic and commercial research. Hence,

we have produced relevance ranking results using the Okapi BM25

in order to be able to compare the results of our approaches with an

established method. Similar to the Keyword Search approach, we

chose the same 3 sets of keywords corresponding to our datasets

(Table 1). For each keyword, after applying BM25, we get a de-

scending ordered list of scores corresponding to the documents. For

40

each keyword, we then consider the first (N+5) (N being the actual

number of documents corresponding to the keyword in the dataset)

documents as a match for the keyword. Afterwards, we compare

the predicted list of documents with actual list of documents using

standard precision and recall as well as weighted average precision

and recall to analyze the outcome. The relevance ranking algorithm

has been implemented using the Python library rank_bm25 which

has the okapi-bm25 version of the BM25 algorithms along with some

other variations of BM25 [6].

Table 3: Okapi BM25 Search Evaluation (Weighted Average Precision

and Recall)

Dataset precisionwa recallwa f1-scorewa

ENX 0.30 0.33 0.32

ESR 0.81 0.92 0.86

ENV 0.55 0.58 0.56

Table 3 shows the weighted average precision, recall and f1-score

values on all datasets. Here we can see that these evaluation scores

on ESR dataset is comparatively better than it is on ENX and ENV

dataset. Previously in the keyword search approach(Table 2), we ob-

served that the precision score for ESR dataset is much higher com-

pared to the other datasets. A closer look into the dataset content

shows us that ESR dataset tends to contain many direct instances

of the keywords in the searchtext which is not the case for ENX and

ENV dataset. At the same time, the documents of ESR dataset do

not have overlapping contextual similarities amongst them. Since

the documents in ENX dataset match contextually to the keywords

and in most cases do not actually contain the keyword itself, it is

not possible to efficiently retrieve documents from such a corpus

using Okapi-BM25. Another reason for the ESR scores being high

is, BM25 searches documents individually for each sub-word of a

41

multi-word query (eg. deep learning) and combines the separate

results for the final rank, making it easier for BM25 to identify doc-

uments that contain both sub-words together or separately (possibly

out of context).

5.2.3 Dense Passage Retrieval

In subsection 3.6 we briefly explained the motivation and archi-

tecture of the dense passage retrieval method. The approach was

proposed for open domain question answering. Therefore, logically it

can be used for document retrieval in the sense that, we can think of

our unlabeled document corpus as the data source and our queries

as the questions and retrieve texts that are relevant using DPR. We

directly use the Haystack [21] implementation of DPR for our project.

For each dataset we first create the document FAISS store and from

there we get a resulting list counting retrieved texts in descending

order of relevance. For each query (@8), we choose the first # + 5 doc-

uments (# being the number of documents actually corresponding

to query 8) as the predicted documents matching (@8) by DPR. Later,

we use our evaluation metrics to analyze the results.

Table 4: Dense Passage Retrieval Evaluation

Dataset precisionwa recallwa f1-scorewa

ENX 0.47 0.50 0.49

ESR 0.55 0.62 0.59

ENV 0.56 0.59 0.57

In Table 4 we can observe that for ENX dataset we get signifi-

cantly improved results using DPR. The score for ENV dataset also

has some improvements. However, for ESR dataset the results de-

preciate. As explained before, BM25 algorithm treats muti-word

query (eg. deep-learning) as separate words and culminates those

42

scores while ranking documents whereas DPR treats such queries

as a single term.

5.2.4 Zero-shot Learning with Transformer based pre-trained

NLP Models

In subsection 4.7 we have described the zero-shot learning method

along with the pre-trained (subsection 3.5) and fine-tuned NLP mod-

els we are using. In this section we present the evaluation results

we retrieved using the zero-shot learning approach. Along with the

pre-trained models, we have also fine-tuned the BERT (bert-base-

uncased) with ENX and ESR dataset.

During our initial experiments we observed that the hypothesis

template criterion in the zero-shot classifier pipeline influences the

results. Therefore, we ran small tests to evaluate the effects of dif-

ferent hypothesis template options for the classifier. The default

hypothesis template is This example is {}., where the {} is replaced

by the hypothesis, in our case keywords. We present our findings

regarding this analysis in this section. We have used 8 different

hypothesis templates in combination with two different transformer

models (pre-trained BART and fine-tuned BERT_ESR). We conduct

this experiment on the following two datasets, ENX and ENV.

43

Table 5: Template Evaluation - ENX - BART

template pwa rwa f1-swa

This is a document about {}. 0.78 0.77 0.78

This text is about {}. 0.78 0.76 0.77

This is a text about {}. 0.77 0.75 0.76

This text contains {}. 0.77 0.75 0.76

This topic is {}. 0.77 0.74 0.76

This is an example of {}. 0.75 0.72 0.74

This example is {}. 0.73 0.7 0.72

{}. 0.69 0.69 0.69

Table 6: Template Evaluation - ENX - BERT-ESR

template pwa rwa f1-swa

This is an example of {}. 0.7 0.51 0.59

This is a document about {}. 0.69 0.56 0.62

This is a text about {}. 0.69 0.61 0.65

This text contains {}. 0.68 0.51 0.58

This text is about {}. 0.67 0.6 0.63

This topic is {}. 0.67 0.53 0.59

{}. 0.65 0.46 0.54

This example is {}. 0.6 0.51 0.55

44

Table 7: Template Evaluation - ENV - BART

template pwa rwa f1-swa

This is a document about {}. 0.86 0.86 0.86

This is a text about {}. 0.86 0.85 0.85

This text is about {}. 0.86 0.85 0.86

This topic is {}. 0.85 0.84 0.84

This example is {}. 0.83 0.81 0.82

This text contains {}. 0.83 0.81 0.82

This is an example of {}. 0.79 0.79 0.79

{}. 0.67 0.65 0.66

Table 8: Template Evaluation - ENV - BERT-ESR

template pwa rwa f1-swa

This text is about {}. 0.8 0.7 0.75

This is an example of {}. 0.79 0.73 0.76

This is a document about {}. 0.79 0.73 0.76

This is a text about {}. 0.79 0.72 0.75

This topic is {}. 0.79 0.71 0.75

This text contains {}. 0.76 0.7 0.73

This example is {}. 0.74 0.66 0.7

{}. 0.72 0.6 0.66

In tables (Table 5, Table 6, Table 7, Table 8) the template, {}. indi-

cates that no template was used. In the tables we can clearly observe

that changes in sentence pattern and words have significant effects

45

on the results. Almost in all cases, the other hypothesis templates

have better scores than the default template (This example is {}.). Al-

though, different words (i.e. document, example, topic etc.) meaning

same context have different results, sentences made with different

combinations of same words have quite similar results. Such as,

the templates This is a text about {}. and This text is about {}.. After

carefully observing the results, we can conclude that amongst these

examples the following three, This is a text about {}., This is a docu-

ment about {}. and This text is about {}. consistently do better than

other examples. An aspect of the example sentences is, we began

structuring new sentences from the default sentence by first chang-

ing the structure then the words. Therefore we can only conclude

that our example sentences work better than the default hypothesis

template (This example is {}.), there may exist other sentences that

could work better than our top examples.

In our subsequent experiments we work with the following two

hypothesis templates: This is a text about {}. and This is a document

about {}. . For all the pre-trained transformer models we use the

same subsets of our dataset as the previous experiments.

From the evaluation results (Table 9, Table 10, Table 11) it is

evident that zero-shot classification does significantly better than

the other approaches described so far on keyword based informa-

tion retrieval task. Although the pre-trained classifiers were trained

on shorter sentences, they do very well with longer texts as well.

Amongst the classifiers, the BART model has notably higher scores

compared to the other models across all three datasets in general.

One important aspect we can observe from these scores is that, even

the models fine-tuned on the same dataset distribution do not do

better than the available pre-trained models. Which implies that we

can achieve good results by applying pre-trained transformer based

zero-shot learning without explicit fine-tuning. We can also notice

here that amongst the two hypothesis templates, the template This

46

is a document about {}. is consistently better than This is a text about

{}. which is on par with our findings from the hypothesis template

study.

Table 9: Zero Shot Classification - ENX

model template pwa rwa f1-swa

BART This is a document about {}. 0.78 0.77 0.78

BART This is a text about {}. 0.77 0.75 0.76

BART-Yahoo This is a text about {}. 0.77 0.76 0.76

BART-Yahoo This is a document about {}. 0.76 0.76 0.76

RoBERTa This is a document about {}. 0.74 0.73 0.73

BERT This is a document about {}. 0.73 0.56 0.64

RoBERTa This is a text about {}. 0.73 0.73 0.73

BERT-ENX This is a document about {}. 0.7 0.57 0.63

BERT-ENX This is a text about {}. 0.69 0.62 0.65

BERT-ESR This is a document about {}. 0.69 0.56 0.62

BERT-ESR This is a text about {}. 0.69 0.61 0.65

BERT This is a text about {}. 0.63 0.5 0.56

DistilBART This is a document about {}. 0.56 0.48 0.52

DistilBART This is a text about {}. 0.51 0.44 0.47

SqueezeBERT This is a text about {}. 0.42 0.29 0.35

SqueezeBERT This is a document about {}. 0.41 0.31 0.35

DeBERTa This is a document about {}. 0.21 0.22 0.21

DeBERTa This is a text about {}. 0.16 0.1 0.12

47

Table 10: Zero Shot Classification - ESR

model template pwa rwa f1-swa

BERT This is a document about {}. 0.96 0.95 0.95

BERT-ENX This is a document about {}. 0.95 0.95 0.95

BERT-ENX This is a text about {}. 0.95 0.95 0.95

BERT-ESR This is a document about {}. 0.95 0.95 0.95

BERT-ESR This is a text about {}. 0.95 0.95 0.95

BART This is a text about {}. 0.91 0.89 0.9

BART This is a document about {}. 0.9 0.9 0.9

RoBERTa This is a document about {}. 0.89 0.87 0.88

BERT This is a text about {}. 0.88 0.88 0.88

RoBERTa This is a text about {}. 0.87 0.85 0.86

BART-Yahoo This is a document about {}. 0.81 0.71 0.76

BART-Yahoo This is a text about {}. 0.8 0.7 0.75

SqueezeBERT This is a document about {}. 0.76 0.24 0.37

SqueezeBERT This is a text about {}. 0.71 0.25 0.37

DeBERTa This is a text about {}. 0.43 0.36 0.39

DeBERTa This is a document about {}. 0.22 0.16 0.19

DistilBART This is a document about {}. 0.14 0.09 0.11

DistilBART This is a text about {}. 0.11 0.07 0.09

48

Table 11: Zero Shot Classification - ENV

model template pwa rwa f1-swa

BART-Yahoo This is a document about {}. 0.87 0.86 0.86

BART This is a document about {}. 0.86 0.86 0.86

BART This is a text about {}. 0.86 0.85 0.85

BART-Yahoo This is a text about {}. 0.86 0.84 0.85

RoBERTa This is a document about {}. 0.83 0.77 0.8

RoBERTa This is a text about {}. 0.83 0.76 0.79

BERT-ENX This is a document about {}. 0.79 0.74 0.76

BERT-ESR This is a document about {}. 0.79 0.73 0.76

BERT-ESR This is a text about {}. 0.79 0.72 0.75

BERT This is a document about {}. 0.79 0.74 0.76

BERT-ENX This is a text about {}. 0.78 0.72 0.75

BERT This is a text about {}. 0.78 0.7 0.74

SqueezeBERT This is a text about {}. 0.68 0.39 0.49

SqueezeBERT This is a document about {}. 0.65 0.37 0.48

DistilBART This is a document about {}. 0.54 0.44 0.48

DistilBART This is a text about {}. 0.52 0.45 0.48

DeBERTa This is a text about {}. 0.21 0.17 0.19

DeBERTa This is a document about {}. 0.05 0.08 0.06

5.2.5 Similarity Score Based Relevance Ranking

In section subsection 4.5, the components of the following rank-

ing equation for our relevance ranking method has been explained

in details.

49

'(C) = � (C)
∑
8

� (F8, C)� (F8), (F8) (16)

In this section we observe the effect of different values of \ and

and the similarity threshold BC. B8<(F, C) plays an important role as

by restricting it with a threshold (BC), we can reduce the number of

words we are considering in a document. Hence, only the words with

a value above the threshold are the ones considered in calculation.

At the same time we also observe how different word embedding

models affect (sim) values. A total of 18 combinations of \ (0,0.1,0.5)

and similarity thresholds (BC) (0.25,0.3,0.35,0.4,0.5,0.6) have been

used here.

For each term, C in a dataset, we retrieve a descending ordered

list containing document ID and corresponding rank values. From

that list we consider the first (# + 3) (# being the number of true

positives for @ in that corpus) to be the documents predicted by the

relevance ranking equation that correspond to C. Then we match the

list of true positives with the list of predicted positives to gather the

evaluation score.

We have used four different embedding models to acquire the co-

sine similarity values between keywords and individual words from

searchtext. These four models are the pre-trained fastText model

(ft_en_cc), fastText model trained on ELIB dataset (elib_model_s_100

_e_5_w_5), ConceptNet NumberBatch (nb_vec) and ConceptNet Num-

berBatch combined with ft_en_cc (nb_vec_ft). The acquisition, model

descriptions and usage of these models for cosine similarity score

calculation have been discussed in subsection 4.4.

50

5.2.5.1 Relevance Ranking - ENX Dataset The ENX keywords

from Table 1 and corresponding subset of ENX corpus has been

used here as well with pre-processing. Table 4 shows the evaluation

results where, st_\ is the parameter dictating the different similarity

threshold (st) and \ values. Figure 11 shows the visualisation of the

evaluation scores.

51

Table 12: Relevance Ranking Evaluation - ENX

(a) ft_en_cc

st_\ pwa rwa f1-swa

0.25_0.1 0.47 0.49 0.48

0.25_0.5 0.46 0.47 0.46

0.25_0 0.47 0.49 0.48

0.3_0.1 0.5 0.52 0.51
0.3_0.5 0.48 0.49 0.48

0.3_0 0.49 0.51 0.5

0.35_0.1 0.5 0.52 0.51
0.35_0.5 0.49 0.51 0.5

0.35_0 0.5 0.52 0.51
0.4_0.1 0.47 0.48 0.48

0.4_0.5 0.47 0.49 0.48

0.4_0 0.47 0.48 0.48

0.5_0.1 0.56 0.35 0.43

0.5_0.5 0.55 0.34 0.42

0.5_0 0.56 0.35 0.43

0.6_0.1 0.67 0.16 0.26

0.6_0.5 0.67 0.16 0.26

0.6_0 0.67 0.16 0.26

(b) elib_model_s_100_e_5_w_5

st_\ pwa rwa f1-swa

0.25_0.1 0.36 0.37 0.37

0.25_0.5 0.34 0.35 0.34

0.25_0 0.36 0.37 0.37

0.3_0.1 0.37 0.39 0.38

0.3_0.5 0.37 0.38 0.37

0.3_0 0.37 0.38 0.38

0.35_0.1 0.4 0.41 0.41

0.35_0.5 0.39 0.41 0.4

0.35_0 0.4 0.41 0.4

0.4_0.1 0.41 0.42 0.41

0.4_0.5 0.41 0.42 0.42

0.4_0 0.41 0.43 0.42

0.5_0.1 0.44 0.46 0.45

0.5_0.5 0.44 0.46 0.45

0.5_0 0.44 0.46 0.45

0.6_0.1 0.45 0.45 0.45

0.6_0.5 0.45 0.46 0.46
0.6_0 0.45 0.45 0.45

(c) nb_vec

st_\ pwa rwa f1-swa

0.25_0.1 0.51 0.53 0.52
0.25_0.5 0.5 0.52 0.51

0.25_0 0.51 0.53 0.52
0.3_0.1 0.51 0.53 0.52
0.3_0.5 0.5 0.52 0.51

0.3_0 0.51 0.53 0.52
0.35_0.1 0.49 0.51 0.5

0.35_0.5 0.49 0.51 0.5

0.35_0 0.49 0.51 0.5

0.4_0.1 0.48 0.5 0.49

0.4_0.5 0.48 0.5 0.49

0.4_0 0.48 0.5 0.49

0.5_0.1 0.58 0.31 0.41

0.5_0.5 0.58 0.32 0.41

0.5_0 0.58 0.31 0.41

0.6_0.1 0.71 0.18 0.29

0.6_0.5 0.71 0.18 0.29

0.6_0 0.71 0.18 0.29

(d) nb_vec_ft

st_\ pwa rwa f1-swa

0.25_0.1 0.51 0.53 0.52
0.25_0.5 0.5 0.52 0.51

0.25_0 0.51 0.53 0.52
0.3_0.1 0.51 0.53 0.52
0.3_0.5 0.51 0.53 0.52
0.3_0 0.51 0.53 0.52

0.35_0.1 0.49 0.51 0.5

0.35_0.5 0.49 0.51 0.5

0.35_0 0.5 0.52 0.51

0.4_0.1 0.48 0.5 0.49

0.4_0.5 0.48 0.5 0.49

0.4_0 0.48 0.5 0.49

0.5_0.1 0.59 0.31 0.41

0.5_0.5 0.59 0.31 0.41

0.5_0 0.59 0.31 0.41

0.6_0.1 0.73 0.18 0.29

0.6_0.5 0.73 0.18 0.29

0.6_0 0.73 0.18 0.29

52

(a) ft_en_cc

(b) elib_model_s_100_e_5_w_5

(c) nb_vec

53

(d) nb_vec_ft

Figure 11: Relevance Ranking Results Visualisation - ENX

5.2.5.2 Relevance Ranking - ESR Dataset The ESR keywords

from Table 1 and corresponding subset of the ESR corpus has been

used with pre-processing. Table 5 shows the evaluation results and

Figure 12 shows the visualisation of the evaluation scores.

54

Table 13: Relevance Ranking Evaluation - ESR

(a) ft_en_cc

st_\ pwa rwa f1-swa

0.25_0.1 0.53 0.57 0.55

0.25_0.5 0.5 0.54 0.52

0.25_0 0.53 0.57 0.55

0.3_0.1 0.57 0.62 0.6

0.3_0.5 0.58 0.62 0.6

0.3_0 0.56 0.61 0.59

0.35_0.1 0.64 0.7 0.67

0.35_0.5 0.68 0.73 0.7

0.35_0 0.64 0.69 0.66

0.4_0.1 0.64 0.64 0.64

0.4_0.5 0.65 0.66 0.66

0.4_0 0.64 0.64 0.64

0.5_0.1 0.83 0.65 0.73
0.5_0.5 0.83 0.65 0.73
0.5_0 0.82 0.64 0.72

0.6_0.1 0.82 0.64 0.72

0.6_0.5 0.83 0.64 0.72

0.6_0 0.82 0.64 0.72

(b) elib_model_s_100_e_5_w_5

st_\ pwa rwa f1-swa

0.25_0.1 0.34 0.36 0.35

0.25_0.5 0.32 0.34 0.33

0.25_0 0.32 0.34 0.33

0.3_0.1 0.35 0.38 0.37

0.3_0.5 0.35 0.38 0.37

0.3_0 0.34 0.36 0.35

0.35_0.1 0.36 0.39 0.38

0.35_0.5 0.41 0.44 0.43

0.35_0 0.35 0.38 0.37

0.4_0.1 0.4 0.43 0.41

0.4_0.5 0.45 0.49 0.47

0.4_0 0.38 0.41 0.4

0.5_0.1 0.5 0.54 0.52

0.5_0.5 0.56 0.6 0.58

0.5_0 0.48 0.52 0.5

0.6_0.1 0.62 0.66 0.64

0.6_0.5 0.68 0.74 0.71
0.6_0 0.61 0.66 0.64

(c) nb_vec

st_\ pwa rwa f1-swa

0.25_0.1 0.65 0.7 0.67

0.25_0.5 0.61 0.65 0.63

0.25_0 0.63 0.68 0.65

0.3_0.1 0.71 0.77 0.74

0.3_0.5 0.72 0.77 0.74

0.3_0 0.71 0.76 0.73

0.35_0.1 0.74 0.79 0.76

0.35_0.5 0.74 0.8 0.77

0.35_0 0.73 0.79 0.76

0.4_0.1 0.75 0.81 0.78

0.4_0.5 0.75 0.81 0.78

0.4_0 0.75 0.8 0.77

0.5_0.1 0.75 0.8 0.77

0.5_0.5 0.75 0.81 0.78

0.5_0 0.75 0.8 0.77

0.6_0.1 0.78 0.82 0.8
0.6_0.5 0.78 0.82 0.8
0.6_0 0.78 0.82 0.8

(d) nb_vec_ft

st_\ pwa rwa f1-swa

0.25_0.1 0.53 0.57 0.55

0.25_0.5 0.51 0.55 0.53

0.25_0 0.52 0.56 0.54

0.3_0.1 0.58 0.63 0.61

0.3_0.5 0.58 0.63 0.61

0.3_0 0.58 0.62 0.6

0.35_0.1 0.64 0.7 0.67

0.35_0.5 0.68 0.74 0.71

0.35_0 0.64 0.69 0.66

0.4_0.1 0.63 0.64 0.64

0.4_0.5 0.65 0.66 0.66

0.4_0 0.63 0.64 0.64

0.5_0.1 0.8 0.64 0.72

0.5_0.5 0.81 0.65 0.73
0.5_0 0.8 0.64 0.71

0.6_0.1 0.82 0.64 0.72

0.6_0.5 0.83 0.64 0.72

0.6_0 0.82 0.64 0.72

55

(a) ft_en_cc

(b) elib_model_s_100_e_5_w_5

(c) nb_vec

56

(d) nb_vec_ft

Figure 12: Relevance Ranking Results Visualisation - ESR

5.2.5.3 Relevance Ranking - ENV Dataset The ENV keywords

from Table 1 and corresponding subset of the ENV corpus has been

used with pre-processing. Table 6 shows the evaluation results and

Figure 13 shows the visualisation of the evaluation scores.

57

Table 14: Relevance Ranking Evaluation - ENV

(a) ft_en_cc

st_\ pwa rwa f1-swa

0.25_0.1 0.55 0.56 0.55

0.25_0.5 0.49 0.51 0.5

0.25_0 0.55 0.56 0.55

0.3_0.1 0.58 0.6 0.59

0.3_0.5 0.57 0.58 0.57

0.3_0 0.58 0.6 0.59

0.35_0.1 0.62 0.63 0.62

0.35_0.5 0.61 0.63 0.62

0.35_0 0.62 0.63 0.62

0.4_0.1 0.64 0.66 0.65

0.4_0.5 0.65 0.67 0.66

0.4_0 0.64 0.66 0.65

0.5_0.1 0.66 0.68 0.67

0.5_0.5 0.66 0.68 0.67

0.5_0 0.66 0.68 0.67

0.6_0.1 0.74 0.68 0.71
0.6_0.5 0.73 0.68 0.71
0.6_0 0.74 0.68 0.71

(b) elib_model_s_100_e_5_w_5

st_\ pwa rwa f1-swa

0.25_0.1 0.4 0.41 0.41

0.25_0.5 0.37 0.38 0.37

0.25_0 0.41 0.42 0.41

0.3_0.1 0.43 0.44 0.43

0.3_0.5 0.41 0.42 0.42

0.3_0 0.43 0.44 0.43

0.35_0.1 0.46 0.47 0.47

0.35_0.5 0.46 0.47 0.47

0.35_0 0.46 0.47 0.46

0.4_0.1 0.49 0.5 0.49

0.4_0.5 0.51 0.52 0.51

0.4_0 0.48 0.49 0.49

0.5_0.1 0.51 0.52 0.51

0.5_0.5 0.52 0.54 0.53

0.5_0 0.51 0.52 0.51

0.6_0.1 0.58 0.57 0.58
0.6_0.5 0.59 0.58 0.58
0.6_0 0.58 0.57 0.57

(c) nb_vec

st_\ pwa rwa f1-swa

0.25_0.1 0.6 0.62 0.61

0.25_0.5 0.57 0.59 0.58

0.25_0 0.6 0.62 0.61

0.3_0.1 0.64 0.66 0.65

0.3_0.5 0.63 0.65 0.64

0.3_0 0.64 0.65 0.64

0.35_0.1 0.66 0.68 0.67

0.35_0.5 0.66 0.68 0.67

0.35_0 0.65 0.67 0.66

0.4_0.1 0.66 0.68 0.67

0.4_0.5 0.67 0.69 0.68

0.4_0 0.66 0.68 0.67

0.5_0.1 0.68 0.68 0.68

0.5_0.5 0.69 0.69 0.69
0.5_0 0.68 0.69 0.68

0.6_0.1 0.72 0.64 0.68

0.6_0.5 0.72 0.64 0.68

0.6_0 0.72 0.64 0.68

(d) nb_vec_ft

st_\ pwa rwa f1-swa

0.25_0.1 0.61 0.62 0.61

0.25_0.5 0.57 0.59 0.58

0.25_0 0.6 0.62 0.61

0.3_0.1 0.64 0.66 0.65

0.3_0.5 0.63 0.65 0.64

0.3_0 0.64 0.66 0.65

0.35_0.1 0.66 0.68 0.67

0.35_0.5 0.65 0.67 0.66

0.35_0 0.66 0.68 0.67

0.4_0.1 0.66 0.68 0.67

0.4_0.5 0.68 0.7 0.69
0.4_0 0.66 0.68 0.67

0.5_0.1 0.68 0.68 0.68

0.5_0.5 0.69 0.69 0.69
0.5_0 0.68 0.69 0.68

0.6_0.1 0.72 0.64 0.68

0.6_0.5 0.72 0.64 0.68

0.6_0 0.72 0.64 0.68

58

(a) ft_en_cc

(b) elib_model_s_100_e_5_w_5

(c) nb_vec

59

(d) nb_vec_ft

Figure 13: Relevance Ranking Results Visualisation - ENV

In the figures (Figure 11, Figure 12, Figure 13) we can observe

that after a certain value of similarity threshold, if we keep increas-

ing it although weighted average precision (pwa) increases but weighted

average recall (rwa) and weighted average f1-score (f1-swa) starts to

decrease which is not desirable. However, this tendency also reflects

that with increasing similarity threshold, the precision increases but

recall decreases and relevance ranking starts to behave somewhat

like the keyword search approach. For the case of Enx dataset, the

optimal value of the evaluation metrics can be between 0.35 − 0.5.

Similarly, for ESR and ENV dataset, we can choose a value between

0.5−0.6. From the tables (Table 12, Table 13, Table 14) it is evident

that the value of \ does not have much contribution to the evaluation

scores rather the similarity thresholds (BC) have the major contribu-

tion to the final evaluation scores. Another observation is that the

fastText model trained on ELIB dataset (elib_model_s_100_e_5_w_5)

does not do well compared to the other three embedding models.

The evaluation results of ENX and ENV dataset has a significant im-

provement over Keyword Search (Table 2 and Okapi BM25 Search

(Table 3 especially for weighted average recall (rwa) and weighted av-

60

erage f1-score (f1-swa). However, for the case of ESR dataset, it al-

ready had very good scores with Okapi BM25 (Table 3). We do not

observe improvement using relevance ranking on this dataset.

5.2.6 Similarity Score Based Logistic Regression

In subsection 4.6 we have described the motivation and strategy

behind using word embedding in combination with logistic regres-

sion for document retrieval.

We use the same keywords and corpus subsets for all 3 datasets

as the previous experiments. In the tables (Table 15, Table 16,

Table 17) we can observe that the evaluation scores on ENX and

ENV datasets show improvement over keyword search (Table 2) and

Okapi BM25 search (Table 3). ESR dataset does not have improve-

ment over Okapi BM25 search (Table 3) but it has better scores here

than relevance ranking (Table 13). Amongst the different embedding

models, the combination of ft_en_cc, nb_vec and elib_model_s_100_e

_5_w_5 has better recall and precision scores whereas ft_en_cc has

better precision scores. If we look at the keyword based evaluation

graphs (Figure 15, Figure 17, Figure 19), there is no observable pat-

tern to analyze which embedding models is better for a dataset as

different keywords score better on different embeddings.

5.2.6.1 Logistic Regression - ENX Dataset Similarity Score base

Logistic Regression on ENX dataset.

61

Table 15: Document Retrieval Evaluation - ENX

embedding pwa rwa f1-swa

ft 0.66 0.3 0.42

elib 0.64 0.32 0.42

ft_elib 0.64 0.35 0.45

ft_nb_ft 0.64 0.34 0.44

nb_ft 0.63 0.34 0.44

ft_nb 0.63 0.38 0.48

nb 0.61 0.37 0.46

ft_nb_elib 0.61 0.4 0.48

Figure 14: Logistic Regression Scores Visualisation (weighted) - ENX

62

(a) Precision

(b) Recall

(c) f1_score

Figure 15: Logistic Regression Scores Visualisation - ENX
63

5.2.6.2 Logistic Regression - ESR Dataset Similarity Score base

Logistic Regression on ESR dataset.

Table 16: Logistic Regression Evaluation - ESR

embedding pwa rwa f1-swa

ft 0.91 0.64 0.75

nb_ft 0.91 0.63 0.75

elib 0.9 0.74 0.81

nb 0.9 0.76 0.82

ft_nb_ft 0.89 0.64 0.74

ft_nb 0.87 0.77 0.82

ft_elib 0.85 0.74 0.79

ft_nb_elib 0.78 0.78 0.78

Figure 16: Logistic Regression Scores Visualisation (weighted) - ESR

64

(a) Precision

(b) Recall

(c) f1_score

Figure 17: Logistic Regression Scores Visualisation - ESR
65

5.2.6.3 Logistic Regression - ENV Dataset Similarity Score base

Logistic Regression on ENV dataset.

Table 17: Logistic Regression Evaluation - ENV

embedding pwa rwa f1-swa

ft 0.71 0.41 0.52

nb 0.71 0.43 0.54

nb_ft 0.71 0.45 0.55

ft_elib 0.71 0.43 0.54

elib 0.7 0.31 0.43

ft_nb_ft 0.7 0.47 0.56

ft_nb_elib 0.7 0.45 0.55

ft_nb 0.69 0.46 0.56

Figure 18: Logistic Regression Scores Visualisation (weighted) - ENV

66

(a) Precision

(b) Recall

(c) f1_score

Figure 19: Logistic Regression Scores Visualisation - ENV
67

6 Discussion

In this section we briefly present our best results from the dif-

ferent document retrieval approaches we have presented so far. Ta-

ble 18 contains results from the Keyword Search (Table 2), Okapi-

BM25 (Table 3) and Dense Passage Retrieval (DPR) (Table 4) in

the first three rows respectively. The last three rows contain the

best models we have selected from the following three document

retrieval methods proposed by us in this thesis, Zero-shot Learn-

ing with Transformer based pre-trained NLP Models, Similarity

Score Based Relevance Ranking and Similarity Score Based Lo-

gistic Regression respectively. It is to be noted that from the many

different variations of models we have experimented with in our pro-

posed approaches, the model that performs relatively well on all

three datasets has been picked as the most optimal model for its

respective approach.

From the the Zero-shot Learning with Transformer based pre-

trained NLP Models approach, we have chosen the BART pre-trained

model as the most suitable transformer based pre-trained NLP model

for document retrieval task. Amongst all the pre-trained NLP mod-

els, the BART model generally performs well on all three datasets

(subsubsection 5.2.4). Between the two hypothesis templates we

have experimented with, This is a document about works better than

This is a text about for the BART model. In the Similarity Score

Based Relevance Ranking method, the nb_vec model has compar-

atively good scores on all three datasets. There are other models

that work particularly well on a specific dataset. However, in real

world the data distribution will be unknown and we need a model

that works well on different data distributions. Hence, nb_vec has

been selected as the best embedding model for relevance ranking

based document retrieval. Furthermore, from the tables presented

in subsubsection 5.2.5, we can observe that the optimal similarity

68

threshold (st) for the nb_vec is 0.4 across all datasets.

Finally, from the Similarity Score Based Logistic Regression

experiment, the combined dataframe ft_nb from the similarity scores

of ft_en_ and nb_vec embedding models performs good on all datasets.

Table 18: Summary of Results on all Datasets

ENX ESR ENV

method pwa rwa fwa pwa rwa fwa pwa rwa fwa

Keyword
0.73 0.14 0.23 0.96 0.68 0.79 0.72 0.59 0.65

Search

Okapi
0.3 0.33 0.32 0.81 0.92 0.86 0.55 0.58 0.56

-BM25

DPR 0.47 0.5 0.49 0.54 0.61 0.58 0.56 0.59 0.57

Transformer

0.78 0.77 0.78 0.9 0.9 0.9 0.86 0.86 0.86

Models

BART

(This is a docu

-ment about)

Relevance

0.48 0.5 0.49 0.75 0.81 0.78 0.67 0.69 0.68
Ranking

nb_vec

(st = 0.4)

Logistic

0.63 0.38 0.48 0.87 0.77 0.82 0.69 0.46 0.56Regression

ft_nb

Both of our similarity score based approaches perform better on

all three datasets as a whole compared to the baseline approaches

(keyword search, Okapi-Bm25 and DPR). Looking at the recall scores

69

of these two methods, we can observe that the Similarity Score

Based Relevance Ranking method has better performance than the

Similarity Score Based Logistic Regression.

From Table 18 we can see that the textbfZero-shot Learning with

Transformer based pre-trained NLP Models approach for document

retrieval has best scores compared to all other methods. However,

the computation time needed to classify each document in a dataset

after loading a transformer based NLP model is approximately 22.5

minutes (experimented on ENX dataset with 5 keywords as hypothe-

sis on a setup with - Intel(R) Core(TM) i7-8850H CPU at 2.60GHz and

32GB RAM capacity). This value increases proportionately with the

length of documents and the number of classes being considered.

On the other hand, after loading the vectors, the computational

time required to calculate the similarity score of each word in a doc-

ument against all 5 keywords is only approximately 8.8 seconds

with same technical setup. This makes our Similarity Score Based

Relevance Ranking approach more useful compared to Zero-shot

Learning with Transformer based pre-trained NLP Models for sit-

uations where a huge number of documents have to be processed

and a quick response is expected .

7 Conclusion and Future Work

The objective of this thesis was to enhance keyword based doc-

ument retrieval models. We conclude our experiments with three

different proposed approaches for document retrieval, all of which

perform better than the classical document retrieval methods we

have considered as baseline. Amongst our proposed model the best

performance is observed on the Zero-shot Learning with Trans-

former based pre-trained NLP Models approach. However, as ex-

plained before the pre-trained NLP models used in the method take

significantly more computation time in comparison to word embed-

70

ding models calculating similarity scores on same datasets. There-

fore, as mentioned in (section 6), Similarity Score Based Relevance

Ranking is a more appropriate model for term based document re-

trieval. The model is highly capable of retrieving documents that are

contextually relevant but do not contain the search term with good

reliability.

We have already observed that embedding models (subsubsec-

tion 3.4.3) benefiting from both knowledge graph and distributed

semantic word embeddings perform better than models that only

contain the later. Therefore, the possible future direction from here

would be to improve the use of such word embedding models for

fast document retrieval. Alternatively, reducing the time need for

computing class probability using transformer based NLP models

will make the pre-trained NLP models highly advantageous for doc-

ument retrieval tasks. Lastly, as observed in our experiments, since

the hypothesis template needed in the transformer based zero-shot

classifier pipeline affects the performance, developing a proper ap-

proach for finding the optimal hypothesis template will be beneficial

not only for document retrieval tasks but for many other tasks where

the classifier pipeline is used.

71

Appendix

7.1 Logistic Regression - Scores on individual key-

words

Table 19: Similarity Score based Logistic Regression Evaluation -

ENX

(a) Precision

embedding q1 q2 q3 q4 q5 qcom

elib 0.55 0.43 0.77 0.33 0.75 0.65
ft 0.62 0.67 0.65 0.29 0.68 0.72
nb 0.46 0.83 0.58 0.36 0.67 0.66

nb_ft 0.5 0.8 0.61 0.5 0.68 0.67
ft_elib 0.44 0.56 0.72 0.38 0.79 0.68
ft_nb 0.5 0.5 0.69 0.67 0.69 0.64

ft_nb_ft 0.64 0.67 0.62 0.6 0.68 0.64
ft_nb_elib 0.42 0.67 0.68 0.56 0.71 0.62

(b) Recall

embedding q1 q2 q3 q4 q5 qcom

elib 0.21 0.38 0.56 0.12 0.6 0.22
ft 0.28 0.5 0.41 0.12 0.52 0.24
nb 0.21 0.62 0.51 0.24 0.72 0.28

nb_ft 0.17 0.5 0.49 0.29 0.68 0.25
ft_elib 0.28 0.62 0.44 0.18 0.6 0.29
ft_nb 0.24 0.38 0.49 0.35 0.72 0.31

ft_nb_ft 0.24 0.5 0.44 0.35 0.68 0.25
ft_nb_elib 0.34 0.5 0.61 0.29 0.68 0.29

(c) f1_score

embedding q1 q2 q3 q4 q5 qcom

elib 0.3 0.4 0.65 0.17 0.67 0.33
ft 0.38 0.57 0.51 0.17 0.59 0.35
nb 0.29 0.71 0.55 0.29 0.69 0.39

nb_ft 0.26 0.62 0.54 0.37 0.68 0.37
ft_elib 0.34 0.59 0.55 0.24 0.68 0.4
ft_nb 0.33 0.43 0.57 0.46 0.71 0.42

ft_nb_ft 0.35 0.57 0.51 0.44 0.68 0.36
ft_nb_elib 0.38 0.57 0.64 0.38 0.69 0.39

72

Table 20: Similarity Score based Logistic Regression - ESR

(a) Precision

embedding q1 q2 q3 q4 q5 qcom

elib 1.0 1.0 0.73 0.67 0.92 0.95

ft 0.88 0.75 0.88 0.75 1.0 0.97

nb 0.83 0.64 0.89 0.8 1.0 0.96

nb_ft 0.88 0.75 0.88 0.75 1.0 0.97

ft_elib 0.79 1.0 0.67 0.64 0.91 0.91

ft_nb 0.77 0.69 0.8 0.67 1.0 0.96

ft_nb_ft 0.88 0.75 0.88 0.75 0.92 0.95

ft_nb_elib 0.62 0.9 0.62 0.71 0.9 0.82

(b) Recall

embedding q1 q2 q3 q4 q5 qcom

elib 0.82 1.0 0.8 0.4 1.0 0.71

ft 0.64 0.82 0.7 0.2 1.0 0.64

nb 0.91 0.82 0.8 0.53 0.92 0.74

nb_ft 0.64 0.82 0.7 0.2 0.92 0.64

ft_elib 1.0 0.91 0.8 0.47 0.83 0.71

ft_nb 0.91 0.82 0.8 0.53 0.92 0.76

ft_nb_ft 0.64 0.82 0.7 0.2 1.0 0.64

ft_nb_elib 0.73 0.82 0.8 0.8 0.75 0.78

(c) f1_score

embedding q1 q2 q3 q4 q5 qcom

elib 0.9 1.0 0.76 0.5 0.96 0.81

ft 0.74 0.78 0.78 0.32 1.0 0.77

nb 0.87 0.72 0.84 0.64 0.96 0.83

nb_ft 0.74 0.78 0.78 0.32 0.96 0.77

ft_elib 0.88 0.95 0.73 0.54 0.87 0.8

ft_nb 0.83 0.75 0.8 0.59 0.96 0.85

ft_nb_ft 0.74 0.78 0.78 0.32 0.96 0.76

ft_nb_elib 0.67 0.86 0.7 0.75 0.82 0.8

73

Table 21: Similarity Score based Logistic Regression - ENV

(a) Precision

embedding q1 q2 q3 q4 q5 qcom

elib 0.85 0.5 0.2 0.67 0.66 0.72

ft 0.93 0.65 0.0 0.76 0.61 0.68

nb 0.89 0.67 0.0 0.7 0.63 0.7

nb_ft 0.86 0.64 0.5 0.76 0.69 0.68

ft_elib 0.89 0.67 0.25 0.83 0.6 0.68

ft_nb 0.91 0.52 0.25 0.76 0.57 0.7

ft_nb_ft 0.86 0.57 0.33 0.74 0.57 0.71

ft_nb_elib 0.88 0.63 0.0 0.77 0.61 0.68

(b) Recall

embedding q1 q2 q3 q4 q5 qcom

elib 0.39 0.12 0.2 0.22 0.55 0.29

ft 0.46 0.27 0.0 0.48 0.53 0.41

nb 0.55 0.24 0.0 0.52 0.5 0.43

nb_ft 0.57 0.17 0.4 0.48 0.63 0.43

ft_elib 0.43 0.34 0.2 0.56 0.63 0.4

ft_nb 0.54 0.27 0.2 0.59 0.55 0.46

ft_nb_ft 0.55 0.32 0.2 0.52 0.53 0.46

ft_nb_elib 0.52 0.29 0.0 0.63 0.58 0.44

(c) f1_score

embedding q1 q2 q3 q4 q5 qcom

elib 0.54 0.2 0.2 0.33 0.6 0.41

ft 0.62 0.38 0.0 0.59 0.56 0.51

nb 0.68 0.36 0.0 0.6 0.56 0.53

nb_ft 0.69 0.27 0.44 0.59 0.66 0.52

ft_elib 0.58 0.45 0.22 0.67 0.62 0.5

ft_nb 0.67 0.35 0.22 0.67 0.56 0.55

ft_nb_ft 0.67 0.41 0.25 0.61 0.55 0.55

ft_nb_elib 0.65 0.4 0.0 0.69 0.59 0.53

74

List of Figures

1 Word embedding visualization 9

2 Neural Network architectures of Word2Vec 12

3 Skip Gram with Negative Sampling 14

4 Simple Autoencoder . 15

5 Transformer Architecture [48] 17

6 BERT Encoder [33] . 23

7 GPT Decoder [33] . 23

8 BART Architecture [33] 23

9 Text pre-processing pipeline 28

10 Confusion Matrix . 37

11 Relevance Ranking Results Visualisation - ENX 54

12 Relevance Ranking Results Visualisation - ESR 57

13 Relevance Ranking Results Visualisation - ENV 60

14 Logistic Regression Scores Visualisation (weighted) - ENX 62

15 Logistic Regression Scores Visualisation - ENX 63

16 Logistic Regression Scores Visualisation (weighted) - ESR 64

17 Logistic Regression Scores Visualisation - ESR 65

18 Logistic Regression Scores Visualisation (weighted) - ENV 66

19 Logistic Regression Scores Visualisation - ENV 67

75

List of Tables

1 List of keywords for each dataset. 39

2 Keyword Search Evaluation 40

3 Okapi BM25 Search Evaluation (Weighted Average Pre-

cision and Recall) . 41

4 Dense Passage Retrieval Evaluation 42

5 Template Evaluation - ENX - BART 44

6 Template Evaluation - ENX - BERT-ESR 44

7 Template Evaluation - ENV - BART 45

8 Template Evaluation - ENV - BERT-ESR 45

9 Zero Shot Classification - ENX 47

10 Zero Shot Classification - ESR 48

11 Zero Shot Classification - ENV 49

12 Relevance Ranking Evaluation - ENX 52

13 Relevance Ranking Evaluation - ESR 55

14 Relevance Ranking Evaluation - ENV 58

15 Document Retrieval Evaluation - ENX 62

16 Logistic Regression Evaluation - ESR 64

17 Logistic Regression Evaluation - ENV 66

18 Summary of Results on all Datasets 69

19 Similarity Score based Logistic Regression Evaluation -

ENX . 72

20 Similarity Score based Logistic Regression - ESR 73

21 Similarity Score based Logistic Regression - ENV 74

76

References

[1] Ashutosh Adhikari, Achyudh Ram, Raphael Tang, and Jimmy

Lin. Docbert: Bert for document classification. arXiv preprint

arXiv:1904.08398, 2019.

[2] David C Blair and Melvin E Maron. An evaluation of retrieval

effectiveness for a full-text document-retrieval system. Commu-

nications of the ACM, 28(3):289–299, 1985.

[3] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas

Mikolov. Enriching word vectors with subword information.

Transactions of the Association for Computational Linguistics,

5:135–146, 2017.

[4] Hervé Bourlard and Yves Kamp. Auto-association by multilayer

perceptrons and singular value decomposition. Biological cyber-

netics, 59(4):291–294, 1988.

[5] Jane Bromley, James W Bentz, Léon Bottou, Isabelle Guyon,

Yann LeCun, Cliff Moore, Eduard Säckinger, and Roopak Shah.

Signature verification using a “siamese” time delay neural net-

work. International Journal of Pattern Recognition and Artificial

Intelligence, 7(04):669–688, 1993.

[6] Dorian Brown. A collection of bm25 algorithms in python.

https://github.com/dorianbrown/rank_bm25, 2021.

[7] Shyi-Ming Chen and Jeng-Yih Wang. Document retrieval using

knowledge-based fuzzy information retrieval techniques. IEEE

Transactions on Systems, Man, and Cybernetics, 25(5):793–803,

1995.

[8] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and

Yoshua Bengio. Empirical evaluation of gated recurrent

neural networks on sequence modeling. arXiv preprint

arXiv:1412.3555, 2014.

77

https://github.com/dorianbrown/rank_bm25

[9] Ronan Collobert and Jason Weston. A unified architecture for

natural language processing: Deep neural networks with multi-

task learning. In Proceedings of the 25th international conference

on Machine learning, pages 160–167, 2008.

[10] Joe Davison. bart-large-mnli-yahoo-

answers. https://huggingface.co/joeddav/

bart-large-mnli-yahoo-answers, 2021.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

[12] Mohamed Elhoseiny, Babak Saleh, and Ahmed Elgammal.

Write a classifier: Zero-shot learning using purely textual de-

scriptions. In Proceedings of the IEEE International Conference

on Computer Vision, pages 2584–2591, 2013.

[13] ELIB-DLR. Electronic library, dlr. https://elib.dlr.de/,

2021.

[14] engrXiv. engrxiv preprints. https://engrxiv.org/, 03 April,

2021.

[15] fastText. Word vectors for 157 languages.

https://fasttext.cc/docs/en/crawl-vectors.html, 2021.

[16] EC Directorate General for Environment. Science for environ-

ment policy news site. https://ec.europa.eu/environment/

integration/research/newsalert/, 2011-2020.

[17] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep

learning. MIT press, 2016.

[18] Google. Google code archive - long-term storage for google

code project hosting. https://code.google.com/archive/p/

word2vec/, 2021.

78

https://huggingface.co/joeddav/bart-large-mnli-yahoo-answers
https://huggingface.co/joeddav/bart-large-mnli-yahoo-answers
https://elib.dlr.de/
https://engrxiv.org/
https://ec.europa.eu/environment/integration/research/newsalert/
https://ec.europa.eu/environment/integration/research/newsalert/
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/

[19] Andreas Hamm and Simon Odrowski. Term-community-based

topic detection with variable resolution. Information, 12(6):221,

2021.

[20] Zellig S Harris. Distributional structure. Word, 10(2-3):146–

162, 1954.

[21] Haystack. Better retrieval via "dense passage retrieval".

https://haystack.deepset.ai/docs/latest/tutorial6md, 2021.

[22] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen.

Deberta: Decoding-enhanced bert with disentangled attention.

arXiv preprint arXiv:2006.03654, 2020.

[23] Geoffrey E Hinton and Richard S Zemel. Autoencoders, mini-

mum description length, and helmholtz free energy. Advances

in neural information processing systems, 6:3–10, 1994.

[24] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term

memory. Neural computation, 9(8):1735–1780, 1997.

[25] Forrest N Iandola, Albert E Shaw, Ravi Krishna, and

Kurt W Keutzer. Squeezebert: What can computer vision

teach nlp about efficient neural networks? arXiv preprint

arXiv:2006.11316, 2020.

[26] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale

similarity search with gpus. IEEE Transactions on Big Data,

2019.

[27] Karen Sparck Jones. A statistical interpretation of term speci-

ficity and its application in retrieval. Journal of documentation,

1972.

[28] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas

Mikolov. Bag of tricks for efficient text classification. arXiv

preprint arXiv:1607.01759, 2016.

79

[29] Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis,

Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.

Dense passage retrieval for open-domain question answering.

arXiv preprint arXiv:2004.04906, 2020.

[30] Solomon Kullback and Richard A Leibler. On information and

sufficiency. The annals of mathematical statistics, 22(1):79–86,

1951.

[31] Yann Le Cun and Françoise Fogelman-Soulié. Modèles connex-

ionnistes de l’apprentissage. Intellectica, 2(1):114–143, 1987.

[32] Jieh-Sheng Lee and Jieh Hsiang. Patentbert: Patent classifica-

tion with fine-tuning a pre-trained bert model. arXiv preprint

arXiv:1906.02124, 2019.

[33] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvinine-

jad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and

Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-

training for natural language generation, translation, and com-

prehension. arXiv preprint arXiv:1910.13461, 2019.

[34] Qian Liu, Heyan Huang, Jie Lut, Yang Gao, and Guangquan

Zhang. Enhanced word embedding similarity measures using

fuzzy rules for query expansion. In 2017 IEEE International Con-

ference on Fuzzy Systems (FUZZ-IEEE), pages 1–6. IEEE, 2017.

[35] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi,

Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and

Veselin Stoyanov. Roberta: A robustly optimized bert pretrain-

ing approach. arXiv preprint arXiv:1907.11692, 2019.

[36] Hans Peter Luhn. A statistical approach to mechanized encod-

ing and searching of literary information. IBM Journal of re-

search and development, 1(4):309–317, 1957.

80

[37] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Ef-

ficient estimation of word representations in vector space. arXiv

preprint arXiv:1301.3781, 2013.

[38] Suraj Patil. Distilbart. https://huggingface.co/valhalla/distilbart-

mnli-12-3, 2021.

[39] Dong Qiu, Haihuan Jiang, and Shuqiao Chen. Fuzzy informa-

tion retrieval based on continuous bag-of-words model. Sym-

metry, 12(2):225, 2020.

[40] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya

Sutskever. Improving language understanding by generative

pre-training. 2018.

[41] Stephen Robertson and Hugo Zaragoza. The probabilistic rele-

vance framework: BM25 and beyond. Now Publishers Inc, 2009.

[42] Stephen E Robertson and K Sparck Jones. Relevance weighting

of search terms. Journal of the American Society for Information

science, 27(3):129–146, 1976.

[43] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas

Wolf. Distilbert, a distilled version of bert: smaller, faster,

cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

[44] Zein Shaheen, Gerhard Wohlgenannt, and Erwin Filtz. Large

scale legal text classification using transformer models. arXiv

preprint arXiv:2010.12871, 2020.

[45] Sam Shleifer and Alexander M Rush. Pre-trained summariza-

tion distillation. arXiv preprint arXiv:2010.13002, 2020.

[46] Robyn Speer, Joshua Chin, and Catherine Havasi. Conceptnet

5.5: An open multilingual graph of general knowledge. In Thirty-

first AAAI conference on artificial intelligence, 2017.

81

[47] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data

using t-sne. Journal of machine learning research, 9(11), 2008.

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkor-

eit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polo-

sukhin. Attention is all you need. In Advances in neural infor-

mation processing systems, pages 5998–6008, 2017.

[49] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-

Antoine Manzagol. Extracting and composing robust features

with denoising autoencoders. In Proceedings of the 25th interna-

tional conference on Machine learning, pages 1096–1103, 2008.

[50] Adina Williams, Nikita Nangia, and Samuel R Bowman. A

broad-coverage challenge corpus for sentence understanding

through inference. arXiv preprint arXiv:1704.05426, 2017.

[51] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond,

Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault,

Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,

Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Can-

wen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame,

Quentin Lhoest, and Alexander M. Rush. Transformers: State-

of-the-art natural language processing. In Proceedings of the

2020 Conference on Empirical Methods in Natural Language Pro-

cessing: System Demonstrations, pages 38–45, Online, October

2020. Association for Computational Linguistics.

[52] Chenyan Xiong, R. Power, and Jamie Callan. Explicit semantic

ranking for academic search via knowledge graph embedding.

Proceedings of the 26th International Conference on World Wide

Web, 2017.

82

	Declaration of Authorship
	Acknowledgements
	Abstract
	Erklärung über das selbständige Verfassen einer Abschlussarbeit/ Declaration of Authorship
	Titel der Arbeit/Title:
	 Introduction
	 Related Work
	 Background
	 Methodology
	Experiments
	Discussion
	Conclusion and Future Work
	Appendix
	List of Figures
	List of Tables
	Bibliography

